Download citation
Download citation
link to html
The title compound, C14H15NO5, is an inter­mediate in the synthesis of azelnidipine. The dihedral angle between the aromatic ring and the enone fragment is 15.33 (8)°. The crystal packing is consolidated by a weak C—H...O inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030322/hb2448sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030322/hb2448Isup2.hkl
Contains datablock I

CCDC reference: 657792

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.058
  • wR factor = 0.156
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 800 Deg. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C10
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound (I) is an intermediate in a synthesis of azelnidipine, which is a calcium antagonist for the treatment of hypertension (Takashi et al., 1995) and we report its crystal structure here (Fig. 1).

C1—C6, N1 and O2—O3 are almost coplanar, with an r.m.s. deviation from the mean plane of 0.008 (8) Å. C7—C9, C13—C14 and O5 are also almost coplanar, with an r.m.s. deviation of 0.055 (4) Å, forming a dihedral angle of 15.33 (8)° with the above plane. In addition, C8—C10 and O3—O4 are almost coplanar, with an r.m.s. deviation from the mean plane of 0.018 (7) Å, which is nearly orthogonal to the second plane (C7—C9, C13—C14 and O5) with a dihedral angle of 87.27 (9)°.

In the crystal of (I), the packing is consolidated by weak C—H···O interactions (Table 1).

Related literature top

For related literature, see: Takashi et al. (1995).

Experimental top

A solution of 3-nitrobenzaldehyde and isopropyl acetoacetate in 2-propanol containing a catalytic amount of piperidinium acetate was stirred at 323–328 K for 1 h and left at room temperature for 48 h. The product was collected by filtration and was recrystallized from 2-propanol to yield colourless blocks of (I). Yield was 77%. m.p.: 365 K.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

The title compound (I) is an intermediate in a synthesis of azelnidipine, which is a calcium antagonist for the treatment of hypertension (Takashi et al., 1995) and we report its crystal structure here (Fig. 1).

C1—C6, N1 and O2—O3 are almost coplanar, with an r.m.s. deviation from the mean plane of 0.008 (8) Å. C7—C9, C13—C14 and O5 are also almost coplanar, with an r.m.s. deviation of 0.055 (4) Å, forming a dihedral angle of 15.33 (8)° with the above plane. In addition, C8—C10 and O3—O4 are almost coplanar, with an r.m.s. deviation from the mean plane of 0.018 (7) Å, which is nearly orthogonal to the second plane (C7—C9, C13—C14 and O5) with a dihedral angle of 87.27 (9)°.

In the crystal of (I), the packing is consolidated by weak C—H···O interactions (Table 1).

For related literature, see: Takashi et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms).
Isopropyl 2-(3-nitrobenzylidene)acetoacetate top
Crystal data top
C14H15NO5Z = 2
Mr = 277.27F(000) = 292
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Melting point: 365 K
a = 7.545 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.240 (5) ÅCell parameters from 1113 reflections
c = 11.055 (6) Åθ = 2.6–24.9°
α = 103.598 (8)°µ = 0.10 mm1
β = 101.898 (8)°T = 294 K
γ = 105.876 (8)°Block, colorless
V = 689.7 (6) Å30.22 × 0.20 × 0.16 mm
Data collection top
Bruker SMART CCD
diffractometer
2754 independent reflections
Radiation source: fine-focus sealed tube1499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 97
Tmin = 0.980, Tmax = 0.984k = 711
3816 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.2485P]
where P = (Fo2 + 2Fc2)/3
2754 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H15NO5γ = 105.876 (8)°
Mr = 277.27V = 689.7 (6) Å3
Triclinic, P1Z = 2
a = 7.545 (4) ÅMo Kα radiation
b = 9.240 (5) ŵ = 0.10 mm1
c = 11.055 (6) ÅT = 294 K
α = 103.598 (8)°0.22 × 0.20 × 0.16 mm
β = 101.898 (8)°
Data collection top
Bruker SMART CCD
diffractometer
2754 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1499 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.024
3816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2754 reflectionsΔρmin = 0.19 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2135 (3)0.4164 (3)0.0034 (2)0.0825 (8)
O20.1935 (4)0.6589 (3)0.0411 (2)0.0917 (8)
O30.0432 (3)1.1048 (2)0.30423 (18)0.0577 (6)
O40.3410 (3)1.1135 (2)0.29935 (16)0.0479 (5)
O50.3443 (3)1.3493 (3)0.5663 (2)0.0745 (7)
N10.1550 (4)0.5522 (4)0.0740 (2)0.0612 (7)
C10.0380 (4)0.7413 (3)0.2841 (2)0.0443 (7)
H10.00550.81950.25430.053*
C20.0298 (4)0.5891 (3)0.2048 (3)0.0456 (7)
C30.0137 (4)0.4697 (3)0.2429 (3)0.0615 (8)
H30.03290.36680.18640.074*
C40.1277 (5)0.5056 (4)0.3664 (3)0.0703 (10)
H40.15840.42620.39510.084*
C50.1969 (4)0.6570 (3)0.4482 (3)0.0570 (8)
H50.27360.67890.53220.068*
C60.1554 (4)0.7794 (3)0.4089 (2)0.0431 (6)
C70.2365 (4)0.9379 (3)0.5013 (2)0.0445 (7)
H70.28070.94200.58750.053*
C80.2577 (3)1.0773 (3)0.4828 (2)0.0408 (6)
C90.1986 (4)1.0990 (3)0.3518 (2)0.0403 (6)
C100.3134 (4)1.1453 (3)0.1732 (3)0.0534 (8)
H100.21631.19690.16260.064*
C110.2471 (6)0.9911 (4)0.0685 (3)0.0818 (11)
H11A0.34490.94300.07720.123*
H11B0.22241.00830.01470.123*
H11C0.13110.92250.07560.123*
C120.5033 (5)1.2548 (5)0.1801 (4)0.0909 (12)
H12A0.53701.35120.24960.136*
H12B0.49621.27800.09930.136*
H12C0.59941.20610.19580.136*
C130.3435 (4)1.2283 (4)0.5895 (3)0.0508 (7)
C140.4305 (5)1.2290 (4)0.7243 (3)0.0683 (9)
H14A0.48291.33580.78160.103*
H14B0.53111.18410.72410.103*
H14C0.33321.16750.75340.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0826 (17)0.0679 (16)0.0576 (14)0.0046 (13)0.0022 (12)0.0004 (12)
O20.109 (2)0.0929 (19)0.0554 (14)0.0409 (16)0.0158 (13)0.0165 (13)
O30.0493 (12)0.0763 (15)0.0531 (12)0.0249 (11)0.0096 (10)0.0302 (10)
O40.0483 (11)0.0634 (12)0.0365 (10)0.0210 (9)0.0122 (9)0.0213 (9)
O50.0934 (18)0.0521 (13)0.0608 (14)0.0202 (12)0.0027 (12)0.0086 (11)
N10.0585 (16)0.0657 (18)0.0432 (15)0.0086 (14)0.0065 (12)0.0090 (14)
C10.0443 (15)0.0486 (17)0.0428 (15)0.0169 (13)0.0099 (12)0.0200 (13)
C20.0422 (15)0.0473 (17)0.0435 (16)0.0109 (13)0.0107 (13)0.0135 (13)
C30.063 (2)0.0455 (18)0.067 (2)0.0124 (15)0.0152 (17)0.0115 (15)
C40.084 (2)0.051 (2)0.075 (2)0.0245 (18)0.0067 (19)0.0304 (18)
C50.0620 (19)0.059 (2)0.0505 (17)0.0179 (16)0.0072 (14)0.0295 (16)
C60.0417 (15)0.0499 (16)0.0400 (15)0.0141 (13)0.0114 (12)0.0203 (13)
C70.0414 (15)0.0585 (18)0.0328 (14)0.0161 (13)0.0078 (12)0.0161 (13)
C80.0380 (14)0.0478 (16)0.0354 (14)0.0135 (12)0.0087 (11)0.0135 (12)
C90.0462 (16)0.0354 (14)0.0340 (14)0.0116 (12)0.0071 (13)0.0078 (11)
C100.0618 (19)0.0653 (19)0.0381 (15)0.0212 (16)0.0131 (14)0.0266 (14)
C110.108 (3)0.080 (2)0.048 (2)0.023 (2)0.0173 (19)0.0163 (18)
C120.085 (3)0.103 (3)0.071 (2)0.001 (2)0.017 (2)0.046 (2)
C130.0442 (16)0.0572 (19)0.0421 (17)0.0140 (14)0.0077 (13)0.0074 (14)
C140.066 (2)0.082 (2)0.0420 (17)0.0256 (18)0.0004 (15)0.0051 (16)
Geometric parameters (Å, º) top
O1—N11.214 (3)C7—C81.324 (3)
O2—N11.212 (3)C7—H70.9300
O3—C91.203 (3)C8—C131.474 (4)
O4—C91.313 (3)C8—C91.501 (4)
O4—C101.477 (3)C10—C121.486 (4)
O5—C131.203 (3)C10—C111.488 (4)
N1—C21.459 (4)C10—H100.9800
C1—C21.360 (4)C11—H11A0.9600
C1—C61.382 (4)C11—H11B0.9600
C1—H10.9300C11—H11C0.9600
C2—C31.365 (4)C12—H12A0.9600
C3—C41.364 (4)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C4—C51.362 (4)C13—C141.497 (4)
C4—H40.9300C14—H14A0.9600
C5—C61.391 (4)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—C71.453 (4)
C9—O4—C10118.1 (2)O3—C9—C8124.0 (2)
O2—N1—O1123.5 (3)O4—C9—C8110.4 (2)
O2—N1—C2118.4 (3)O4—C10—C12105.3 (2)
O1—N1—C2118.1 (3)O4—C10—C11108.0 (2)
C2—C1—C6119.7 (2)C12—C10—C11114.0 (3)
C2—C1—H1120.1O4—C10—H10109.8
C6—C1—H1120.1C12—C10—H10109.8
C1—C2—C3122.7 (3)C11—C10—H10109.8
C1—C2—N1118.5 (3)C10—C11—H11A109.5
C3—C2—N1118.8 (3)C10—C11—H11B109.5
C4—C3—C2118.0 (3)H11A—C11—H11B109.5
C4—C3—H3121.0C10—C11—H11C109.5
C2—C3—H3121.0H11A—C11—H11C109.5
C5—C4—C3120.6 (3)H11B—C11—H11C109.5
C5—C4—H4119.7C10—C12—H12A109.5
C3—C4—H4119.7C10—C12—H12B109.5
C4—C5—C6121.6 (3)H12A—C12—H12B109.5
C4—C5—H5119.2C10—C12—H12C109.5
C6—C5—H5119.2H12A—C12—H12C109.5
C1—C6—C5117.4 (3)H12B—C12—H12C109.5
C1—C6—C7124.4 (2)O5—C13—C8119.3 (3)
C5—C6—C7118.2 (2)O5—C13—C14121.1 (3)
C8—C7—C6130.5 (2)C8—C13—C14119.6 (3)
C8—C7—H7114.8C13—C14—H14A109.5
C6—C7—H7114.8C13—C14—H14B109.5
C7—C8—C13123.2 (2)H14A—C14—H14B109.5
C7—C8—C9123.9 (2)C13—C14—H14C109.5
C13—C8—C9112.9 (2)H14A—C14—H14C109.5
O3—C9—O4125.6 (2)H14B—C14—H14C109.5
C6—C1—C2—C30.3 (4)C5—C6—C7—C8162.8 (3)
C6—C1—C2—N1179.4 (2)C6—C7—C8—C13179.7 (3)
O2—N1—C2—C10.1 (4)C6—C7—C8—C90.7 (4)
O1—N1—C2—C1179.3 (2)C10—O4—C9—O32.3 (4)
O2—N1—C2—C3179.7 (3)C10—O4—C9—C8176.4 (2)
O1—N1—C2—C31.0 (4)C7—C8—C9—O391.8 (3)
C1—C2—C3—C41.0 (5)C13—C8—C9—O388.6 (3)
N1—C2—C3—C4178.7 (3)C7—C8—C9—O489.5 (3)
C2—C3—C4—C50.6 (5)C13—C8—C9—O490.1 (3)
C3—C4—C5—C60.4 (5)C9—O4—C10—C12143.2 (3)
C2—C1—C6—C50.8 (4)C9—O4—C10—C1194.7 (3)
C2—C1—C6—C7179.7 (2)C7—C8—C13—O5174.3 (3)
C4—C5—C6—C11.1 (4)C9—C8—C13—O56.1 (4)
C4—C5—C6—C7179.3 (3)C7—C8—C13—C146.6 (4)
C1—C6—C7—C817.6 (4)C9—C8—C13—C14173.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O30.932.493.302 (4)147
C4—H4···O5i0.932.483.308 (5)150
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H15NO5
Mr277.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.545 (4), 9.240 (5), 11.055 (6)
α, β, γ (°)103.598 (8), 101.898 (8), 105.876 (8)
V3)689.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3816, 2754, 1499
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.156, 1.02
No. of reflections2754
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O30.932.493.302 (4)147
C4—H4···O5i0.932.483.308 (5)150
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds