Download citation
Download citation
link to html
In the mol­ecule of the title compound, C22H24N2O3S, the dihedral angle between the two phenyl rings is 70.28 (11)°. The cyclohexane ring adopts a chair conformation while the thiazolidine ring assumes an envelope conformation. The crystal packing is stabilized by intra­molecular N—H...O and inter­molecular C—H...O and O—H...O hydrogen-bonding inter­actions. The structure also contains C—H...Cg interactions, where Cg is the centroid of the phenyl ring at (1-x, -y, 1-z); for this contact, C...Cg = 3.721 (3) Å, H...Cg = 2.82 Å and C—H...Cg = 162°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031650/hb2465sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031650/hb2465Isup2.hkl
Contains datablock I

CCDC reference: 657667

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.056
  • wR factor = 0.174
  • Data-to-parameter ratio = 23.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: Each of the authors listed made significant contributions to this paper.

1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

4-Thiazolidinones and their spiroheterocyclic analogs have been shown to possess antibacterial (Ateş et al., 1997; Andres et al., 2000), antifungal (Ulusoy et al., 1997; Çapan et al., 1999) and antituberculosis (Ulusoy, 2002; Karalı et al., 1998; Srivastava et al., 2005) activities. In our previous report (Güzel et al., 2006), we have synthesized and evaluated sixteen new 2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.4]non-4-yl)/(3-oxo-1-thia-4-αzaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide derivatives, incorporating the thiazolidinone substructure, as potential antimycobacterials. We now report the crystal structure of the title compound, (I), (Fig. 1), which has a non-planar conformation.

All bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The dihedral angle between the two phenyl rings is 70.28 (11)°. The five-membered ring (S1/N2/C15—C17) is not planar, with puckering parameters (Cremer & Pople, 1975) Q2 = 0.2791 (18) Å and φ2 = 171.1 (4) °. The C17—C22 cyclohexane ring has a normal chair conformation [puckering parameters: Q = 0.559 (2) Å, θ = 180.00 (2)° and φ = 341 (9) °].

The molecular conformation and crystal packing (Fig. 2) is stabilized by intramolecular N—H···O and intermolecular C—H···O and O—H···O hydrogen bonds (Table 1). The packing of (I) also features a C–H···π interaction, viz: C10—H10···Cg2(1 - x, -y, 1 - z), where Cg denotes the centre of the C1—C6 phenyl ring [C···Cg = 3.721 (3) Å, H···Cg = 2.82 Å and C–H···Cg = 162 °].

Related literature top

For related literature, see: Allen et al. (1987); Andres et al. (2000); Ateş et al. (1997); Çapan et al. (1999); Cremer & Pople (1975); Güzel et al. (2006); Karalı, Terzioğlu & Gürsoy (1998); Srivastava et al. (2005); Ulusoy (2002); Ulusoy et al. (1997).

Experimental top

A mixture of 2-hydroxy-2,2-diphenylacetohydrazide (0.005 mol), cyclohexanone (0.005 mol) and mercaptoacetic acid or α-mercaptopropionic acid (0.02 mol) was refluxed in 20 ml dry benzene for 5–6 h using a Dean-Stark water separator. Excess benzene was evaporated in vacuo. The resulting residue was titrated with saturated NaHCO3 solution until CO2 evolution ceased and was allowed to stand overnight or in some cases refrigerated until solidification. The solid thus obtained was recrystallized from ethanol.

Yield 47%; mp 493–495 K; IR(KBr) (ν, cm-1): 3354 (O—H/N—H), 1685, 1726 (CO). 1H-NMR (DMSO-d6, 500 MHz) δ (p.p.m.): 0.80–1.07 (m, 1H, spirodecane), 1.34–1.38 (m, 2H, spirodecane), 1.49–1.63 (m, 5H, spirodecane), 1.73, 1.76 (2 s, 2H, spirodecane), 3.54 (s, 2H, C2—H2), 6.81 (s, 1H, COH), 7.28–7.35 (m, 6H, Ar—H), 7.46 (s, 2H, Ar—H), 7.47–7.48 (m, 2H, Ar—H), 10.21 (s, 1H, CONH). 13C-NMR (APT) (DMSO-d6 / 125 MHz) δ (p.p.m.): 23.56 (C7,9 spd.), 24.83 (C8 spd.), 28.64 (C2 spd.), 37.61 (C6,10 spd.), 73.30 (C5 spd.), 81.61 (C—OH), 128.05,128.25,128.30 (ar. CH), 144.40 (ar. C), 167.98 (amide CO), 173.40 (lactam CO). Analysis calculated for C22H24N2O3S (396.494): C 66.64, H 6.10, N 7.07%. Found: C 66.21, H 6.22, N 6.69%.

Refinement top

The NH H atom were found from a difference Fourier map and refined freely. The other H atoms were positioned geometrically, with C—H = 0.93–0.97Å and O—H = 0.82 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

4-Thiazolidinones and their spiroheterocyclic analogs have been shown to possess antibacterial (Ateş et al., 1997; Andres et al., 2000), antifungal (Ulusoy et al., 1997; Çapan et al., 1999) and antituberculosis (Ulusoy, 2002; Karalı et al., 1998; Srivastava et al., 2005) activities. In our previous report (Güzel et al., 2006), we have synthesized and evaluated sixteen new 2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.4]non-4-yl)/(3-oxo-1-thia-4-αzaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide derivatives, incorporating the thiazolidinone substructure, as potential antimycobacterials. We now report the crystal structure of the title compound, (I), (Fig. 1), which has a non-planar conformation.

All bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The dihedral angle between the two phenyl rings is 70.28 (11)°. The five-membered ring (S1/N2/C15—C17) is not planar, with puckering parameters (Cremer & Pople, 1975) Q2 = 0.2791 (18) Å and φ2 = 171.1 (4) °. The C17—C22 cyclohexane ring has a normal chair conformation [puckering parameters: Q = 0.559 (2) Å, θ = 180.00 (2)° and φ = 341 (9) °].

The molecular conformation and crystal packing (Fig. 2) is stabilized by intramolecular N—H···O and intermolecular C—H···O and O—H···O hydrogen bonds (Table 1). The packing of (I) also features a C–H···π interaction, viz: C10—H10···Cg2(1 - x, -y, 1 - z), where Cg denotes the centre of the C1—C6 phenyl ring [C···Cg = 3.721 (3) Å, H···Cg = 2.82 Å and C–H···Cg = 162 °].

For related literature, see: Allen et al. (1987); Andres et al. (2000); Ateş et al. (1997); Çapan et al. (1999); Cremer & Pople (1975); Güzel et al. (2006); Karalı, Terzioğlu & Gürsoy (1998); Srivastava et al. (2005); Ulusoy (2002); Ulusoy et al. (1997).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 20% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of the packing and hydrogen bonding interactions (dashed lines) for (I). H atoms not involved in these bonds have been omitted for clarity.
2-Hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide top
Crystal data top
C22H24N2O3SF(000) = 840
Mr = 396.50Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 9135 reflections
a = 12.1676 (2) Åθ = 2.1–30.5°
b = 9.3050 (2) ŵ = 0.19 mm1
c = 17.9081 (3) ÅT = 294 K
β = 95.4236 (11)°Prism, pale yellow
V = 2018.47 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
6181 independent reflections
Radiation source: Sealed Tube3693 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.067
Detector resolution: 10.0000 pixels mm-1θmax = 30.7°, θmin = 2.3°
ω scansh = 1717
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1311
Tmin = 0.963, Tmax = 0.963l = 2525
56688 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.3246P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6181 reflectionsΔρmax = 0.28 e Å3
259 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/sin(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0127 (15)
Crystal data top
C22H24N2O3SV = 2018.47 (6) Å3
Mr = 396.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1676 (2) ŵ = 0.19 mm1
b = 9.3050 (2) ÅT = 294 K
c = 17.9081 (3) Å0.20 × 0.20 × 0.20 mm
β = 95.4236 (11)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
6181 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3693 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.963Rint = 0.067
56688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
6181 reflectionsΔρmin = 0.32 e Å3
259 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.80752 (5)0.06874 (7)0.00974 (3)0.0757 (2)
O10.60444 (10)0.26567 (12)0.31383 (7)0.0493 (4)
O20.57202 (11)0.04849 (13)0.19848 (7)0.0564 (4)
O30.52028 (12)0.17812 (18)0.06223 (9)0.0772 (6)
N10.66222 (13)0.16220 (17)0.18918 (8)0.0494 (5)
N20.69225 (12)0.13232 (16)0.11812 (8)0.0484 (4)
C10.77259 (16)0.1061 (2)0.37823 (12)0.0636 (7)
C20.85941 (19)0.0326 (3)0.41713 (15)0.0809 (9)
C30.85038 (19)0.1121 (3)0.43089 (13)0.0778 (9)
C40.7553 (2)0.1830 (2)0.40626 (13)0.0738 (8)
C50.66836 (16)0.1106 (2)0.36760 (11)0.0592 (7)
C60.67673 (14)0.03552 (18)0.35312 (9)0.0470 (5)
C70.58364 (13)0.11450 (17)0.30554 (9)0.0440 (5)
C80.46878 (13)0.07835 (18)0.32601 (10)0.0459 (5)
C90.44939 (17)0.0643 (3)0.40028 (12)0.0698 (8)
C100.3446 (2)0.0374 (3)0.42036 (15)0.0837 (10)
C110.25785 (18)0.0262 (2)0.36688 (17)0.0777 (9)
C120.27456 (17)0.0434 (2)0.29364 (16)0.0754 (9)
C130.38002 (16)0.0703 (2)0.27252 (12)0.0582 (6)
C140.60133 (14)0.06778 (18)0.22493 (9)0.0457 (5)
C150.61414 (16)0.1364 (2)0.05903 (11)0.0568 (6)
C160.6604 (2)0.0817 (3)0.01015 (12)0.0760 (9)
C170.80025 (14)0.06507 (18)0.11158 (10)0.0490 (5)
C180.89297 (16)0.1561 (2)0.15033 (12)0.0604 (7)
C191.00600 (17)0.0872 (2)0.14582 (15)0.0733 (8)
C201.00933 (19)0.0637 (3)0.17748 (17)0.0821 (9)
C210.91890 (18)0.1551 (2)0.13800 (16)0.0771 (9)
C220.80573 (16)0.0880 (2)0.14201 (13)0.0617 (7)
H10.779300.203900.369000.0760*
H1N0.6718 (17)0.247 (2)0.2053 (11)0.063 (6)*
H1O0.545900.309600.307900.0740*
H20.923800.081400.433900.0970*
H30.908500.161500.456800.0930*
H40.749100.280900.415600.0890*
H50.604100.159900.351300.0710*
H90.507800.073100.437400.0840*
H100.333200.026800.470700.1000*
H110.187500.006900.380500.0930*
H120.215100.037200.257100.0910*
H130.390400.082900.222100.0700*
H16A0.642300.147100.051700.0910*
H16B0.629500.011900.023700.0910*
H18A0.880300.169000.202600.0730*
H18B0.892200.250300.127000.0730*
H19A1.022500.084300.093900.0880*
H19B1.062000.145300.173600.0880*
H20A1.080500.106800.171400.0990*
H20B1.000300.060100.230700.0990*
H21A0.920100.249600.160900.0930*
H21B0.932600.166900.085900.0930*
H22A0.788300.087300.193800.0740*
H22B0.750700.146300.113400.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0720 (4)0.1023 (5)0.0557 (3)0.0087 (3)0.0218 (3)0.0021 (3)
O10.0509 (6)0.0392 (6)0.0576 (7)0.0011 (5)0.0048 (5)0.0026 (5)
O20.0601 (8)0.0494 (7)0.0618 (8)0.0122 (6)0.0166 (6)0.0119 (6)
O30.0611 (9)0.0903 (12)0.0788 (10)0.0182 (8)0.0009 (7)0.0057 (8)
N10.0578 (9)0.0441 (8)0.0484 (8)0.0049 (7)0.0164 (6)0.0024 (6)
N20.0485 (8)0.0522 (8)0.0454 (7)0.0019 (6)0.0099 (6)0.0003 (6)
C10.0505 (10)0.0599 (12)0.0784 (13)0.0005 (9)0.0039 (9)0.0031 (10)
C20.0538 (12)0.0871 (17)0.0981 (18)0.0035 (11)0.0126 (11)0.0015 (13)
C30.0653 (13)0.0869 (17)0.0797 (15)0.0255 (12)0.0016 (11)0.0112 (12)
C40.0791 (15)0.0571 (12)0.0859 (16)0.0150 (11)0.0111 (12)0.0159 (11)
C50.0567 (11)0.0512 (11)0.0701 (12)0.0022 (8)0.0076 (9)0.0082 (9)
C60.0466 (9)0.0471 (9)0.0480 (9)0.0035 (7)0.0081 (7)0.0020 (7)
C70.0457 (8)0.0403 (8)0.0465 (8)0.0020 (6)0.0070 (6)0.0018 (6)
C80.0431 (8)0.0429 (9)0.0522 (9)0.0027 (7)0.0076 (7)0.0016 (7)
C90.0540 (11)0.1019 (18)0.0553 (11)0.0109 (11)0.0147 (9)0.0111 (11)
C100.0673 (14)0.1045 (19)0.0845 (16)0.0194 (13)0.0347 (12)0.0258 (14)
C110.0544 (12)0.0595 (13)0.124 (2)0.0012 (10)0.0337 (13)0.0064 (13)
C120.0468 (11)0.0693 (14)0.1084 (19)0.0029 (10)0.0022 (11)0.0189 (12)
C130.0497 (10)0.0600 (12)0.0642 (11)0.0046 (8)0.0024 (8)0.0040 (9)
C140.0440 (8)0.0449 (9)0.0487 (9)0.0017 (7)0.0076 (7)0.0002 (7)
C150.0560 (11)0.0582 (11)0.0559 (10)0.0037 (9)0.0038 (8)0.0014 (8)
C160.0789 (15)0.0989 (18)0.0498 (11)0.0072 (13)0.0047 (10)0.0041 (11)
C170.0477 (9)0.0481 (9)0.0524 (9)0.0001 (7)0.0111 (7)0.0000 (7)
C180.0551 (10)0.0511 (11)0.0753 (13)0.0055 (8)0.0079 (9)0.0041 (9)
C190.0494 (11)0.0657 (13)0.1045 (18)0.0076 (9)0.0056 (11)0.0074 (12)
C200.0539 (12)0.0706 (15)0.120 (2)0.0088 (10)0.0015 (12)0.0030 (13)
C210.0608 (12)0.0522 (12)0.118 (2)0.0049 (10)0.0065 (12)0.0013 (12)
C220.0532 (10)0.0471 (10)0.0852 (14)0.0025 (8)0.0086 (9)0.0042 (9)
Geometric parameters (Å, º) top
S1—C161.796 (3)C17—C181.524 (3)
S1—C171.8346 (19)C18—C191.526 (3)
O1—C71.4344 (19)C19—C201.513 (3)
O2—C141.221 (2)C20—C211.512 (3)
O3—C151.213 (2)C21—C221.520 (3)
O1—H1O0.8200C1—H10.9300
N1—N21.385 (2)C2—H20.9300
N1—C141.349 (2)C3—H30.9300
N2—C151.354 (2)C4—H40.9300
N2—C171.470 (2)C5—H50.9300
N1—H1N0.845 (19)C9—H90.9300
C1—C61.377 (3)C10—H100.9300
C1—C21.389 (3)C11—H110.9300
C2—C31.375 (4)C12—H120.9300
C3—C41.368 (3)C13—H130.9300
C4—C51.383 (3)C16—H16A0.9700
C5—C61.390 (3)C16—H16B0.9700
C6—C71.538 (2)C18—H18A0.9700
C7—C141.542 (2)C18—H18B0.9700
C7—C81.516 (2)C19—H19A0.9700
C8—C131.376 (3)C19—H19B0.9700
C8—C91.379 (3)C20—H20A0.9700
C9—C101.380 (3)C20—H20B0.9700
C10—C111.361 (4)C21—H21A0.9700
C11—C121.356 (4)C21—H21B0.9700
C12—C131.394 (3)C22—H22A0.9700
C15—C161.498 (3)C22—H22B0.9700
C17—C221.524 (3)
C16—S1—C1793.30 (9)C6—C1—H1120.00
C7—O1—H1O109.00C1—C2—H2120.00
N2—N1—C14120.64 (15)C3—C2—H2120.00
N1—N2—C15119.06 (15)C2—C3—H3120.00
N1—N2—C17118.30 (14)C4—C3—H3120.00
C15—N2—C17121.08 (15)C3—C4—H4120.00
N2—N1—H1N117.5 (13)C5—C4—H4120.00
C14—N1—H1N120.7 (14)C4—C5—H5120.00
C2—C1—C6120.64 (19)C6—C5—H5120.00
C1—C2—C3120.1 (2)C8—C9—H9119.00
C2—C3—C4119.6 (2)C10—C9—H9119.00
C3—C4—C5120.65 (19)C9—C10—H10120.00
C4—C5—C6120.25 (18)C11—C10—H10120.00
C1—C6—C5118.73 (16)C10—C11—H11120.00
C1—C6—C7120.65 (15)C12—C11—H11120.00
C5—C6—C7120.51 (15)C11—C12—H12120.00
O1—C7—C6107.32 (13)C13—C12—H12120.00
C6—C7—C14102.90 (13)C8—C13—H13120.00
C8—C7—C14112.17 (14)C12—C13—H13120.00
C6—C7—C8114.05 (13)S1—C16—H16A110.00
O1—C7—C8110.50 (13)S1—C16—H16B110.00
O1—C7—C14109.54 (13)C15—C16—H16A110.00
C7—C8—C9120.01 (16)C15—C16—H16B110.00
C7—C8—C13121.64 (16)H16A—C16—H16B108.00
C9—C8—C13118.14 (17)C17—C18—H18A109.00
C8—C9—C10121.0 (2)C17—C18—H18B109.00
C9—C10—C11120.3 (2)C19—C18—H18A109.00
C10—C11—C12119.7 (2)C19—C18—H18B109.00
C11—C12—C13120.6 (2)H18A—C18—H18B108.00
C8—C13—C12120.2 (2)C18—C19—H19A109.00
O2—C14—N1123.12 (15)C18—C19—H19B109.00
O2—C14—C7123.48 (15)C20—C19—H19A109.00
N1—C14—C7113.09 (14)C20—C19—H19B109.00
N2—C15—C16110.24 (17)H19A—C19—H19B108.00
O3—C15—N2124.51 (18)C19—C20—H20A110.00
O3—C15—C16125.25 (19)C19—C20—H20B110.00
S1—C16—C15107.72 (15)C21—C20—H20A109.00
S1—C17—N2101.46 (11)C21—C20—H20B109.00
S1—C17—C18109.82 (13)H20A—C20—H20B108.00
S1—C17—C22111.61 (13)C20—C21—H21A109.00
N2—C17—C18110.85 (14)C20—C21—H21B109.00
N2—C17—C22112.24 (14)C22—C21—H21A109.00
C18—C17—C22110.55 (15)C22—C21—H21B109.00
C17—C18—C19111.98 (16)H21A—C21—H21B108.00
C18—C19—C20111.24 (18)C17—C22—H22A109.00
C19—C20—C21110.7 (2)C17—C22—H22B109.00
C20—C21—C22111.67 (18)C21—C22—H22A109.00
C17—C22—C21112.10 (16)C21—C22—H22B109.00
C2—C1—H1120.00H22A—C22—H22B108.00
C17—S1—C16—C1520.49 (17)O1—C7—C8—C980.3 (2)
C16—S1—C17—N222.19 (14)O1—C7—C8—C1394.38 (19)
C16—S1—C17—C18139.52 (15)C6—C7—C8—C940.7 (2)
C16—S1—C17—C2297.53 (15)C6—C7—C8—C13144.64 (16)
C14—N1—N2—C1571.8 (2)C14—C7—C8—C9157.21 (18)
C14—N1—N2—C1794.09 (19)C14—C7—C8—C1328.2 (2)
N2—N1—C14—O21.9 (3)O1—C7—C14—O2167.35 (15)
N2—N1—C14—C7175.65 (14)O1—C7—C14—N118.93 (19)
N1—N2—C15—O37.5 (3)C6—C7—C14—O278.74 (19)
N1—N2—C15—C16172.32 (17)C6—C7—C14—N194.98 (16)
C17—N2—C15—O3172.97 (18)C8—C7—C14—O244.3 (2)
C17—N2—C15—C166.8 (2)C8—C7—C14—N1142.02 (15)
N1—N2—C17—S1173.39 (12)C7—C8—C9—C10177.3 (2)
N1—N2—C17—C1856.8 (2)C13—C8—C9—C102.5 (3)
N1—N2—C17—C2267.3 (2)C7—C8—C13—C12177.01 (16)
C15—N2—C17—S121.00 (18)C9—C8—C13—C122.3 (3)
C15—N2—C17—C18137.58 (17)C8—C9—C10—C110.9 (4)
C15—N2—C17—C2298.3 (2)C9—C10—C11—C120.8 (4)
C6—C1—C2—C30.1 (4)C10—C11—C12—C131.0 (3)
C2—C1—C6—C50.2 (3)C11—C12—C13—C80.6 (3)
C2—C1—C6—C7175.90 (19)O3—C15—C16—S1168.39 (18)
C1—C2—C3—C40.2 (4)N2—C15—C16—S111.8 (2)
C2—C3—C4—C50.1 (4)S1—C17—C18—C1969.89 (19)
C3—C4—C5—C60.2 (3)N2—C17—C18—C19178.81 (16)
C4—C5—C6—C10.3 (3)C22—C17—C18—C1953.7 (2)
C4—C5—C6—C7175.79 (18)S1—C17—C22—C2169.1 (2)
C1—C6—C7—O116.1 (2)N2—C17—C22—C21177.74 (17)
C1—C6—C7—C8138.82 (17)C18—C17—C22—C2153.4 (2)
C1—C6—C7—C1499.44 (18)C17—C18—C19—C2055.6 (3)
C5—C6—C7—O1167.93 (15)C18—C19—C20—C2156.1 (3)
C5—C6—C7—C845.2 (2)C19—C20—C21—C2256.0 (3)
C5—C6—C7—C1476.56 (19)C20—C21—C22—C1755.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.845 (19)2.19 (2)2.5886 (19)109.1 (16)
O1—H1O···O2i0.821.952.7494 (18)167
C1—H1···O10.932.332.697 (2)103
C13—H13···O20.932.593.004 (2)107
C16—H16A···O1ii0.972.543.466 (3)159
C16—H16B···O3iii0.972.443.341 (3)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H24N2O3S
Mr396.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.1676 (2), 9.3050 (2), 17.9081 (3)
β (°) 95.4236 (11)
V3)2018.47 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.963, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
56688, 6181, 3693
Rint0.067
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.04
No. of reflections6181
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalClear, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.845 (19)2.19 (2)2.5886 (19)109.1 (16)
O1—H1O···O2i0.821.952.7494 (18)167
C1—H1···O10.932.332.697 (2)103
C13—H13···O20.932.593.004 (2)107
C16—H16A···O1ii0.972.543.466 (3)159
C16—H16B···O3iii0.972.443.341 (3)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds