Download citation
Download citation
link to html
In the title compound, C34H28O6·0.5C7H8, the calix[4]arene mol­ecule forms a cone-like conformation, stabilized by intra­molecular O—H...O hydrogen bonds. In the crystal structure, the calixarene mol­ecules form centro­symmetric dimers via aromatic π–π inter­actions [centroid separation = 3.633 (3) Å]. The toluene solvent mol­ecule is disordered about an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031777/hb2467sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031777/hb2467Isup2.hkl
Contains datablock I

CCDC reference: 610040

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.067
  • wR factor = 0.190
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 47 Perc. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.64 Ratio PLAT231_ALERT_4_C Hirshfeld Test (Solvent) C36 - C38_a .. 5.74 su PLAT231_ALERT_4_C Hirshfeld Test (Solvent) C38 - C36_a .. 5.74 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C38 PLAT245_ALERT_2_C U(iso) H23B Smaller than U(eq) O3 by ... 0.02 AngSq PLAT334_ALERT_2_C Small Average Benzene C-C Dist. C36 -C38_a 1.34 Ang. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 24
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Calixarenes are macrocyclic molecules made up of p-substituted phenolic units linked by methylene bridges ortho to the OH functions (Gutsche et al., 1989; Vicens & Böhmer, 1991; Böhmer, 1995). The ester and ether derivatives of calix[4]arenes compounds can exist in one of the four conformations: cone, partial cone, 1,2-alternate, or 1,3-alternate (Andreetti et al., 1991; Casnati et al., 1995; Kim et al., 1999; Kim et al., 2000). As part of our work on calix[4]arene derivatives, we report herein the crystal structure of (I).

The asymmetric unit of (I) comprises one calixarene molecule and half of a toluene solvate molecule. The crystal structure of the 25,27-diacryloyloxy-26,28-dihydroxycalix[4]arene molecule is found in a cone conformation, stabilized by intramolecular hydrogen bonds involving the two phenol hydroxide groups and the two ester O atoms (Fig. 1). The mean plane defined by the four methylene C-atom bridges was chosen as a reference plane. The plane defined by the two phenol and the two ester O atoms makes a dihedral angle of 1.15 (12)° with this reference plane, whereas the dihedral angles between the reference plane and four aromatic rings are 37.61 (10)° for C1–C6 ring, 77.75 (8)° for C8–C13 ring, 33.55 (9)° for C15–C20 and 74.58 (9)° for C22–C27 ring. Cone conformation thus appears to be irregular and the aromatic rings containing the acryloyloxy groups are more inclined with respect to the reference plane than other rings. The bond angles involving the bridging methylene groups, i.e. C6—C7—C8 [111.89 (24)°] and C10—C14—C15 [113.42 (27)°] are significantly larger than the nominal tetrahedral angle due to repulsion among the four phenyl groups.

In the extended structure of (I) two calix[4]arene molecules are joined by strong ππ interactions (Fig. 2) between two phenyl (C1–C6, centroid = A) rings, which leads to the formation of a centrosymmetric dimer of (I) with an inter-planar separation of 3.484 Å for the A rings. The closest interatomic distance is C2···C6ii [3.501 (5) Å]; symmetry code (ii): 1 - x, 2 - y, 1 - z] and the distance between the ring centroids is 3.633 (3) Å. These dimers are linked by van der Waals interactions.

Related literature top

For related literature, see: Andreetti et al. (1991); Böhmer (1995); Casnati et al. (1995); Gutsche (1989); Gutsche & Lin (1986); Kim et al. (1999, 2000); Vicens & Böhmer (1991).

Experimental top

The title calixarene was synthesized according to the literature method of Gutsche & Lin (1986) and colourless plates of (I) were recrystallized from toluene.

Refinement top

The C-bound H atoms were placed at calculated positions (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2eq(C) or 1.5eq(methyl C). The toluene molecule is disordered about an inversion centre. The O-bound H atoms were located in a difference map and their positions and Uiso values were freely refined. The hydrogen atoms of the phenol hydroxide groups, H23 and H22, are disordered over two positions, with occupancies of 0.52 and 0.48 for H23 and 0.6 and 0.4 for H22.

Structure description top

Calixarenes are macrocyclic molecules made up of p-substituted phenolic units linked by methylene bridges ortho to the OH functions (Gutsche et al., 1989; Vicens & Böhmer, 1991; Böhmer, 1995). The ester and ether derivatives of calix[4]arenes compounds can exist in one of the four conformations: cone, partial cone, 1,2-alternate, or 1,3-alternate (Andreetti et al., 1991; Casnati et al., 1995; Kim et al., 1999; Kim et al., 2000). As part of our work on calix[4]arene derivatives, we report herein the crystal structure of (I).

The asymmetric unit of (I) comprises one calixarene molecule and half of a toluene solvate molecule. The crystal structure of the 25,27-diacryloyloxy-26,28-dihydroxycalix[4]arene molecule is found in a cone conformation, stabilized by intramolecular hydrogen bonds involving the two phenol hydroxide groups and the two ester O atoms (Fig. 1). The mean plane defined by the four methylene C-atom bridges was chosen as a reference plane. The plane defined by the two phenol and the two ester O atoms makes a dihedral angle of 1.15 (12)° with this reference plane, whereas the dihedral angles between the reference plane and four aromatic rings are 37.61 (10)° for C1–C6 ring, 77.75 (8)° for C8–C13 ring, 33.55 (9)° for C15–C20 and 74.58 (9)° for C22–C27 ring. Cone conformation thus appears to be irregular and the aromatic rings containing the acryloyloxy groups are more inclined with respect to the reference plane than other rings. The bond angles involving the bridging methylene groups, i.e. C6—C7—C8 [111.89 (24)°] and C10—C14—C15 [113.42 (27)°] are significantly larger than the nominal tetrahedral angle due to repulsion among the four phenyl groups.

In the extended structure of (I) two calix[4]arene molecules are joined by strong ππ interactions (Fig. 2) between two phenyl (C1–C6, centroid = A) rings, which leads to the formation of a centrosymmetric dimer of (I) with an inter-planar separation of 3.484 Å for the A rings. The closest interatomic distance is C2···C6ii [3.501 (5) Å]; symmetry code (ii): 1 - x, 2 - y, 1 - z] and the distance between the ring centroids is 3.633 (3) Å. These dimers are linked by van der Waals interactions.

For related literature, see: Andreetti et al. (1991); Böhmer (1995); Casnati et al. (1995); Gutsche (1989); Gutsche & Lin (1986); Kim et al. (1999, 2000); Vicens & Böhmer (1991).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and C-bound H atoms are omitted for clarity (symmetry code i: -x, -y, 2 - z). H bonds are indicated by thin lines and both methyl disorder components of the toluene molecule are shown.
[Figure 2] Fig. 2. Packing of (I), showing the ππ interactions between the symmetry related A rings [symmetry code (ii) 1 - x, 2 - y, 1 - z].
25,27-Bis(acryloyloxy)-26,28-dihydroxycalix[4]arene toluene hemisolvate top
Crystal data top
C34H28O6·0.5C7H8Z = 2
Mr = 578.64F(000) = 610.0
Triclinic, P1Dx = 1.277 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.5574 (9) ÅCell parameters from 4587 reflections
b = 12.0375 (12) Åθ = 2.1–28.1°
c = 13.5570 (12) ŵ = 0.09 mm1
α = 111.105 (7)°T = 297 K
β = 101.460 (8)°Plate, colourless
γ = 101.413 (7)°0.35 × 0.22 × 0.05 mm
V = 1505.3 (3) Å3
Data collection top
Stoe IPDS II
diffractometer
7061 independent reflections
Radiation source: fine-focus sealed tube3345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 6.67 pixels mm-1θmax = 27.8°, θmin = 2.2°
ω scansh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.950, Tmax = 0.993l = 1717
23943 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.088P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
7061 reflectionsΔρmax = 0.30 e Å3
415 parametersΔρmin = 0.48 e Å3
24 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C34H28O6·0.5C7H8γ = 101.413 (7)°
Mr = 578.64V = 1505.3 (3) Å3
Triclinic, P1Z = 2
a = 10.5574 (9) ÅMo Kα radiation
b = 12.0375 (12) ŵ = 0.09 mm1
c = 13.5570 (12) ÅT = 297 K
α = 111.105 (7)°0.35 × 0.22 × 0.05 mm
β = 101.460 (8)°
Data collection top
Stoe IPDS II
diffractometer
7061 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3345 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.993Rint = 0.076
23943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06724 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.30 e Å3
7061 reflectionsΔρmin = 0.48 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4518 (3)0.1542 (3)0.5309 (2)0.0459 (7)
C20.5654 (3)0.1796 (3)0.4946 (3)0.0464 (7)
C30.5539 (3)0.1091 (3)0.3852 (3)0.0564 (8)
H30.62780.12380.35900.068*
C40.4370 (4)0.0182 (3)0.3142 (3)0.0583 (8)
H40.43210.02780.24110.070*
C50.3269 (3)0.0045 (3)0.3517 (3)0.0553 (8)
H50.24760.06560.30300.066*
C60.3319 (3)0.0616 (3)0.4602 (3)0.0462 (7)
C70.2101 (3)0.0369 (3)0.5012 (3)0.0516 (7)
H7A0.14580.04250.44880.062*
H7B0.23880.03130.57140.062*
C80.1415 (3)0.1384 (3)0.5159 (3)0.0494 (7)
C90.1484 (3)0.2252 (3)0.6182 (3)0.0482 (7)
C100.1026 (3)0.3289 (3)0.6341 (3)0.0538 (8)
C110.0364 (3)0.3383 (4)0.5397 (3)0.0631 (9)
H110.00240.40550.54660.076*
C120.0202 (3)0.2503 (4)0.4361 (3)0.0663 (10)
H120.02740.25680.37390.080*
C130.0737 (3)0.1527 (3)0.4236 (3)0.0579 (8)
H130.06470.09530.35300.069*
C140.1282 (3)0.4312 (3)0.7471 (3)0.0639 (9)
H14A0.15820.40180.80300.077*
H14B0.04390.44920.75370.077*
C150.2328 (3)0.5503 (3)0.7697 (3)0.0561 (8)
C160.3706 (3)0.5574 (3)0.7870 (3)0.0516 (7)
C170.4677 (3)0.6665 (3)0.8094 (3)0.0530 (8)
C180.4256 (4)0.7705 (3)0.8167 (3)0.0647 (9)
H180.48910.84480.83220.078*
C190.2910 (4)0.7658 (4)0.8015 (3)0.0712 (10)
H190.26500.83700.80790.085*
C200.1961 (4)0.6570 (3)0.7770 (3)0.0648 (9)
H200.10550.65420.76490.078*
C210.6166 (3)0.6716 (3)0.8272 (3)0.0594 (8)
H21A0.67110.75800.85830.071*
H21B0.64230.63760.88040.071*
C220.6467 (3)0.6001 (3)0.7214 (3)0.0519 (8)
C230.6462 (3)0.6443 (3)0.6394 (3)0.0567 (8)
H230.63140.72110.65130.068*
C240.6672 (3)0.5761 (3)0.5408 (3)0.0585 (8)
H240.66960.60860.48820.070*
C250.6846 (3)0.4602 (3)0.5200 (3)0.0555 (8)
H250.69500.41390.45210.067*
C260.6868 (3)0.4111 (3)0.5993 (3)0.0489 (7)
C270.6728 (3)0.4861 (3)0.6993 (3)0.0495 (7)
C280.6952 (3)0.2796 (3)0.5727 (3)0.0568 (8)
H28A0.71770.26910.64100.068*
H28B0.76790.26840.53960.068*
C300.7950 (3)0.4717 (3)0.8597 (3)0.0574 (8)
C310.7816 (4)0.4132 (4)0.9374 (3)0.0780 (11)
H310.86020.42250.98880.094*
C320.6698 (6)0.3508 (6)0.9391 (4)0.121 (2)
H32A0.58920.33960.88880.146*
H32B0.66910.31650.99050.146*
C330.1407 (4)0.1712 (3)0.7707 (3)0.0626 (9)
C340.2195 (5)0.1432 (4)0.8553 (4)0.0880 (13)
H340.17970.12980.90700.106*
C350.3378 (6)0.1362 (5)0.8623 (4)0.1059 (16)
H35A0.38010.14920.81180.127*
H35B0.38310.11810.91810.127*
C360.0956 (7)0.0376 (7)1.1018 (5)0.122 (2)
H360.15980.05791.16830.146*
C370.0331 (7)0.1154 (7)1.0852 (5)0.125 (2)
H370.05120.19541.13920.150*
C380.0607 (6)0.0733 (7)0.9839 (6)0.1193 (19)
C390.1297 (11)0.1588 (10)0.9654 (9)0.215 (4)
H39A0.09670.18810.91550.323*
H39B0.11360.22821.03450.323*
H39C0.22510.11720.93390.323*
O10.4567 (3)0.2189 (2)0.6387 (2)0.0562 (6)
O20.2170 (2)0.2112 (2)0.71237 (17)0.0566 (6)
O30.4109 (3)0.4560 (3)0.7850 (2)0.0663 (7)
O40.6756 (2)0.4377 (2)0.78113 (18)0.0577 (6)
O50.8960 (2)0.5393 (3)0.8629 (2)0.0801 (8)
O60.0231 (3)0.1615 (3)0.7535 (2)0.0841 (8)
H23A0.490 (8)0.464 (7)0.802 (6)0.07 (2)*0.52
H23B0.343 (8)0.401 (7)0.762 (6)0.05 (2)*0.48
H22A0.523 (7)0.275 (6)0.676 (5)0.07 (2)*0.60
H22B0.377 (10)0.207 (9)0.654 (8)0.08 (3)*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (15)0.0475 (17)0.0498 (18)0.0174 (13)0.0159 (13)0.0222 (15)
C20.0461 (15)0.0477 (17)0.0567 (19)0.0206 (13)0.0214 (14)0.0275 (15)
C30.0596 (19)0.064 (2)0.067 (2)0.0308 (17)0.0316 (17)0.0382 (19)
C40.069 (2)0.061 (2)0.0515 (19)0.0277 (18)0.0234 (17)0.0244 (17)
C50.0583 (19)0.0524 (18)0.0533 (19)0.0181 (15)0.0120 (15)0.0215 (16)
C60.0456 (16)0.0467 (17)0.0520 (18)0.0156 (13)0.0147 (14)0.0253 (15)
C70.0456 (16)0.0473 (17)0.0552 (19)0.0053 (13)0.0125 (14)0.0197 (16)
C80.0363 (14)0.0570 (18)0.0542 (19)0.0059 (13)0.0132 (13)0.0263 (16)
C90.0312 (13)0.0604 (19)0.0526 (19)0.0069 (13)0.0117 (13)0.0269 (17)
C100.0353 (14)0.061 (2)0.067 (2)0.0120 (14)0.0216 (15)0.0256 (18)
C110.0402 (16)0.071 (2)0.088 (3)0.0216 (16)0.0209 (17)0.040 (2)
C120.0463 (18)0.082 (3)0.074 (3)0.0173 (18)0.0077 (17)0.043 (2)
C130.0428 (16)0.068 (2)0.0545 (19)0.0052 (15)0.0093 (14)0.0256 (17)
C140.0507 (18)0.064 (2)0.080 (2)0.0179 (16)0.0356 (18)0.023 (2)
C150.0547 (18)0.060 (2)0.058 (2)0.0205 (16)0.0269 (16)0.0222 (17)
C160.0495 (17)0.0505 (18)0.0569 (19)0.0170 (14)0.0216 (15)0.0204 (16)
C170.0544 (18)0.0522 (19)0.0514 (18)0.0116 (15)0.0201 (15)0.0203 (16)
C180.075 (2)0.055 (2)0.065 (2)0.0125 (18)0.0239 (18)0.0285 (18)
C190.082 (3)0.066 (2)0.081 (3)0.035 (2)0.032 (2)0.037 (2)
C200.059 (2)0.073 (2)0.074 (2)0.0318 (18)0.0272 (18)0.033 (2)
C210.0508 (17)0.058 (2)0.057 (2)0.0054 (15)0.0140 (15)0.0161 (17)
C220.0389 (15)0.0515 (18)0.0581 (19)0.0023 (13)0.0144 (14)0.0205 (16)
C230.0482 (17)0.0513 (18)0.072 (2)0.0089 (14)0.0175 (16)0.0304 (18)
C240.0544 (18)0.063 (2)0.065 (2)0.0095 (16)0.0212 (16)0.0358 (19)
C250.0451 (16)0.063 (2)0.061 (2)0.0107 (15)0.0232 (15)0.0278 (18)
C260.0327 (14)0.0543 (18)0.062 (2)0.0096 (13)0.0149 (13)0.0276 (17)
C270.0326 (14)0.0597 (19)0.0529 (19)0.0030 (13)0.0107 (13)0.0261 (16)
C280.0396 (15)0.068 (2)0.072 (2)0.0195 (15)0.0208 (15)0.0342 (19)
C300.0387 (16)0.073 (2)0.0532 (19)0.0180 (15)0.0077 (14)0.0199 (18)
C310.066 (2)0.107 (3)0.061 (2)0.021 (2)0.0057 (18)0.043 (2)
C320.102 (4)0.169 (6)0.093 (4)0.002 (4)0.010 (3)0.085 (4)
C330.063 (2)0.064 (2)0.052 (2)0.0000 (17)0.0156 (17)0.0241 (18)
C340.083 (3)0.106 (3)0.070 (3)0.008 (3)0.022 (2)0.043 (3)
C350.105 (4)0.132 (4)0.094 (4)0.032 (3)0.030 (3)0.063 (3)
C360.098 (4)0.144 (6)0.086 (4)0.015 (4)0.024 (3)0.035 (4)
C370.101 (4)0.146 (6)0.093 (4)0.022 (4)0.027 (3)0.043 (4)
C380.090 (4)0.163 (6)0.116 (4)0.015 (4)0.049 (3)0.073 (5)
C390.210 (9)0.253 (11)0.208 (9)0.091 (8)0.081 (7)0.102 (9)
O10.0465 (13)0.0603 (15)0.0544 (15)0.0086 (12)0.0181 (11)0.0178 (13)
O20.0466 (11)0.0705 (15)0.0520 (13)0.0100 (10)0.0145 (10)0.0285 (12)
O30.0466 (14)0.0524 (15)0.101 (2)0.0152 (12)0.0252 (14)0.0315 (15)
O40.0397 (11)0.0768 (15)0.0567 (13)0.0072 (10)0.0074 (10)0.0365 (12)
O50.0409 (12)0.104 (2)0.0860 (18)0.0099 (13)0.0083 (12)0.0405 (17)
O60.0602 (16)0.105 (2)0.0789 (18)0.0054 (14)0.0260 (14)0.0422 (16)
Geometric parameters (Å, º) top
C1—O11.371 (4)C21—H21B0.9700
C1—C61.398 (4)C22—C271.392 (4)
C1—C21.403 (4)C22—C231.394 (4)
C2—C31.385 (5)C23—C241.382 (5)
C2—C281.517 (4)C23—H230.9300
C3—C41.372 (5)C24—C251.378 (5)
C3—H30.9300C24—H240.9300
C4—C51.375 (5)C25—C261.400 (4)
C4—H40.9300C25—H250.9300
C5—C61.382 (4)C26—C271.388 (4)
C5—H50.9300C26—C281.516 (5)
C6—C71.518 (4)C27—O41.425 (3)
C7—C81.514 (4)C28—H28A0.9700
C7—H7A0.9700C28—H28B0.9700
C7—H7B0.9700C30—O51.189 (4)
C8—C91.380 (4)C30—O41.356 (4)
C8—C131.397 (4)C30—C311.476 (5)
C9—C101.388 (4)C31—C321.277 (6)
C9—O21.420 (4)C31—H310.9300
C10—C111.385 (5)C32—H32A0.9300
C10—C141.510 (5)C32—H32B0.9300
C11—C121.373 (5)C33—O61.191 (4)
C11—H110.9300C33—O21.372 (4)
C12—C131.373 (5)C33—C341.460 (6)
C12—H120.9300C34—C351.256 (6)
C13—H130.9300C34—H340.9300
C14—C151.514 (4)C35—H35A0.9300
C14—H14A0.9700C35—H35B0.9300
C14—H14B0.9700C36—C371.304 (9)
C15—C201.389 (5)C36—C38i1.337 (9)
C15—C161.406 (4)C36—H360.9300
C16—O31.363 (4)C37—C381.372 (9)
C16—C171.387 (4)C37—H370.9300
C17—C181.387 (5)C38—C36i1.337 (9)
C17—C211.526 (5)C38—C391.437 (8)
C18—C191.381 (5)C39—H39A0.9600
C18—H180.9300C39—H39B0.9600
C19—C201.366 (5)C39—H39C0.9600
C19—H190.9300O1—H22A0.79 (7)
C20—H200.9300O1—H22B0.91 (11)
C21—C221.517 (5)O3—H23A0.79 (8)
C21—H21A0.9700O3—H23B0.79 (8)
O1—C1—C6117.8 (3)C22—C21—H21B109.0
O1—C1—C2120.4 (3)C17—C21—H21B109.0
C6—C1—C2121.8 (3)H21A—C21—H21B107.8
C3—C2—C1117.2 (3)C27—C22—C23116.3 (3)
C3—C2—C28121.6 (3)C27—C22—C21122.3 (3)
C1—C2—C28121.2 (3)C23—C22—C21121.3 (3)
C4—C3—C2122.0 (3)C24—C23—C22121.3 (3)
C4—C3—H3119.0C24—C23—H23119.4
C2—C3—H3119.0C22—C23—H23119.4
C3—C4—C5119.7 (3)C25—C24—C23120.3 (3)
C3—C4—H4120.2C25—C24—H24119.9
C5—C4—H4120.2C23—C24—H24119.9
C4—C5—C6121.3 (3)C24—C25—C26121.1 (3)
C4—C5—H5119.3C24—C25—H25119.4
C6—C5—H5119.3C26—C25—H25119.4
C5—C6—C1118.0 (3)C27—C26—C25116.3 (3)
C5—C6—C7121.3 (3)C27—C26—C28122.7 (3)
C1—C6—C7120.7 (3)C25—C26—C28120.8 (3)
C8—C7—C6111.8 (2)C26—C27—C22124.4 (3)
C8—C7—H7A109.3C26—C27—O4117.1 (3)
C6—C7—H7A109.3C22—C27—O4118.3 (3)
C8—C7—H7B109.3C26—C28—C2113.5 (2)
C6—C7—H7B109.3C26—C28—H28A108.9
H7A—C7—H7B107.9C2—C28—H28A108.9
C9—C8—C13116.6 (3)C26—C28—H28B108.9
C9—C8—C7123.1 (3)C2—C28—H28B108.9
C13—C8—C7120.2 (3)H28A—C28—H28B107.7
C8—C9—C10124.1 (3)O5—C30—O4123.1 (3)
C8—C9—O2116.9 (3)O5—C30—C31125.8 (3)
C10—C9—O2118.8 (3)O4—C30—C31111.2 (3)
C11—C10—C9116.6 (3)C32—C31—C30124.7 (4)
C11—C10—C14120.5 (3)C32—C31—H31117.6
C9—C10—C14122.9 (3)C30—C31—H31117.6
C12—C11—C10121.2 (3)C31—C32—H32A120.0
C12—C11—H11119.4C31—C32—H32B120.0
C10—C11—H11119.4H32A—C32—H32B120.0
C13—C12—C11120.5 (3)O6—C33—O2122.8 (3)
C13—C12—H12119.7O6—C33—C34124.5 (3)
C11—C12—H12119.7O2—C33—C34112.7 (3)
C12—C13—C8120.8 (3)C35—C34—C33123.8 (4)
C12—C13—H13119.6C35—C34—H34118.1
C8—C13—H13119.6C33—C34—H34118.1
C10—C14—C15113.4 (3)C34—C35—H35A120.0
C10—C14—H14A108.9C34—C35—H35B120.0
C15—C14—H14A108.9H35A—C35—H35B120.0
C10—C14—H14B108.9C37—C36—C38i115.0 (7)
C15—C14—H14B108.9C37—C36—H36122.5
H14A—C14—H14B107.7C38i—C36—H36122.5
C20—C15—C16117.9 (3)C36—C37—C38116.7 (8)
C20—C15—C14121.0 (3)C36—C37—H37121.6
C16—C15—C14121.1 (3)C38—C37—H37121.6
O3—C16—C17118.8 (3)C36i—C38—C37128.3 (7)
O3—C16—C15119.5 (3)C36i—C38—C39114.9 (8)
C17—C16—C15121.7 (3)C37—C38—C39116.8 (9)
C16—C17—C18117.9 (3)C38—C39—H39A109.5
C16—C17—C21120.7 (3)C38—C39—H39B109.5
C18—C17—C21121.4 (3)H39A—C39—H39B109.5
C19—C18—C17121.2 (3)C38—C39—H39C109.5
C19—C18—H18119.4H39A—C39—H39C109.5
C17—C18—H18119.4H39B—C39—H39C109.5
C20—C19—C18120.1 (3)C1—O1—H22A116 (4)
C20—C19—H19119.9C1—O1—H22B116 (6)
C18—C19—H19119.9H22A—O1—H22B125 (8)
C19—C20—C15121.1 (3)C33—O2—C9117.9 (2)
C19—C20—H20119.5C16—O3—H23A118 (5)
C15—C20—H20119.5C16—O3—H23B105 (5)
C22—C21—C17113.0 (3)H23A—O3—H23B137 (8)
C22—C21—H21A109.0C30—O4—C27117.7 (2)
C17—C21—H21A109.0
O1—C1—C2—C3178.8 (3)C16—C17—C18—C190.5 (5)
C6—C1—C2—C30.2 (4)C21—C17—C18—C19179.4 (3)
O1—C1—C2—C280.8 (4)C17—C18—C19—C201.1 (6)
C6—C1—C2—C28179.4 (3)C18—C19—C20—C151.7 (6)
C1—C2—C3—C40.2 (4)C16—C15—C20—C190.8 (5)
C28—C2—C3—C4179.8 (3)C14—C15—C20—C19177.5 (3)
C2—C3—C4—C50.1 (5)C16—C17—C21—C2271.8 (4)
C3—C4—C5—C60.7 (5)C18—C17—C21—C22109.2 (4)
C4—C5—C6—C11.0 (4)C17—C21—C22—C27106.3 (3)
C4—C5—C6—C7179.7 (3)C17—C21—C22—C2372.1 (4)
O1—C1—C6—C5179.4 (3)C27—C22—C23—C241.6 (4)
C2—C1—C6—C50.7 (4)C21—C22—C23—C24176.8 (3)
O1—C1—C6—C71.9 (4)C22—C23—C24—C252.3 (5)
C2—C1—C6—C7179.5 (3)C23—C24—C25—C262.6 (5)
C5—C6—C7—C8105.1 (3)C24—C25—C26—C271.0 (4)
C1—C6—C7—C873.6 (3)C24—C25—C26—C28175.3 (3)
C6—C7—C8—C9107.8 (3)C25—C26—C27—C225.2 (4)
C6—C7—C8—C1368.3 (3)C28—C26—C27—C22171.0 (3)
C13—C8—C9—C105.4 (4)C25—C26—C27—O4179.7 (2)
C7—C8—C9—C10170.8 (3)C28—C26—C27—O44.1 (4)
C13—C8—C9—O2179.9 (2)C23—C22—C27—C265.5 (4)
C7—C8—C9—O23.9 (4)C21—C22—C27—C26172.9 (3)
C8—C9—C10—C115.3 (4)C23—C22—C27—O4179.4 (2)
O2—C9—C10—C11180.0 (2)C21—C22—C27—O42.2 (4)
C8—C9—C10—C14171.6 (3)C27—C26—C28—C2103.7 (3)
O2—C9—C10—C143.1 (4)C25—C26—C28—C272.3 (3)
C9—C10—C11—C121.3 (4)C3—C2—C28—C26106.5 (3)
C14—C10—C11—C12175.7 (3)C1—C2—C28—C2673.9 (4)
C10—C11—C12—C132.3 (5)O5—C30—C31—C32172.8 (5)
C11—C12—C13—C82.3 (5)O4—C30—C31—C327.7 (7)
C9—C8—C13—C121.4 (4)O6—C33—C34—C35169.2 (5)
C7—C8—C13—C12174.9 (3)O2—C33—C34—C3511.2 (7)
C11—C10—C14—C1570.1 (4)C38i—C36—C37—C380.9 (9)
C9—C10—C14—C15106.7 (3)C36—C37—C38—C36i1.1 (10)
C10—C14—C15—C20110.7 (4)C36—C37—C38—C39180.0 (6)
C10—C14—C15—C1671.0 (4)O6—C33—O2—C98.7 (5)
C20—C15—C16—O3177.3 (3)C34—C33—O2—C9171.6 (3)
C14—C15—C16—O31.0 (5)C8—C9—O2—C33108.0 (3)
C20—C15—C16—C170.7 (5)C10—C9—O2—C3377.0 (3)
C14—C15—C16—C17179.1 (3)O5—C30—O4—C270.0 (5)
O3—C16—C17—C18176.7 (3)C31—C30—O4—C27179.5 (3)
C15—C16—C17—C181.3 (5)C26—C27—O4—C3096.2 (3)
O3—C16—C17—C212.2 (5)C22—C27—O4—C3088.3 (3)
C15—C16—C17—C21179.7 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H23A···O40.79 (8)2.11 (8)2.855 (4)157 (8)
O3—H23B···O20.79 (8)2.19 (7)2.927 (4)156 (7)
O1—H22A···O40.79 (7)2.07 (7)2.857 (4)171 (6)
O1—H22B···O20.91 (11)2.00 (11)2.897 (3)170 (9)

Experimental details

Crystal data
Chemical formulaC34H28O6·0.5C7H8
Mr578.64
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)10.5574 (9), 12.0375 (12), 13.5570 (12)
α, β, γ (°)111.105 (7), 101.460 (8), 101.413 (7)
V3)1505.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.22 × 0.05
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.950, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
23943, 7061, 3345
Rint0.076
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.190, 0.98
No. of reflections7061
No. of parameters415
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.48

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H23A···O40.79 (8)2.11 (8)2.855 (4)157 (8)
O3—H23B···O20.79 (8)2.19 (7)2.927 (4)156 (7)
O1—H22A···O40.79 (7)2.07 (7)2.857 (4)171 (6)
O1—H22B···O20.91 (11)2.00 (11)2.897 (3)170 (9)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds