Download citation
Download citation
link to html
In the title compound, [Ni(C5H3N6)2(H2O)2], the central Ni atom is located on a centre of inversion and is coordinated by two chelating pyrazinyltetra­zolate ligands and two water mol­ecules in a slightly distorted octa­hedral geometry [Ni—N = 2.082 (2) and 2.125 (2) Å, and Ni—O = 2.068 (2) Å]. These mol­ecules are linked by O—H...N hydrogen bonds into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703111X/hg2242sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703111X/hg2242Isup2.hkl
Contains datablock I

CCDC reference: 657515

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.024
  • wR factor = 0.064
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.76 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N1 .. 8.21 su
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.756 Tmax scaled 0.756 Tmin scaled 0.717 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.00 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently, we (Liu et al., 2007a, 2007b) and others (Deng et al., 2007; Luo et al., 2006; Song et al., 2006; Zeng et al., 2007) reported the crystal structures of Cu(II), Pb(II), Mn(II), Zn(II), Co(II) and Fe(II) complexes with the 5-(2-pyrazinyl)-5H-tetrazolate ligand. Except for that of the Pb(II) (one dimensional), these complexes adopt a mononuclear structure, being isomorphous with the title compound, C10H10NiN12O2 (I) (Fig. 1). The central Ni atom, located on a center of inversion, is coordinated by two water molecules and two ligand molecules to form a slightly distorted octahedral geometry. Furthermore, a three-dimensional supramolecular framework (Fig. 2) is formed by the intermolecular O—H—N hydrogen-bond interactions. The hydrogen bond parameters are listed in Table 2.

Related literature top

For related literature, see: Deng et al. (2007); Liu et al. (2007a, 2007b); Luo et al. (2006); Song & Xi (2006); Zeng et al. (2007).

Experimental top

A 5 ml of NiCl2.6H2O (48 mg, 0.2 mmol) solution in methanol was layered on a 10 ml of 2-(1H-tetrazol-5-yl)pyrazine (60 mg, 0.4 mmol) solution in methanol/water (1:1), and allowed to stand. After two months, purple crystals of (I) were isolated in about 20% yield.

Refinement top

H atoms bound to carbon were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C,N). The H atoms of the water molecules were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.5 times those of the parent O atoms.

Structure description top

Recently, we (Liu et al., 2007a, 2007b) and others (Deng et al., 2007; Luo et al., 2006; Song et al., 2006; Zeng et al., 2007) reported the crystal structures of Cu(II), Pb(II), Mn(II), Zn(II), Co(II) and Fe(II) complexes with the 5-(2-pyrazinyl)-5H-tetrazolate ligand. Except for that of the Pb(II) (one dimensional), these complexes adopt a mononuclear structure, being isomorphous with the title compound, C10H10NiN12O2 (I) (Fig. 1). The central Ni atom, located on a center of inversion, is coordinated by two water molecules and two ligand molecules to form a slightly distorted octahedral geometry. Furthermore, a three-dimensional supramolecular framework (Fig. 2) is formed by the intermolecular O—H—N hydrogen-bond interactions. The hydrogen bond parameters are listed in Table 2.

For related literature, see: Deng et al. (2007); Liu et al. (2007a, 2007b); Luo et al. (2006); Song & Xi (2006); Zeng et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) -x, 2 - y, 2 - z.]
[Figure 2] Fig. 2. Three-dimensional hydrogen-bonded network.
Diaquabis[5-(pyrazin-2-yl)-5H-tetrazolato-κN1]nickel(II) top
Crystal data top
[Ni(C5H3N6)2(H2O)2]F(000) = 396
Mr = 389.01Dx = 1.812 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2310 reflections
a = 6.1539 (11) Åθ = 2.7–26.3°
b = 11.3456 (19) ŵ = 1.40 mm1
c = 10.6126 (18) ÅT = 294 K
β = 105.845 (2)°Block, purple
V = 712.8 (2) Å30.22 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1451 independent reflections
Radiation source: fine-focus sealed tube1223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 67
Tmin = 0.948, Tmax = 1.000k = 1114
3871 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.3065P]
where P = (Fo2 + 2Fc2)/3
1451 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C5H3N6)2(H2O)2]V = 712.8 (2) Å3
Mr = 389.01Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.1539 (11) ŵ = 1.40 mm1
b = 11.3456 (19) ÅT = 294 K
c = 10.6126 (18) Å0.22 × 0.20 × 0.20 mm
β = 105.845 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1451 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1223 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 1.000Rint = 0.024
3871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
1451 reflectionsΔρmin = 0.25 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00001.00001.00000.02261 (12)
N10.1308 (3)1.17316 (13)0.99873 (14)0.0247 (3)
N20.2383 (3)1.41026 (16)0.9762 (2)0.0456 (5)
N30.4243 (3)1.25269 (15)0.79180 (16)0.0328 (4)
N40.5848 (3)1.16844 (16)0.76264 (17)0.0367 (4)
N50.5029 (3)1.06965 (15)0.82244 (16)0.0333 (4)
N60.2877 (3)1.08776 (14)0.89169 (15)0.0275 (4)
C10.3369 (3)1.21598 (18)1.05560 (19)0.0313 (4)
H1C0.44781.16551.10380.038*
C20.3893 (4)1.3336 (2)1.0445 (2)0.0391 (5)
H2A0.53431.36001.08590.047*
C30.0328 (4)1.36789 (18)0.9198 (2)0.0385 (5)
H3A0.07751.41880.87180.046*
C40.0221 (3)1.25059 (17)0.93032 (17)0.0260 (4)
C50.2457 (3)1.20037 (16)0.87052 (18)0.0255 (4)
O10.0740 (3)0.96615 (14)0.82476 (15)0.0369 (4)
H1A0.204 (2)0.985 (2)0.819 (3)0.055 (8)*
H1B0.037 (5)0.8993 (14)0.789 (3)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02113 (18)0.01848 (18)0.02574 (18)0.00025 (13)0.00220 (13)0.00169 (13)
N10.0232 (8)0.0255 (8)0.0244 (8)0.0001 (6)0.0047 (6)0.0001 (6)
N20.0394 (11)0.0286 (10)0.0617 (12)0.0085 (8)0.0018 (9)0.0004 (9)
N30.0283 (9)0.0323 (9)0.0348 (9)0.0015 (7)0.0037 (7)0.0064 (7)
N40.0278 (9)0.0391 (10)0.0382 (9)0.0006 (8)0.0006 (7)0.0055 (8)
N50.0250 (9)0.0338 (10)0.0376 (9)0.0039 (7)0.0027 (7)0.0004 (8)
N60.0215 (8)0.0261 (8)0.0321 (8)0.0012 (7)0.0025 (7)0.0012 (7)
C10.0252 (10)0.0340 (11)0.0311 (10)0.0006 (8)0.0014 (8)0.0000 (8)
C20.0312 (11)0.0387 (12)0.0427 (12)0.0085 (9)0.0019 (9)0.0061 (10)
C30.0361 (12)0.0263 (11)0.0485 (13)0.0002 (9)0.0038 (10)0.0043 (9)
C40.0258 (10)0.0252 (9)0.0263 (9)0.0008 (8)0.0056 (7)0.0012 (8)
C50.0248 (9)0.0238 (9)0.0276 (9)0.0021 (8)0.0065 (8)0.0022 (7)
O10.0389 (9)0.0367 (9)0.0376 (8)0.0126 (7)0.0150 (7)0.0101 (7)
Geometric parameters (Å, º) top
Ni1—N12.1245 (16)N4—N51.319 (2)
Ni1—N62.0823 (15)N5—N61.343 (2)
Ni1—O12.0679 (15)N6—C51.335 (2)
Ni1—O1i2.0679 (15)C1—C21.386 (3)
Ni1—N6i2.0823 (16)C1—H1C0.9300
Ni1—N1i2.1245 (16)C2—H2A0.9300
N1—C11.338 (2)C3—C41.385 (3)
N1—C41.346 (2)C3—H3A0.9300
N2—C31.332 (3)C4—C51.464 (3)
N2—C21.333 (3)O1—H1A0.843 (10)
N3—C51.325 (2)O1—H1B0.850 (10)
N3—N41.348 (2)
O1i—Ni1—O1180.000 (1)C5—N6—N5105.16 (15)
O1i—Ni1—N692.57 (7)C5—N6—Ni1112.10 (12)
O1—Ni1—N687.43 (7)N5—N6—Ni1142.32 (13)
O1i—Ni1—N6i87.43 (7)N1—C1—C2121.68 (19)
O1—Ni1—N6i92.57 (7)N1—C1—H1C119.2
N6—Ni1—N6i180.000 (1)C2—C1—H1C119.2
O1i—Ni1—N190.62 (6)N2—C2—C1122.0 (2)
O1—Ni1—N189.38 (6)N2—C2—H2A119.0
N6—Ni1—N179.68 (6)C1—C2—H2A119.0
N6i—Ni1—N1100.32 (6)N2—C3—C4122.2 (2)
O1i—Ni1—N1i89.38 (6)N2—C3—H3A118.9
O1—Ni1—N1i90.62 (6)C4—C3—H3A118.9
N6—Ni1—N1i100.32 (6)N1—C4—C3121.38 (18)
N6i—Ni1—N1i79.68 (6)N1—C4—C5114.57 (17)
N1—Ni1—N1i180.0C3—C4—C5124.06 (18)
C1—N1—C4116.31 (17)N3—C5—N6111.69 (17)
C1—N1—Ni1130.31 (13)N3—C5—C4128.19 (18)
C4—N1—Ni1113.38 (12)N6—C5—C4120.11 (16)
C3—N2—C2116.37 (19)Ni1—O1—H1A117.2 (19)
C5—N3—N4104.87 (16)Ni1—O1—H1B118 (2)
N5—N4—N3109.39 (16)H1A—O1—H1B110 (3)
N4—N5—N6108.90 (16)
O1i—Ni1—N1—C185.06 (17)Ni1—N1—C1—C2179.17 (15)
O1—Ni1—N1—C194.94 (17)C3—N2—C2—C10.6 (3)
N6—Ni1—N1—C1177.56 (18)N1—C1—C2—N20.4 (3)
N6i—Ni1—N1—C12.44 (18)C2—N2—C3—C40.4 (3)
O1i—Ni1—N1—C494.15 (13)C1—N1—C4—C30.1 (3)
O1—Ni1—N1—C485.85 (13)Ni1—N1—C4—C3179.45 (16)
N6—Ni1—N1—C41.65 (13)C1—N1—C4—C5179.58 (17)
N6i—Ni1—N1—C4178.35 (13)Ni1—N1—C4—C50.2 (2)
C5—N3—N4—N50.0 (2)N2—C3—C4—N10.1 (3)
N3—N4—N5—N60.1 (2)N2—C3—C4—C5179.8 (2)
N4—N5—N6—C50.1 (2)N4—N3—C5—N60.0 (2)
N4—N5—N6—Ni1171.40 (16)N4—N3—C5—C4178.99 (18)
O1i—Ni1—N6—C593.53 (14)N5—N6—C5—N30.1 (2)
O1—Ni1—N6—C586.47 (14)Ni1—N6—C5—N3174.35 (13)
N1—Ni1—N6—C53.37 (13)N5—N6—C5—C4179.04 (16)
N1i—Ni1—N6—C5176.63 (13)Ni1—N6—C5—C44.8 (2)
O1i—Ni1—N6—N595.5 (2)N1—C4—C5—N3175.51 (19)
O1—Ni1—N6—N584.5 (2)C3—C4—C5—N34.8 (3)
N1—Ni1—N6—N5174.3 (2)N1—C4—C5—N63.4 (3)
N1i—Ni1—N6—N55.7 (2)C3—C4—C5—N6176.24 (19)
C4—N1—C1—C20.0 (3)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5ii0.84 (1)2.04 (1)2.863 (2)166 (2)
O1—H1B···N3iii0.85 (1)1.91 (1)2.761 (2)175 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H3N6)2(H2O)2]
Mr389.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)6.1539 (11), 11.3456 (19), 10.6126 (18)
β (°) 105.845 (2)
V3)712.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.948, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3871, 1451, 1223
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.06
No. of reflections1451
No. of parameters123
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.25

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97, SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—N12.1245 (16)Ni1—O12.0679 (15)
Ni1—N62.0823 (15)
O1i—Ni1—N692.57 (7)O1—Ni1—N189.38 (6)
O1—Ni1—N687.43 (7)N6—Ni1—N179.68 (6)
O1i—Ni1—N6i87.43 (7)N6i—Ni1—N1100.32 (6)
O1i—Ni1—N190.62 (6)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5ii0.843 (10)2.037 (12)2.863 (2)166 (2)
O1—H1B···N3iii0.850 (10)1.913 (11)2.761 (2)175 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x1/2, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds