Download citation
Download citation
link to html
In the title compound, [Cu(C3H2O4)(C12H10N2O2)(H2O)2]·3H2O, a CuII center with `4+1' Jahn–Teller-distorted square-pyramidal coordination is bound by a chelating malonate dianion, two aqua ligands and a monodentate Z-4,4′-ethyl­ene­dipyridine N,N′-dioxide ligand. Three uncoordinated water mol­ecules cocrystallize with each complex mol­ecule. Individual mol­ecules are connected into one-dimensional ribbons and two-dimensional sheets through extensive hydrogen-bonding patterns mediated by both aqua ligands and water mol­ecules of crystallization.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034253/hg2260sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034253/hg2260Isup2.hkl
Contains datablock I

CCDC reference: 657595

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.75 mm PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 600 Deg. PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.10 PLAT480_ALERT_4_C Long H...A H-Bond Reported H2WB .. O5 .. 2.62 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6 PLAT731_ALERT_1_C Bond Calc 0.84(4), Rep 0.842(18) ...... 2.22 su-Ra O1W -H1WB 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.850(18) ...... 2.22 su-Ra O2W -H2WB 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(4), Rep 0.842(18) ...... 2.22 su-Ra O1W -H2# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(18) ...... 2.22 su-Ra O2W -H3# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(18) ...... 2.22 su-Ra O2W -H3# 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.11 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 15
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The title compound was prepared during an attempt to synthesize a copper malonate coordination polymer incorporating Z-1,2-di-4-pyridylethylene-bis-N-oxide (bpeno), inspired by a report of the ferromagnetically coupled two-dimensional material [Cu2(malonate)2(H2O)2(4,4'-bipyridine)] (Rodriguez-Martin et al., 2001). Its asymmetric unit consists of a single [Cu(malonate)(bpeno)(H2O)2] molecule along with three water molecules of crystallization (Figure 1). The bond distances about the Cu atom are consistent with a "4 + 1" Jahn-Teller distorted square pyramidal coordination sphere (Table 1). The ligated water molecules are oriented in a cis fashion with respect to each other; one (O8) lies in the axial position of the square pyramid while the other (O7) rests in the equatorial plane. The oxygen donor atom belonging to the pendant, monodentate bpeno is oriented cis to both aqua ligands. The malonate ligand serves only as a chelating ligand to a single Cu atom.

Individual [Cu(malonate)(bpeno)(H2O)2] molecules aggregate into pairs through O—H···O hydrogen bonding between aqua ligands (O8) and the unligated oxygen atom of the monodentate bpeno ligands (O2) as well as π-π stacking between bpeno pyridyl rings. In turn, these form one-dimensional supramolecular chains through O—H···O hydrogen bonding between aquo ligands (O7) and unligated malonate oxygen atoms (O6). These further aggregate into pseudo two-dimensional layers (Figure 2) that course parallel to the bc crystallographic planes, through hydrogen bonding between the water molecules of crystallization and aquo ligands (O8) and unligated malonate oxygen atoms (O6). The water molecules of crystallization form discrete trimeric units. The pseudo two-dimensional layers stack into the three-dimensional crystal structure of I through additional hydrogen bonding patterns. Metrical parameters for the supramolecular interactions are given in Table 2.

Related literature top

For related literature, see: Li et al. (1997); Rodriguez-Martin et al. (2001); Simpson et al. (1963).

Experimental top

Copper malonate (Li et al., 1997) and Z-1,2-dipyridylethylene-bis-N-oxide were prepared via published procedures (Simpson et al., 1963). Copper malonate (202 mg, 1.0 mmol) was dissolved in 30 ml H2O. To this solution was added a solution of Z-1,2-dipyridylethylene-bis-N-oxide (107 mg, 0.5 mmol) in 10 ml e thanol. The mixture was then heated under autogenous pressure at 373 K for 5 min. Large green blocks of the title compound were isolated after cooling and standing for 7 d.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 (2) Å and refined in riding mode with Uiso = 1.2Ueq(C). All H atoms bound to O atoms were placed in calculated positions. The H atoms bound to O were found via Fourier difference map, restrained with O—H = 0.89 (2) Å, and refined with Uiso = 1.2Ueq(N).

Structure description top

The title compound was prepared during an attempt to synthesize a copper malonate coordination polymer incorporating Z-1,2-di-4-pyridylethylene-bis-N-oxide (bpeno), inspired by a report of the ferromagnetically coupled two-dimensional material [Cu2(malonate)2(H2O)2(4,4'-bipyridine)] (Rodriguez-Martin et al., 2001). Its asymmetric unit consists of a single [Cu(malonate)(bpeno)(H2O)2] molecule along with three water molecules of crystallization (Figure 1). The bond distances about the Cu atom are consistent with a "4 + 1" Jahn-Teller distorted square pyramidal coordination sphere (Table 1). The ligated water molecules are oriented in a cis fashion with respect to each other; one (O8) lies in the axial position of the square pyramid while the other (O7) rests in the equatorial plane. The oxygen donor atom belonging to the pendant, monodentate bpeno is oriented cis to both aqua ligands. The malonate ligand serves only as a chelating ligand to a single Cu atom.

Individual [Cu(malonate)(bpeno)(H2O)2] molecules aggregate into pairs through O—H···O hydrogen bonding between aqua ligands (O8) and the unligated oxygen atom of the monodentate bpeno ligands (O2) as well as π-π stacking between bpeno pyridyl rings. In turn, these form one-dimensional supramolecular chains through O—H···O hydrogen bonding between aquo ligands (O7) and unligated malonate oxygen atoms (O6). These further aggregate into pseudo two-dimensional layers (Figure 2) that course parallel to the bc crystallographic planes, through hydrogen bonding between the water molecules of crystallization and aquo ligands (O8) and unligated malonate oxygen atoms (O6). The water molecules of crystallization form discrete trimeric units. The pseudo two-dimensional layers stack into the three-dimensional crystal structure of I through additional hydrogen bonding patterns. Metrical parameters for the supramolecular interactions are given in Table 2.

For related literature, see: Li et al. (1997); Rodriguez-Martin et al. (2001); Simpson et al. (1963).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalMaker (Palmer, 2005); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Most hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A pseudo two-dimensional layer in (I), viewed slightly offset from the a crystal direction. Color codes: light-blue N, red O within ligands, orange O within water molecules, black C, dark blue Cu.
[Figure 3] Fig. 3. Packing diagram illustrating the stacking of the pseudo layers to form the three-dimensional crystal structure of (I).
Diaqua[(Z)-4,4'-ethylenedipyridine N,N'-dioxide-κO](malonato-κ2O:O)copper(II) trihydrate top
Crystal data top
[Cu(C3H2O4)(C12H10N2O2)(H2O)2]·3H2OZ = 2
Mr = 469.89F(000) = 486
Triclinic, P1Dx = 1.623 Mg m3
a = 7.526 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.781 (4) ÅCell parameters from 10713 reflections
c = 12.723 (5) Åθ = 1.8–28.2°
α = 111.701 (6)°µ = 1.20 mm1
β = 99.270 (6)°T = 293 K
γ = 106.219 (6)°Block, green
V = 961.2 (6) Å30.75 × 0.12 × 0.12 mm
Data collection top
Bruker SMART 1 K
diffractometer
4273 independent reflections
Radiation source: fine-focus sealed tube3606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.635, Tmax = 0.866k = 1514
10713 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.057P)2 + 0.2918P]
where P = (Fo2 + 2Fc2)/3
4273 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.57 e Å3
15 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C3H2O4)(C12H10N2O2)(H2O)2]·3H2Oγ = 106.219 (6)°
Mr = 469.89V = 961.2 (6) Å3
Triclinic, P1Z = 2
a = 7.526 (3) ÅMo Kα radiation
b = 11.781 (4) ŵ = 1.20 mm1
c = 12.723 (5) ÅT = 293 K
α = 111.701 (6)°0.75 × 0.12 × 0.12 mm
β = 99.270 (6)°
Data collection top
Bruker SMART 1 K
diffractometer
4273 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3606 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.866Rint = 0.034
10713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03715 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.57 e Å3
4273 reflectionsΔρmin = 0.41 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08675 (4)0.18865 (2)0.66333 (2)0.03131 (11)
O10.2763 (2)0.02081 (15)0.78449 (16)0.0368 (4)
O1W0.7376 (3)0.1511 (2)0.5214 (3)0.0659 (7)
H1WA0.617 (3)0.139 (4)0.510 (4)0.079*
H1WB0.755 (5)0.085 (3)0.525 (4)0.079*
O20.3440 (3)1.08288 (16)1.16265 (19)0.0479 (5)
O2W0.8976 (4)0.4226 (2)0.6538 (2)0.0615 (6)
H2WB0.952 (5)0.455 (3)0.612 (3)0.074*
H2WA0.862 (6)0.3382 (18)0.615 (3)0.074*
O30.0695 (3)0.10789 (16)0.60478 (17)0.0387 (4)
O3W0.6847 (3)0.5529 (2)0.76154 (17)0.0512 (5)
H3WB0.573 (3)0.539 (3)0.718 (3)0.061*
H3WA0.742 (4)0.503 (3)0.724 (3)0.061*
O40.3436 (3)0.10490 (17)0.51713 (16)0.0405 (4)
O50.0721 (2)0.36467 (15)0.54332 (15)0.0346 (4)
O60.3333 (3)0.50656 (16)0.39468 (16)0.0425 (4)
O70.2857 (3)0.25608 (17)0.70707 (17)0.0394 (4)
H7A0.288 (4)0.330 (2)0.659 (2)0.047*
H7B0.399 (3)0.198 (2)0.746 (2)0.047*
O80.0726 (3)0.1970 (2)0.80628 (19)0.0457 (5)
H8A0.153 (4)0.155 (3)0.817 (3)0.055*
H8B0.153 (4)0.275 (2)0.795 (3)0.055*
N10.2473 (3)0.09267 (17)0.80976 (17)0.0297 (4)
N20.3096 (3)0.95500 (18)1.1263 (2)0.0359 (5)
C10.2451 (4)0.1434 (2)0.7312 (2)0.0381 (6)
H10.25060.09480.65410.046*
C20.2349 (4)0.2655 (2)0.7624 (2)0.0396 (6)
H20.23230.30030.70590.047*
C30.2283 (4)0.3391 (2)0.8746 (2)0.0312 (5)
C40.2247 (4)0.2804 (2)0.9519 (2)0.0356 (5)
H40.21610.32591.02890.043*
C50.2334 (4)0.1579 (2)0.9179 (2)0.0356 (5)
H50.22960.11880.97120.043*
C60.2314 (4)0.4725 (2)0.9081 (2)0.0357 (5)
H60.22350.50190.84790.043*
C70.2444 (4)0.5558 (2)1.0156 (2)0.0328 (5)
H70.24470.52461.07460.039*
C80.2975 (4)0.9014 (2)1.2024 (2)0.0426 (6)
H80.30590.95391.28180.051*
C90.2728 (4)0.7710 (2)1.1669 (2)0.0383 (6)
H90.26560.73481.22230.046*
C100.2583 (3)0.6916 (2)1.0509 (2)0.0302 (5)
C110.2640 (4)0.7503 (2)0.9737 (2)0.0388 (6)
H110.24910.69910.89280.047*
C120.2907 (4)0.8806 (2)1.0125 (2)0.0401 (6)
H120.29590.91880.95850.048*
C130.2471 (3)0.1632 (2)0.54898 (19)0.0283 (5)
C140.3532 (3)0.3063 (2)0.5211 (2)0.0339 (5)
H14A0.38740.30890.59240.041*
H14B0.47600.34090.45750.041*
C150.2454 (3)0.3987 (2)0.4829 (2)0.0290 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03120 (17)0.01942 (15)0.03551 (18)0.01190 (11)0.00088 (12)0.00577 (12)
O10.0372 (9)0.0175 (7)0.0463 (10)0.0139 (7)0.0017 (7)0.0057 (7)
O1W0.0503 (13)0.0477 (13)0.1030 (19)0.0219 (11)0.0188 (13)0.0354 (13)
O20.0389 (10)0.0188 (8)0.0728 (13)0.0125 (7)0.0051 (9)0.0096 (9)
O2W0.0680 (15)0.0591 (14)0.0599 (14)0.0263 (13)0.0297 (12)0.0219 (12)
O30.0340 (9)0.0234 (8)0.0532 (11)0.0110 (7)0.0022 (8)0.0151 (8)
O3W0.0559 (13)0.0497 (12)0.0379 (11)0.0215 (10)0.0057 (9)0.0106 (9)
O40.0445 (10)0.0365 (9)0.0466 (10)0.0237 (8)0.0083 (8)0.0202 (8)
O50.0316 (9)0.0234 (8)0.0413 (9)0.0136 (7)0.0029 (7)0.0071 (7)
O60.0404 (10)0.0225 (8)0.0453 (10)0.0125 (7)0.0002 (8)0.0003 (8)
O70.0346 (9)0.0238 (8)0.0479 (10)0.0148 (7)0.0008 (8)0.0051 (8)
O80.0414 (11)0.0498 (12)0.0553 (12)0.0237 (9)0.0181 (9)0.0262 (10)
N10.0293 (10)0.0178 (8)0.0357 (10)0.0092 (7)0.0043 (8)0.0070 (8)
N20.0310 (10)0.0189 (9)0.0484 (12)0.0107 (8)0.0044 (9)0.0070 (9)
C10.0545 (16)0.0245 (11)0.0309 (12)0.0141 (11)0.0143 (11)0.0074 (10)
C20.0603 (17)0.0276 (12)0.0327 (12)0.0153 (12)0.0151 (12)0.0154 (10)
C30.0382 (13)0.0204 (10)0.0315 (12)0.0116 (9)0.0074 (10)0.0082 (9)
C40.0528 (15)0.0268 (12)0.0304 (12)0.0200 (11)0.0136 (11)0.0117 (10)
C50.0471 (15)0.0287 (12)0.0334 (12)0.0163 (11)0.0096 (11)0.0152 (10)
C60.0472 (15)0.0251 (11)0.0364 (13)0.0154 (10)0.0098 (11)0.0146 (10)
C70.0442 (14)0.0223 (11)0.0336 (12)0.0135 (10)0.0097 (10)0.0140 (10)
C80.0516 (16)0.0280 (12)0.0391 (14)0.0154 (11)0.0129 (12)0.0050 (11)
C90.0510 (16)0.0257 (12)0.0368 (13)0.0142 (11)0.0146 (11)0.0116 (10)
C100.0306 (12)0.0228 (11)0.0343 (12)0.0103 (9)0.0074 (9)0.0102 (9)
C110.0554 (16)0.0270 (12)0.0322 (12)0.0185 (11)0.0086 (11)0.0106 (10)
C120.0488 (15)0.0287 (12)0.0429 (14)0.0155 (11)0.0058 (12)0.0182 (11)
C130.0372 (13)0.0255 (11)0.0249 (10)0.0171 (9)0.0111 (9)0.0092 (9)
C140.0299 (12)0.0257 (11)0.0417 (13)0.0127 (9)0.0088 (10)0.0093 (10)
C150.0340 (12)0.0204 (10)0.0344 (12)0.0118 (9)0.0101 (10)0.0125 (9)
Geometric parameters (Å, º) top
Cu1—O31.9263 (17)C1—C21.372 (3)
Cu1—O51.9357 (17)C1—H10.9500
Cu1—O11.9450 (17)C2—C31.387 (3)
Cu1—O71.9766 (18)C2—H20.9500
Cu1—O82.350 (2)C3—C41.395 (3)
O1—N11.344 (2)C3—C61.461 (3)
O1W—H1WA0.857 (18)C4—C51.369 (3)
O1W—H1WB0.842 (18)C4—H40.9500
O2—N21.334 (2)C5—H50.9500
O2W—H2WB0.850 (18)C6—C71.324 (3)
O2W—H2WA0.866 (18)C6—H60.9500
O3—C131.257 (3)C7—C101.460 (3)
O3W—H3WB0.861 (18)C7—H70.9500
O3W—H3WA0.871 (17)C8—C91.379 (3)
O4—C131.246 (3)C8—H80.9500
O5—C151.268 (3)C9—C101.391 (3)
O6—C151.245 (3)C9—H90.9500
O7—H7A0.867 (17)C10—C111.395 (3)
O7—H7B0.852 (17)C11—C121.369 (3)
O8—H8A0.881 (17)C11—H110.9500
O8—H8B0.889 (17)C12—H120.9500
N1—C11.341 (3)C13—C141.524 (3)
N1—C51.343 (3)C14—C151.519 (3)
N2—C81.339 (4)C14—H14A0.9900
N2—C121.346 (3)C14—H14B0.9900
O3—Cu1—O593.99 (8)C5—C4—H4119.7
O3—Cu1—O193.20 (8)C3—C4—H4119.7
O5—Cu1—O1171.90 (7)N1—C5—C4120.4 (2)
O3—Cu1—O7167.73 (8)N1—C5—H5119.8
O5—Cu1—O789.06 (8)C4—C5—H5119.8
O1—Cu1—O783.14 (8)C7—C6—C3125.2 (2)
O3—Cu1—O892.76 (8)C7—C6—H6117.4
O5—Cu1—O895.96 (8)C3—C6—H6117.4
O1—Cu1—O887.42 (8)C6—C7—C10125.4 (2)
O7—Cu1—O898.75 (8)C6—C7—H7117.3
N1—O1—Cu1122.35 (13)C10—C7—H7117.3
H1WA—O1W—H1WB109 (3)N2—C8—C9120.8 (2)
H2WB—O2W—H2WA106 (3)N2—C8—H8119.6
C13—O3—Cu1125.26 (15)C9—C8—H8119.6
H3WB—O3W—H3WA113 (3)C8—C9—C10120.8 (2)
C15—O5—Cu1124.50 (14)C8—C9—H9119.6
Cu1—O7—H7A121 (2)C10—C9—H9119.6
Cu1—O7—H7B115 (2)C9—C10—C11116.4 (2)
H7A—O7—H7B113 (3)C9—C10—C7120.6 (2)
Cu1—O8—H8A117 (2)C11—C10—C7123.0 (2)
Cu1—O8—H8B118 (2)C12—C11—C10121.1 (2)
H8A—O8—H8B98 (2)C12—C11—H11119.4
C1—N1—C5121.0 (2)C10—C11—H11119.4
C1—N1—O1120.4 (2)N2—C12—C11120.6 (2)
C5—N1—O1118.5 (2)N2—C12—H12119.7
O2—N2—C8120.5 (2)C11—C12—H12119.7
O2—N2—C12119.2 (2)O4—C13—O3122.8 (2)
C8—N2—C12120.2 (2)O4—C13—C14117.6 (2)
N1—C1—C2119.9 (2)O3—C13—C14119.6 (2)
N1—C1—H1120.1C15—C14—C13116.6 (2)
C2—C1—H1120.1C15—C14—H14A108.1
C1—C2—C3121.3 (2)C13—C14—H14A108.1
C1—C2—H2119.3C15—C14—H14B108.1
C3—C2—H2119.3C13—C14—H14B108.1
C2—C3—C4116.6 (2)H14A—C14—H14B107.3
C2—C3—C6120.1 (2)O6—C15—O5122.7 (2)
C4—C3—C6123.2 (2)O6—C15—C14118.2 (2)
C5—C4—C3120.7 (2)O5—C15—C14119.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.86 (2)1.93 (2)2.786 (3)178 (4)
O1W—H1WB···O4ii0.84 (2)2.11 (2)2.883 (3)152 (3)
O2W—H2WB···O5iii0.85 (2)2.33 (3)2.963 (3)131 (3)
O2W—H2WB···O5iv0.85 (2)2.62 (3)3.271 (3)134 (3)
O2W—H2WA···O1W0.87 (2)1.92 (2)2.780 (4)170 (4)
O3W—H3WB···O6i0.86 (2)1.96 (2)2.818 (3)174 (3)
O3W—H3WA···O2W0.87 (2)1.85 (2)2.707 (3)171 (3)
O7—H7A···O6v0.87 (2)1.94 (2)2.767 (3)159 (3)
O7—H7B···O2vi0.85 (2)1.89 (2)2.741 (3)174 (3)
O8—H8A···O2vii0.88 (2)1.87 (2)2.745 (3)174 (3)
O8—H8B···O3Wviii0.89 (2)1.90 (2)2.786 (3)175 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x, y1, z+1; (vi) x+1, y+1, z+2; (vii) x, y+1, z+2; (viii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C3H2O4)(C12H10N2O2)(H2O)2]·3H2O
Mr469.89
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.526 (3), 11.781 (4), 12.723 (5)
α, β, γ (°)111.701 (6), 99.270 (6), 106.219 (6)
V3)961.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.75 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART 1 K
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.635, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
10713, 4273, 3606
Rint0.034
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.07
No. of reflections4273
No. of parameters292
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.41

Computer programs: SMART (Bruker, 2001), SMART, SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CrystalMaker (Palmer, 2005), SHELXL97.

Selected bond lengths (Å) top
Cu1—O31.9263 (17)Cu1—O71.9766 (18)
Cu1—O51.9357 (17)Cu1—O82.350 (2)
Cu1—O11.9450 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.857 (18)1.929 (19)2.786 (3)178 (4)
O1W—H1WB···O4ii0.842 (18)2.11 (2)2.883 (3)152 (3)
O2W—H2WB···O5iii0.850 (18)2.33 (3)2.963 (3)131 (3)
O2W—H2WB···O5iv0.850 (18)2.62 (3)3.271 (3)134 (3)
O2W—H2WA···O1W0.866 (18)1.923 (19)2.780 (4)170 (4)
O3W—H3WB···O6i0.861 (18)1.960 (19)2.818 (3)174 (3)
O3W—H3WA···O2W0.871 (17)1.845 (18)2.707 (3)171 (3)
O7—H7A···O6v0.867 (17)1.94 (2)2.767 (3)159 (3)
O7—H7B···O2vi0.852 (17)1.892 (18)2.741 (3)174 (3)
O8—H8A···O2vii0.881 (17)1.869 (18)2.745 (3)174 (3)
O8—H8B···O3Wviii0.889 (17)1.899 (18)2.786 (3)175 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x, y1, z+1; (vi) x+1, y+1, z+2; (vii) x, y+1, z+2; (viii) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds