Download citation
Download citation
link to html
The NiII atom in the title compound, {[LaNi(C4H5NO4)2(C4H6NO4)]·H2O}n is O,N,O′-chelated by two imino­diacetate dianions and it occupies a special position of site symmetry \overline{1}; the [Ni(C4H5NO4)2] unit functions as a μ2-bridge that links the [La(C4H6NO4)] units into a layer structure. The iminiodi­acetate monoanion in the O,Ocarbox­yl-chelated [La(C4H6NO4)] unit lies about a special position of site symmetry 2; one of the two O atoms is also coordinated to another La atom. The rare-earth atom lies in a bicapped square-anti­prismatic environment in the layer coordination polymer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032904/hj3046sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032904/hj3046Isup2.hkl
Contains datablock I

CCDC reference: 657567

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.024
  • wR factor = 0.062
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 50.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C12 H18 La1 N3 Ni1 O13 Atom count from _chemical_formula_moiety:C800 H1002 La200 N400 Ni200 PLAT793_ALERT_1_G Check the Absolute Configuration of N1 = ... R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The iminodiacetate [-O(O)CCH2NHCH2C(O)O-] dianion forms a large number of crystalline metal derivatives in which it O,N,O'-chelates to the metal. These studies have largely addressed compounds having one type of metal only; diaquadi(iminodiacetato)calciumcobalt tetrahydrate (Kuz'menko et al., 1992) and diaquadi(iminodiacetato)cadmiumcobalt (Long et al., 2003) represent unusual examples of heterometallic systems. The two compound adopt layer structures. A series of lanthanum/copper complexes is known that exhibit porosity; the three-dimensional network is also thermally stable when lattice molecules are removed (Ren et al., 2003a,b). Another series of lanthanum/copper complexes, [LnCu6(OH)3(C4H6NO4)2(C4H5NO4)4].(ClO4)2.25H2O, features antiferromagnetic Ln–Cu interactions as the rare earth atom is surrounded by six copper atoms at a distance of approximately 3.5 Å (Liu et al., 2003).

The present study extends an earlier study on a metal derivative of iminodiacetic acid that features both d- and f-block elements within the same framework. The hydrothermal reaction of lanthanum nitrate, nickel nitrate and iminodiacetic acid gave a gigantic metal cluster consisting of 20 lanthanum and 30 nickel atoms in the formula unit, [La20Ni30(C4H5NO4)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)6.72H2O (Kong et al., 2007). Changing the lanthanum nitrate reactant to lanthanum chloride yielded the title compound, which has only one of each metal atom in formula unit. In [(C4H5NO4)2(C4H6NO4)LaNi.H2O]n (Fig. 1), two deprotonated iminodiacetate dianions each chelate to the nickel atom, the three chelating atoms occupying fac positions of the octahedral geometry of nickel, a feature that is also found in diaqua(iminodiacetato)nickel (Wu et al., 2003). Meanwhile, the iminodiacetate monoanion, which lies about a twofold rotation axis, O,O'-chelates to the water-coordinated lanthanum atom. One of the two oxygen atoms is additionally involved in bridging to another lanthanum atom, so that the geometry of the f-block metal is a ten-coordinate bicapped square antiprism (Fig. 2) in the layer structure. Hydrogen bonds link the layers into a three-dimensional network motif.

The somewhat uncommon iminodiacetate monoanion has also been found in other rare-earth complexes such as the neodymium (Albertsson & Oskarsson, 1968) praseodymium (Albertsson & Oskarsson, 1974; Li et al., 1999), uranium (Bombieri et al., 1974), yttrium (Li et al., 1997) and lanthanum complexes. The lanthanum complex is also a heterometallic compound having lanthanum and zinc bridged into a linear chain (Xu et al., 2004).

Related literature top

Heterometallic derivatives of iminodiacetic acid are exemplified by diaquabis(iminodiacetato)calciumcobalt tetrahydrate (Kuz'menko et al., 1992) and diaquabis(iminodiacetato)cadmiumcobalt (Long et al., 2003). For a lanthanum/zinc complex, see: Xu et al. (2004). For lanthanum/copper complexes, see: Ren et al. (2003a,b); Liu et al. (2003). For lanthanum/nickel complexes, see: Kong et al. (2007). For diaqua(iminodiacetato)nickel, see: Wu et al. (2003). For other lanthanum derivatives, see: Albertsson & Oskarsson (1968, 1974); Bombieri et al. (1974); Li et al. (1997, 1999).

Experimental top

Iminodiacetic acid (0.399 g, 3.0 mmol), nickel nitrate hexahydrate (0.436 g, 1.50 mmol) and lanthanum trichloride monohydrate (0.407 g, 1.0 mmol) were dissolved in water (15 ml). Aqueous sodium hydroxide (1 M) was added to the solution to a pH of approximately 5.5. The mixtue was placed din a 25-ml, Teflon-lined, stainless-steel Parr bomb. The bomb was heated to 453 K for 8 h. It was cooled to 373 K at 20 K h-1 and then kept at this temperature of 3 h before being allowed to cool to room temperate at 3 K h-1. Blue needle-shaped crystals were obtained in 70% yield (based on iminodiacetic acid. CH&N elemental analysis. Calc. for C12H18LaN3NiO13: Found: C 23.63, N 6.89, H, 2.97%. Found: C 23.45, N, 6.82, H 3.10%.

Refinement top

The water molecule was allowed to refine off the twofold rotation axis, and its anisotropic temperature factors were restrained to be nearly isotropic. An examination of hydrogen bonding interactions suggested that one of its H-atoms occupies the symmetry-related site of the water O-atom and would then not hydrogen bond to an acceptor. The other should be linked to an acceptor. The positions of the two were then set manually. The two H-atoms were not refined.

Carbon- and nitrogen-bound H-atoms were positioned geometrically (C–H 0.93 and 0.97 Å; N–H 0.88 Å), and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

The final difference Fourier map had a large peak at 0.85 Å from La1 but was otherwise featureless.

Structure description top

The iminodiacetate [-O(O)CCH2NHCH2C(O)O-] dianion forms a large number of crystalline metal derivatives in which it O,N,O'-chelates to the metal. These studies have largely addressed compounds having one type of metal only; diaquadi(iminodiacetato)calciumcobalt tetrahydrate (Kuz'menko et al., 1992) and diaquadi(iminodiacetato)cadmiumcobalt (Long et al., 2003) represent unusual examples of heterometallic systems. The two compound adopt layer structures. A series of lanthanum/copper complexes is known that exhibit porosity; the three-dimensional network is also thermally stable when lattice molecules are removed (Ren et al., 2003a,b). Another series of lanthanum/copper complexes, [LnCu6(OH)3(C4H6NO4)2(C4H5NO4)4].(ClO4)2.25H2O, features antiferromagnetic Ln–Cu interactions as the rare earth atom is surrounded by six copper atoms at a distance of approximately 3.5 Å (Liu et al., 2003).

The present study extends an earlier study on a metal derivative of iminodiacetic acid that features both d- and f-block elements within the same framework. The hydrothermal reaction of lanthanum nitrate, nickel nitrate and iminodiacetic acid gave a gigantic metal cluster consisting of 20 lanthanum and 30 nickel atoms in the formula unit, [La20Ni30(C4H5NO4)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)6.72H2O (Kong et al., 2007). Changing the lanthanum nitrate reactant to lanthanum chloride yielded the title compound, which has only one of each metal atom in formula unit. In [(C4H5NO4)2(C4H6NO4)LaNi.H2O]n (Fig. 1), two deprotonated iminodiacetate dianions each chelate to the nickel atom, the three chelating atoms occupying fac positions of the octahedral geometry of nickel, a feature that is also found in diaqua(iminodiacetato)nickel (Wu et al., 2003). Meanwhile, the iminodiacetate monoanion, which lies about a twofold rotation axis, O,O'-chelates to the water-coordinated lanthanum atom. One of the two oxygen atoms is additionally involved in bridging to another lanthanum atom, so that the geometry of the f-block metal is a ten-coordinate bicapped square antiprism (Fig. 2) in the layer structure. Hydrogen bonds link the layers into a three-dimensional network motif.

The somewhat uncommon iminodiacetate monoanion has also been found in other rare-earth complexes such as the neodymium (Albertsson & Oskarsson, 1968) praseodymium (Albertsson & Oskarsson, 1974; Li et al., 1999), uranium (Bombieri et al., 1974), yttrium (Li et al., 1997) and lanthanum complexes. The lanthanum complex is also a heterometallic compound having lanthanum and zinc bridged into a linear chain (Xu et al., 2004).

Heterometallic derivatives of iminodiacetic acid are exemplified by diaquabis(iminodiacetato)calciumcobalt tetrahydrate (Kuz'menko et al., 1992) and diaquabis(iminodiacetato)cadmiumcobalt (Long et al., 2003). For a lanthanum/zinc complex, see: Xu et al. (2004). For lanthanum/copper complexes, see: Ren et al. (2003a,b); Liu et al. (2003). For lanthanum/nickel complexes, see: Kong et al. (2007). For diaqua(iminodiacetato)nickel, see: Wu et al. (2003). For other lanthanum derivatives, see: Albertsson & Oskarsson (1968, 1974); Bombieri et al. (1974); Li et al. (1997, 1999).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of a portion of the polymeric structure of [(C4H5NO4)2(C4H6NO4)LaNi.H2O]n; displacement ellipsoids are drawn at the 70% probability level, and hydrogen atoms as spheres of arbitrary radius. The water molecule is not shown. Symmetry codes: (i)1 - x, 1 - y, 2 - z; (ii) x, 1 - y, z - 1/2; (iii) 1 - x y, 3/2 - z; (iv) 1 - x, 1 - y, 1 - z; (v) x, 1 - y, 1/2 + z.
[Figure 2] Fig. 2. Bicapped square-antiprismatic geometry of lanthanum.
Poly[[(µ4-iminiodiacetato)bis(µ3-iminodiacetato)lanthanum(III)nickel(II)] monohydrate] top
Crystal data top
[LaNi(C4H5NO4)2(C4H6NO4)]·H2OF(000) = 1200
Mr = 609.91Dx = 2.250 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6635 reflections
a = 9.7390 (4) Åθ = 2.5–28.3°
b = 23.859 (1) ŵ = 3.47 mm1
c = 8.5312 (4) ÅT = 173 K
β = 114.732 (1)°Column, blue
V = 1800.5 (1) Å30.29 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2049 independent reflections
Radiation source: fine-focus sealed tube2046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.531, Tmax = 0.681k = 3030
7464 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.025P)2 + 7.2608P]
where P = (Fo2 + 2Fc2)/3
2049 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 1.07 e Å3
6 restraintsΔρmin = 0.59 e Å3
Crystal data top
[LaNi(C4H5NO4)2(C4H6NO4)]·H2OV = 1800.5 (1) Å3
Mr = 609.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.7390 (4) ŵ = 3.47 mm1
b = 23.859 (1) ÅT = 173 K
c = 8.5312 (4) Å0.29 × 0.12 × 0.12 mm
β = 114.732 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
2049 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2046 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.681Rint = 0.020
7464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.25Δρmax = 1.07 e Å3
2049 reflectionsΔρmin = 0.59 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.50000.506465 (9)0.75000.01011 (8)
Ni10.50000.66141 (2)0.75000.01438 (12)
O10.3730 (3)0.58240 (9)1.0855 (3)0.0192 (5)
O20.4288 (2)0.59806 (9)0.8602 (3)0.0160 (4)
O30.2951 (3)0.66506 (9)0.5435 (3)0.0201 (5)
O40.0546 (3)0.68604 (11)0.4774 (4)0.0313 (6)
O50.6443 (2)0.47668 (9)0.5902 (3)0.0148 (4)
O60.7921 (2)0.45955 (9)0.4593 (3)0.0175 (4)
O1w0.958 (3)0.4153 (7)0.255 (4)0.175 (8)0.50
H1w10.95720.43610.33810.262*0.50
H1w21.04100.41620.24360.262*0.50
N10.3913 (3)0.71032 (10)0.8677 (3)0.0166 (5)
H1n0.44190.74160.90680.020*
N21.00000.40180 (15)0.75000.0144 (7)
H2n10.96170.38000.65870.017*0.50
H2n21.03830.38000.84130.017*0.50
C10.3964 (3)0.61346 (12)0.9834 (4)0.0151 (5)
C20.3938 (4)0.67636 (13)1.0123 (4)0.0224 (7)
H2A0.30350.68551.03270.027*
H2B0.48420.68661.11760.027*
C30.2385 (4)0.72313 (14)0.7375 (4)0.0217 (6)
H3A0.23350.76330.70640.026*
H3B0.16520.71670.78830.026*
C40.1924 (4)0.68802 (13)0.5741 (4)0.0200 (6)
C50.7663 (3)0.45831 (12)0.5895 (4)0.0137 (5)
C60.8756 (3)0.43440 (13)0.7608 (4)0.0169 (6)
H6A0.91920.46560.84340.020*
H6B0.81910.41000.80700.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01116 (12)0.01078 (12)0.00888 (12)0.0000.00465 (9)0.000
Ni10.0187 (3)0.0133 (3)0.0114 (2)0.0000.0065 (2)0.000
O10.0244 (12)0.0185 (11)0.0194 (11)0.0046 (8)0.0137 (10)0.0052 (8)
O20.0205 (10)0.0138 (10)0.0156 (10)0.0006 (8)0.0096 (9)0.0005 (8)
O30.0241 (11)0.0190 (11)0.0139 (10)0.0018 (9)0.0048 (9)0.0010 (8)
O40.0216 (12)0.0256 (13)0.0340 (14)0.0035 (10)0.0008 (11)0.0099 (11)
O50.0124 (9)0.0201 (10)0.0121 (9)0.0036 (8)0.0052 (8)0.0011 (8)
O60.0168 (10)0.0225 (11)0.0148 (10)0.0021 (8)0.0082 (8)0.0010 (8)
O1w0.169 (12)0.198 (11)0.168 (10)0.028 (8)0.082 (9)0.011 (8)
N10.0220 (13)0.0115 (11)0.0160 (12)0.0005 (9)0.0077 (11)0.0004 (9)
N20.0115 (16)0.0148 (16)0.0150 (16)0.0000.0038 (13)0.000
C10.0139 (13)0.0169 (14)0.0119 (13)0.0022 (10)0.0029 (11)0.0008 (10)
C20.0375 (19)0.0163 (15)0.0182 (15)0.0020 (13)0.0165 (14)0.0005 (12)
C30.0230 (16)0.0201 (15)0.0204 (15)0.0057 (12)0.0075 (13)0.0019 (12)
C40.0248 (16)0.0136 (14)0.0177 (15)0.0015 (12)0.0052 (13)0.0012 (11)
C50.0130 (13)0.0129 (13)0.0145 (13)0.0007 (10)0.0052 (11)0.0004 (10)
C60.0119 (13)0.0242 (15)0.0154 (14)0.0047 (11)0.0065 (11)0.0040 (11)
Geometric parameters (Å, º) top
La1—O1i2.558 (2)O5—La1iv2.673 (2)
La1—O1ii2.558 (2)O6—C51.238 (4)
La1—O22.585 (2)O6—La1iv2.773 (2)
La1—O2iii2.585 (2)O1w—H1w10.87
La1—O52.438 (2)O1w—H1w20.856
La1—O5iii2.438 (2)N1—C21.468 (4)
La1—O5iv2.673 (2)N1—C31.469 (4)
La1—O5v2.673 (2)N1—H1n0.8800
La1—O6iv2.773 (2)N2—C61.475 (3)
La1—O6v2.773 (2)N2—C6vi1.475 (3)
Ni1—O22.048 (2)N2—H2n10.8800
Ni1—O2iii2.048 (2)N2—H2n20.8800
Ni1—O32.038 (2)C1—C21.523 (4)
Ni1—O3iii2.038 (2)C2—H2A0.9900
Ni1—N12.093 (3)C2—H2B0.9900
Ni1—N1iii2.093 (3)C3—C41.524 (4)
O1—C11.235 (4)C3—H3A0.9900
O1—La1i2.558 (2)C3—H3B0.9900
O2—C11.272 (4)C5—C61.514 (4)
O3—C41.260 (4)C6—H6A0.9900
O4—C41.248 (4)C6—H6B0.9900
O5—C51.269 (3)
O5iii—La1—O5146.10 (10)O3—Ni1—N1iii94.06 (10)
O5iii—La1—O1ii78.79 (7)O3iii—Ni1—N1iii83.21 (10)
O5—La1—O1ii73.20 (7)O2iii—Ni1—N1iii81.68 (9)
O5iii—La1—O1i73.20 (7)O2—Ni1—N1iii165.47 (9)
O5—La1—O1i78.79 (7)N1—Ni1—N1iii112.22 (14)
O1ii—La1—O1i68.03 (11)C1—O1—La1i134.0 (2)
O5iii—La1—O274.83 (7)C1—O2—Ni1114.52 (19)
O5—La1—O2138.99 (7)C1—O2—La1137.87 (19)
O1ii—La1—O2139.33 (7)Ni1—O2—La1105.28 (8)
O1i—La1—O2130.01 (7)C4—O3—Ni1114.5 (2)
O5iii—La1—O2iii138.99 (7)C5—O5—La1149.69 (19)
O5—La1—O2iii74.83 (7)C5—O5—La1iv96.62 (17)
O1ii—La1—O2iii130.01 (7)La1—O5—La1iv113.52 (8)
O1i—La1—O2iii139.33 (7)C5—O6—La1iv92.63 (17)
O2—La1—O2iii64.59 (9)H1w1—O1w—H1w2114
O5iii—La1—O5iv119.13 (8)C2—N1—C3113.9 (3)
O5—La1—O5iv66.48 (8)C2—N1—Ni1105.16 (18)
O1ii—La1—O5iv67.37 (7)C3—N1—Ni1108.01 (19)
O1i—La1—O5iv129.37 (7)C2—N1—H1n109.9
O2—La1—O5iv99.69 (6)C3—N1—H1n109.9
O2iii—La1—O5iv65.00 (7)Ni1—N1—H1n109.9
O5iii—La1—O5v66.48 (8)C6—N2—C6vi116.3 (3)
O5—La1—O5v119.13 (8)C6—N2—H2n1108.2
O1ii—La1—O5v129.37 (7)C6vi—N2—H2n1108.2
O1i—La1—O5v67.37 (7)C6—N2—H2n2108.2
O2—La1—O5v65.00 (7)C6vi—N2—H2n2108.2
O2iii—La1—O5v99.69 (7)H2n1—N2—H2n2107.4
O5iv—La1—O5v162.69 (9)O1—C1—O2126.3 (3)
O5iii—La1—O6v113.67 (6)O1—C1—C2117.2 (3)
O5—La1—O6v76.65 (7)O2—C1—C2116.4 (3)
O1ii—La1—O6v136.56 (7)N1—C2—C1113.8 (3)
O1i—La1—O6v76.04 (7)N1—C2—H2A108.8
O2—La1—O6v82.97 (7)C1—C2—H2A108.8
O2iii—La1—O6v68.16 (7)N1—C2—H2B108.8
O5iv—La1—O6v125.93 (6)C1—C2—H2B108.8
O5v—La1—O6v47.57 (6)H2A—C2—H2B107.7
O5iii—La1—O6iv76.65 (7)N1—C3—C4113.3 (3)
O5—La1—O6iv113.67 (6)N1—C3—H3A108.9
O1ii—La1—O6iv76.04 (7)C4—C3—H3A108.9
O1i—La1—O6iv136.56 (7)N1—C3—H3B108.9
O2—La1—O6iv68.16 (7)C4—C3—H3B108.9
O2iii—La1—O6iv82.97 (7)H3A—C3—H3B107.7
O5iv—La1—O6iv47.57 (6)O4—C4—O3125.0 (3)
O5v—La1—O6iv125.93 (6)O4—C4—C3116.7 (3)
O6v—La1—O6iv145.99 (9)O3—C4—C3118.2 (3)
O3—Ni1—O3iii175.11 (13)O6—C5—O5122.5 (3)
O3—Ni1—O2iii91.83 (9)O6—C5—C6123.4 (3)
O3iii—Ni1—O2iii91.78 (9)O5—C5—C6114.1 (2)
O3—Ni1—O291.78 (9)N2—C6—C5113.8 (2)
O3iii—Ni1—O291.83 (9)N2—C6—H6A108.8
O2iii—Ni1—O284.85 (12)C5—C6—H6A108.8
O3—Ni1—N183.21 (10)N2—C6—H6B108.8
O3iii—Ni1—N194.06 (10)C5—C6—H6B108.8
O2iii—Ni1—N1165.47 (10)H6A—C6—H6B107.7
O2—Ni1—N181.68 (9)
O3—Ni1—O2—C1102.5 (2)O1ii—La1—O5—La1iv72.12 (9)
O3iii—Ni1—O2—C174.2 (2)O1i—La1—O5—La1iv142.32 (10)
O2iii—Ni1—O2—C1165.8 (2)O2—La1—O5—La1iv77.24 (12)
N1—Ni1—O2—C119.6 (2)O2iii—La1—O5—La1iv68.93 (8)
N1iii—Ni1—O2—C1143.8 (3)O5iv—La1—O5—La1iv0.0
O3—Ni1—O2—La191.68 (9)O5v—La1—O5—La1iv161.70 (9)
O3iii—Ni1—O2—La191.62 (9)O6v—La1—O5—La1iv139.55 (9)
O2iii—Ni1—O2—La10.0O6iv—La1—O5—La1iv6.16 (11)
N1—Ni1—O2—La1174.55 (10)O3—Ni1—N1—C2117.8 (2)
N1iii—Ni1—O2—La122.0 (4)O3iii—Ni1—N1—C266.3 (2)
O5iii—La1—O2—C125.4 (3)O2iii—Ni1—N1—C247.2 (5)
O5—La1—O2—C1151.7 (3)O2—Ni1—N1—C225.0 (2)
O1ii—La1—O2—C176.8 (3)N1iii—Ni1—N1—C2150.6 (2)
O1i—La1—O2—C126.4 (3)O3—Ni1—N1—C34.2 (2)
O2iii—La1—O2—C1160.6 (3)O3iii—Ni1—N1—C3171.7 (2)
O5iv—La1—O2—C1143.2 (3)O2iii—Ni1—N1—C374.9 (4)
O5v—La1—O2—C145.3 (3)O2—Ni1—N1—C397.0 (2)
O6v—La1—O2—C191.5 (3)N1iii—Ni1—N1—C387.4 (2)
O6iv—La1—O2—C1106.9 (3)La1i—O1—C1—O242.4 (5)
O5iii—La1—O2—Ni1173.97 (10)La1i—O1—C1—C2134.4 (3)
O5—La1—O2—Ni18.89 (15)Ni1—O2—C1—O1168.5 (2)
O1ii—La1—O2—Ni1122.63 (10)La1—O2—C1—O19.1 (5)
O1i—La1—O2—Ni1134.23 (9)Ni1—O2—C1—C28.3 (3)
O2iii—La1—O2—Ni10.0La1—O2—C1—C2167.7 (2)
O5iv—La1—O2—Ni156.24 (9)C3—N1—C2—C189.9 (3)
O5v—La1—O2—Ni1115.28 (10)Ni1—N1—C2—C128.2 (3)
O6v—La1—O2—Ni169.12 (9)O1—C1—C2—N1168.1 (3)
O6iv—La1—O2—Ni192.54 (9)O2—C1—C2—N114.7 (4)
O2iii—Ni1—O3—C4159.8 (2)C2—N1—C3—C4103.8 (3)
O2—Ni1—O3—C474.9 (2)Ni1—N1—C3—C412.7 (3)
N1—Ni1—O3—C46.5 (2)Ni1—O3—C4—O4166.8 (3)
N1iii—Ni1—O3—C4118.5 (2)Ni1—O3—C4—C316.0 (4)
O5iii—La1—O5—C578.8 (4)N1—C3—C4—O4162.7 (3)
O1ii—La1—O5—C5114.4 (4)N1—C3—C4—O319.9 (4)
O1i—La1—O5—C544.2 (4)La1iv—O6—C5—O58.2 (3)
O2—La1—O5—C596.2 (4)La1iv—O6—C5—C6171.1 (3)
O2iii—La1—O5—C5104.6 (4)La1—O5—C5—O6165.4 (3)
O5iv—La1—O5—C5173.5 (4)La1iv—O5—C5—O68.6 (3)
O5v—La1—O5—C511.8 (4)La1—O5—C5—C615.2 (5)
O6v—La1—O5—C533.9 (4)La1iv—O5—C5—C6170.8 (2)
O6iv—La1—O5—C5179.6 (4)C6vi—N2—C6—C577.8 (2)
C5v—La1—O5—C525.2 (4)O6—C5—C6—N212.6 (4)
C5iv—La1—O5—C5174.8 (3)O5—C5—C6—N2166.8 (3)
O5iii—La1—O5—La1iv107.71 (8)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z1/2; (iii) x+1, y, z+3/2; (iv) x+1, y+1, z+1; (v) x, y+1, z+1/2; (vi) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O4vii0.882.002.877 (4)176
N2—H2n1···O4iv0.881.922.752 (4)156
N2—H2n2···O4viii0.881.922.752 (4)156
O1w—H1w1···O60.872.313.01 (2)138
Symmetry codes: (iv) x+1, y+1, z+1; (vii) x+1/2, y+3/2, z+1/2; (viii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[LaNi(C4H5NO4)2(C4H6NO4)]·H2O
Mr609.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)9.7390 (4), 23.859 (1), 8.5312 (4)
β (°) 114.732 (1)
V3)1800.5 (1)
Z4
Radiation typeMo Kα
µ (mm1)3.47
Crystal size (mm)0.29 × 0.12 × 0.12
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.531, 0.681
No. of measured, independent and
observed [I > 2σ(I)] reflections
7464, 2049, 2046
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.25
No. of reflections2049
No. of parameters142
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.59

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
La1—O1i2.558 (2)La1—O5v2.673 (2)
La1—O1ii2.558 (2)La1—O6iv2.773 (2)
La1—O22.585 (2)La1—O6v2.773 (2)
La1—O2iii2.585 (2)Ni1—O22.048 (2)
La1—O52.438 (2)Ni1—O32.038 (2)
La1—O5iii2.438 (2)Ni1—N12.093 (3)
La1—O5iv2.673 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z1/2; (iii) x+1, y, z+3/2; (iv) x+1, y+1, z+1; (v) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds