Download citation
Download citation
link to html
The asymmetric unit of the title compound, C10H12O5, contains two crystallographically independent mol­ecules. In the crystal structure, inter­molecular C—H...O and O—H...O hydrogen bonds link the mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033429/hk2288sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033429/hk2288Isup2.hkl
Contains datablock I

CCDC reference: 657733

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.094
  • Data-to-parameter ratio = 8.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.26 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.20
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.28 From the CIF: _reflns_number_total 2510 Count of symmetry unique reflns 2522 Completeness (_total/calc) 99.52% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

ortho-Alkoxybenzoic acids are a class of acids which crystallize with different packing modes. The distinctive behaviour of 2-ethoxybenzoic acid which forms monomers is due to the formation of an intramolecular hydrogen bond (Gopalakrishna & Cartz, 1972). 2,3-Dimethoxybenzoic acid forms the normal acid dimer pattern (Bryan & White, 1982a). 2,6- Dimethoxybenzoic acid (Bryan & White, 1982b) and 2,6-dimethoxy-3-nitrobenzoic acid (Frankenbach et al., 1991) form catemers. The carboxyl group of 2,6-dimethoxybenzoic acid exists in an anti conformation, while the carboxyl group of 2,6-dimethoxy-3-nitrobenzoic acid in a syn conformation. We report herein the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), (Fig. 1) contains two crystallographicaly independent molecules, in which the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The C—O bonds of the carboxyl groups (Table 1) are compatible with the corresponding values in similar structure (Khan et al., 2006), and smaller than those usually observed in carboxylic acid [1.365 Å]. The valence angles C3—C2—C7 [121.5 (3)°] and C13—C12—C17 [121.9 (2)°] are larger than the standard value of 120°, due to the presence of methoxy and carboxyl groups.

In the crystal structure, the intermolecular O—H···O hydrogen bonds (Table 2) form catemers, as observed in 2,6-dimethoxybenzoic acid and 2,6-dimethoxy-3 -nitrobenzoic acid, the intermolecular C—H···O and O—H···O hydrogen bonds (Table 2, Fig. 2) link the molecules, in which they seem to be effective in the stabilization of the structure.

Related literature top

For related literature, see: Gopalakrishna & Cartz (1972); Bryan & White (1982a,b); Frankenbach et al. (1991); Khan et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was purchased and crystallized from ethyl acetate by slow evaporation.

Refinement top

H6 and H7 were located in difference syntheses and refined isotropicaly [O6—H6 = 0.96 (2) Å, Uiso(H) = 0.14 (2) Å2 and C7—H7 = 0.99 (3) Å, Uiso(H) = 0.046 (8) Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Structure description top

ortho-Alkoxybenzoic acids are a class of acids which crystallize with different packing modes. The distinctive behaviour of 2-ethoxybenzoic acid which forms monomers is due to the formation of an intramolecular hydrogen bond (Gopalakrishna & Cartz, 1972). 2,3-Dimethoxybenzoic acid forms the normal acid dimer pattern (Bryan & White, 1982a). 2,6- Dimethoxybenzoic acid (Bryan & White, 1982b) and 2,6-dimethoxy-3-nitrobenzoic acid (Frankenbach et al., 1991) form catemers. The carboxyl group of 2,6-dimethoxybenzoic acid exists in an anti conformation, while the carboxyl group of 2,6-dimethoxy-3-nitrobenzoic acid in a syn conformation. We report herein the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), (Fig. 1) contains two crystallographicaly independent molecules, in which the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The C—O bonds of the carboxyl groups (Table 1) are compatible with the corresponding values in similar structure (Khan et al., 2006), and smaller than those usually observed in carboxylic acid [1.365 Å]. The valence angles C3—C2—C7 [121.5 (3)°] and C13—C12—C17 [121.9 (2)°] are larger than the standard value of 120°, due to the presence of methoxy and carboxyl groups.

In the crystal structure, the intermolecular O—H···O hydrogen bonds (Table 2) form catemers, as observed in 2,6-dimethoxybenzoic acid and 2,6-dimethoxy-3 -nitrobenzoic acid, the intermolecular C—H···O and O—H···O hydrogen bonds (Table 2, Fig. 2) link the molecules, in which they seem to be effective in the stabilization of the structure.

For related literature, see: Gopalakrishna & Cartz (1972); Bryan & White (1982a,b); Frankenbach et al. (1991); Khan et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
3,4,5-Trimethoxybenzoic acid top
Crystal data top
C10H12O5F(000) = 448
Mr = 212.20Dx = 1.389 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 1520 reflections
a = 7.3384 (3) Åθ = 2.8–22.6°
b = 8.8325 (3) ŵ = 0.11 mm1
c = 15.7560 (5) ÅT = 298 K
β = 96.576 (2)°Monoclinic, colourless
V = 1014.53 (6) Å30.25 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2510 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.935, Tmax = 0.984k = 1111
7599 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0445P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2510 reflectionsΔρmax = 0.18 e Å3
281 parametersΔρmin = 0.17 e Å3
3 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C10H12O5V = 1014.53 (6) Å3
Mr = 212.20Z = 4
Monoclinic, PcMo Kα radiation
a = 7.3384 (3) ŵ = 0.11 mm1
b = 8.8325 (3) ÅT = 298 K
c = 15.7560 (5) Å0.25 × 0.15 × 0.13 mm
β = 96.576 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2510 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1563 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.984Rint = 0.032
7599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
2510 reflectionsΔρmin = 0.17 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1652 (4)0.4366 (4)0.11562 (19)0.0433 (7)
C20.0769 (4)0.3669 (4)0.03518 (17)0.0395 (7)
C30.0469 (4)0.2135 (4)0.03295 (19)0.0441 (7)
H30.07730.15510.08160.053*
C40.0301 (4)0.1455 (4)0.04333 (18)0.0443 (8)
C50.0762 (4)0.2341 (4)0.11517 (18)0.0445 (7)
C60.0479 (4)0.3899 (4)0.11177 (18)0.0468 (8)
C70.0298 (4)0.4573 (4)0.03633 (18)0.0447 (7)
C80.0387 (6)0.0963 (4)0.0221 (2)0.0709 (11)
H8A0.06820.19960.00740.106*
H8B0.11690.06100.06270.106*
H8C0.08700.08980.04650.106*
C90.0388 (5)0.0870 (5)0.2365 (2)0.0827 (13)
H9A0.10680.04640.28710.124*
H9B0.01550.00560.20200.124*
H9C0.05600.15260.25230.124*
C100.1072 (6)0.6268 (4)0.1798 (2)0.0699 (10)
H10A0.14520.66800.23540.105*
H10B0.01220.66510.15920.105*
H10C0.19330.65580.14120.105*
C110.6042 (4)0.3894 (3)0.17572 (18)0.0413 (7)
C120.5381 (4)0.3165 (3)0.09221 (17)0.0389 (7)
C130.4686 (4)0.4063 (3)0.02396 (17)0.0417 (7)
H130.45950.51060.03030.050*
C140.4126 (4)0.3378 (3)0.05409 (17)0.0414 (7)
C150.4295 (4)0.1813 (4)0.06306 (18)0.0431 (7)
C160.4987 (4)0.0940 (4)0.00702 (19)0.0454 (7)
C170.5527 (4)0.1624 (3)0.08492 (18)0.0419 (7)
H170.59840.10440.13180.050*
C180.3239 (5)0.5732 (4)0.1208 (2)0.0571 (8)
H18A0.27430.61220.17550.086*
H18B0.44180.61790.10430.086*
H18C0.24280.59730.07910.086*
C190.4960 (6)0.0527 (5)0.1884 (2)0.0837 (12)
H19A0.43540.00960.24000.126*
H19B0.56440.02460.15590.126*
H19C0.57800.13120.20240.126*
C200.5773 (7)0.1522 (4)0.0628 (3)0.0877 (14)
H20A0.57820.25580.04450.132*
H20B0.49900.14190.10720.132*
H20C0.69960.12160.08400.132*
O10.2149 (3)0.3553 (3)0.17842 (12)0.0592 (6)
O20.1847 (3)0.5806 (3)0.11614 (14)0.0617 (6)
H20.23440.60760.16300.093*
O30.0653 (3)0.0053 (3)0.05251 (14)0.0598 (6)
O40.1584 (3)0.1701 (3)0.18945 (13)0.0590 (7)
O50.1003 (4)0.4673 (3)0.18502 (13)0.0628 (6)
O60.6062 (4)0.5329 (2)0.17925 (14)0.0608 (6)
O70.6579 (3)0.3066 (2)0.23837 (12)0.0541 (6)
O80.3429 (3)0.4135 (2)0.12612 (13)0.0558 (6)
O90.3628 (3)0.1150 (3)0.13918 (13)0.0575 (6)
O100.5106 (3)0.0589 (3)0.00757 (14)0.0615 (6)
H60.661 (7)0.568 (6)0.234 (2)0.14 (2)*
H70.064 (4)0.565 (4)0.0350 (18)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0456 (18)0.051 (2)0.0310 (15)0.0060 (15)0.0047 (12)0.0086 (13)
C20.0339 (16)0.054 (2)0.0291 (14)0.0009 (13)0.0029 (12)0.0098 (13)
C30.0480 (18)0.051 (2)0.0318 (15)0.0043 (14)0.0010 (13)0.0044 (12)
C40.046 (2)0.0479 (19)0.0378 (17)0.0009 (14)0.0010 (13)0.0063 (14)
C50.0430 (17)0.057 (2)0.0313 (16)0.0000 (15)0.0046 (13)0.0122 (14)
C60.0467 (19)0.058 (2)0.0333 (16)0.0025 (15)0.0047 (14)0.0053 (13)
C70.0487 (17)0.051 (2)0.0329 (15)0.0030 (15)0.0043 (12)0.0086 (13)
C80.099 (3)0.058 (2)0.055 (2)0.002 (2)0.007 (2)0.0005 (16)
C90.080 (3)0.116 (4)0.053 (2)0.021 (2)0.0102 (19)0.042 (2)
C100.097 (3)0.060 (2)0.0473 (19)0.006 (2)0.0164 (18)0.0026 (16)
C110.0448 (17)0.0470 (19)0.0298 (14)0.0001 (14)0.0052 (12)0.0052 (13)
C120.0369 (17)0.049 (2)0.0292 (15)0.0046 (13)0.0028 (12)0.0073 (13)
C130.0453 (17)0.0470 (19)0.0309 (15)0.0012 (14)0.0039 (12)0.0043 (12)
C140.0424 (18)0.051 (2)0.0284 (16)0.0046 (14)0.0050 (13)0.0028 (13)
C150.0448 (17)0.0515 (19)0.0314 (15)0.0060 (14)0.0030 (13)0.0094 (13)
C160.0482 (19)0.0428 (18)0.0441 (18)0.0072 (15)0.0007 (14)0.0076 (14)
C170.0492 (19)0.043 (2)0.0317 (15)0.0009 (14)0.0010 (13)0.0005 (12)
C180.066 (2)0.059 (2)0.0427 (18)0.0059 (18)0.0086 (14)0.0063 (15)
C190.087 (3)0.114 (3)0.053 (2)0.024 (2)0.0203 (19)0.038 (2)
C200.139 (4)0.045 (2)0.073 (3)0.005 (2)0.016 (3)0.0014 (18)
O10.0769 (16)0.0596 (14)0.0354 (12)0.0041 (12)0.0178 (10)0.0064 (10)
O20.0873 (17)0.0527 (16)0.0389 (12)0.0024 (13)0.0192 (10)0.0081 (10)
O30.0867 (17)0.0501 (15)0.0410 (13)0.0093 (12)0.0007 (11)0.0095 (10)
O40.0598 (14)0.0743 (17)0.0388 (13)0.0058 (11)0.0125 (10)0.0168 (11)
O50.0889 (17)0.0606 (15)0.0329 (12)0.0023 (13)0.0195 (11)0.0012 (9)
O60.0958 (18)0.0425 (14)0.0385 (13)0.0029 (12)0.0162 (11)0.0090 (9)
O70.0741 (15)0.0502 (14)0.0334 (11)0.0018 (11)0.0132 (10)0.0021 (9)
O80.0729 (16)0.0597 (16)0.0300 (11)0.0019 (12)0.0152 (10)0.0018 (9)
O90.0653 (15)0.0680 (15)0.0359 (12)0.0065 (11)0.0083 (10)0.0180 (10)
O100.0888 (18)0.0434 (13)0.0489 (13)0.0058 (12)0.0066 (11)0.0093 (10)
Geometric parameters (Å, º) top
C1—O11.243 (4)C11—O61.269 (3)
C1—O21.279 (4)C11—C121.495 (4)
C1—C21.489 (4)C12—C171.372 (4)
C2—C31.373 (4)C12—C131.386 (4)
C2—C71.392 (4)C13—C141.390 (4)
C3—C41.403 (4)C13—H130.9300
C3—H30.9300C14—O81.365 (3)
C4—O31.361 (4)C14—C151.396 (4)
C4—C51.386 (4)C15—O91.374 (3)
C5—O41.375 (3)C15—C161.394 (4)
C5—C61.391 (4)C16—O101.374 (4)
C6—O51.359 (4)C16—C171.385 (4)
C6—C71.392 (4)C17—H170.9300
C7—H70.99 (3)C18—O81.420 (4)
C8—O31.418 (4)C18—H18A0.9600
C8—H8A0.9600C18—H18B0.9600
C8—H8B0.9600C18—H18C0.9600
C8—H8C0.9600C19—O91.426 (4)
C9—O41.417 (4)C19—H19A0.9600
C9—H9A0.9600C19—H19B0.9600
C9—H9B0.9600C19—H19C0.9600
C9—H9C0.9600C20—O101.422 (5)
C10—O51.413 (4)C20—H20A0.9600
C10—H10A0.9600C20—H20B0.9600
C10—H10B0.9600C20—H20C0.9600
C10—H10C0.9600O2—H20.8200
C11—O71.255 (3)O6—H60.96 (2)
C1—O2—H2109.5H10A—C10—H10B109.5
C4—O3—C8117.4 (3)O5—C10—H10C109.5
C5—O4—C9114.9 (2)H10A—C10—H10C109.5
C6—O5—C10117.5 (2)H10B—C10—H10C109.5
C11—O6—H6111 (3)O7—C11—O6123.1 (3)
C14—O8—C18117.9 (2)O7—C11—C12118.9 (3)
C15—O9—C19116.2 (2)O6—C11—C12118.0 (3)
C16—O10—C20117.5 (2)C17—C12—C13121.9 (2)
O1—C1—O2123.1 (3)C17—C12—C11118.7 (2)
O1—C1—C2119.8 (3)C13—C12—C11119.4 (3)
O2—C1—C2117.0 (3)C12—C13—C14118.9 (3)
C3—C2—C7121.4 (2)C12—C13—H13120.6
C3—C2—C1118.9 (3)C14—C13—H13120.6
C7—C2—C1119.7 (3)O8—C14—C13124.5 (3)
C2—C3—C4119.5 (3)O8—C14—C15115.4 (2)
C2—C3—H3120.3C13—C14—C15120.0 (2)
C4—C3—H3120.3O9—C15—C16121.1 (3)
O3—C4—C5116.1 (3)O9—C15—C14118.9 (3)
O3—C4—C3124.2 (3)C16—C15—C14119.7 (2)
C5—C4—C3119.6 (3)O10—C16—C17124.1 (3)
O4—C5—C4120.3 (3)O10—C16—C15115.8 (2)
O4—C5—C6119.2 (3)C17—C16—C15120.1 (3)
C4—C5—C6120.4 (3)C12—C17—C16119.4 (3)
O5—C6—C7123.9 (3)C12—C17—H17120.3
O5—C6—C5116.0 (2)C16—C17—H17120.3
C7—C6—C5120.0 (3)O8—C18—H18A109.5
C6—C7—C2119.0 (3)O8—C18—H18B109.5
C6—C7—H7120.7 (17)H18A—C18—H18B109.5
C2—C7—H7119.9 (17)O8—C18—H18C109.5
O3—C8—H8A109.5H18A—C18—H18C109.5
O3—C8—H8B109.5H18B—C18—H18C109.5
H8A—C8—H8B109.5O9—C19—H19A109.5
O3—C8—H8C109.5O9—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19B109.5
H8B—C8—H8C109.5O9—C19—H19C109.5
O4—C9—H9A109.5H19A—C19—H19C109.5
O4—C9—H9B109.5H19B—C19—H19C109.5
H9A—C9—H9B109.5O10—C20—H20A109.5
O4—C9—H9C109.5O10—C20—H20B109.5
H9A—C9—H9C109.5H20A—C20—H20B109.5
H9B—C9—H9C109.5O10—C20—H20C109.5
O5—C10—H10A109.5H20A—C20—H20C109.5
O5—C10—H10B109.5H20B—C20—H20C109.5
O1—C1—C2—C32.0 (4)C12—C13—C14—O8179.6 (3)
O2—C1—C2—C3177.5 (3)C12—C13—C14—C151.0 (4)
O1—C1—C2—C7176.8 (3)O8—C14—C15—O95.3 (4)
O2—C1—C2—C73.6 (4)C13—C14—C15—O9176.0 (3)
C7—C2—C3—C41.1 (5)O8—C14—C15—C16179.7 (3)
C1—C2—C3—C4177.7 (3)C13—C14—C15—C161.5 (5)
C2—C3—C4—O3179.9 (3)O9—C15—C16—O105.6 (5)
C2—C3—C4—C50.6 (4)C14—C15—C16—O10180.0 (3)
O3—C4—C5—O42.1 (4)O9—C15—C16—C17175.2 (3)
C3—C4—C5—O4177.4 (3)C14—C15—C16—C170.9 (5)
O3—C4—C5—C6179.1 (3)C13—C12—C17—C160.8 (5)
C3—C4—C5—C60.5 (5)C11—C12—C17—C16177.5 (3)
O4—C5—C6—O52.0 (4)O10—C16—C17—C12178.8 (3)
C4—C5—C6—O5178.9 (3)C15—C16—C17—C120.3 (5)
O4—C5—C6—C7178.0 (3)C5—C4—O3—C8173.1 (3)
C4—C5—C6—C71.0 (5)C3—C4—O3—C86.4 (4)
O5—C6—C7—C2179.5 (3)C4—C5—O4—C976.3 (4)
C5—C6—C7—C20.5 (5)C6—C5—O4—C9106.8 (4)
C3—C2—C7—C60.6 (5)C7—C6—O5—C1012.0 (5)
C1—C2—C7—C6178.2 (3)C5—C6—O5—C10168.0 (3)
O7—C11—C12—C175.4 (4)C13—C14—O8—C180.9 (4)
O6—C11—C12—C17173.4 (3)C15—C14—O8—C18179.6 (3)
O7—C11—C12—C13176.3 (3)C16—C15—O9—C1973.3 (4)
O6—C11—C12—C135.0 (4)C14—C15—O9—C19112.3 (4)
C17—C12—C13—C140.2 (4)C17—C16—O10—C202.0 (5)
C11—C12—C13—C14178.1 (3)C15—C16—O10—C20178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O7i0.962.493.405 (4)159
C18—H18A···O5ii0.962.513.321 (4)142
C19—H19C···O1iii0.962.503.404 (5)158
O2—H2···O7iv0.821.832.641 (3)172
O6—H6···O1v0.96 (2)1.71 (2)2.656 (3)170 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z1/2; (iii) x+1, y, z; (iv) x1, y+1, z1/2; (v) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12O5
Mr212.20
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)7.3384 (3), 8.8325 (3), 15.7560 (5)
β (°) 96.576 (2)
V3)1014.53 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.935, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7599, 2510, 1563
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.06
No. of reflections2510
No. of parameters281
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2005), APEX2, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C1—O11.243 (4)C11—O71.255 (3)
C1—O21.279 (4)C11—O61.269 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O7i0.962.493.405 (4)159.3
C18—H18A···O5ii0.962.513.321 (4)141.9
C19—H19C···O1iii0.962.503.404 (5)157.5
O2—H2···O7iv0.821.832.641 (3)172.4
O6—H6···O1v0.96 (2)1.71 (2)2.656 (3)170 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z1/2; (iii) x+1, y, z; (iv) x1, y+1, z1/2; (v) x+1, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds