Download citation
Download citation
link to html
The title complex, [Ni2(C14H8N2O4)(C5H5N)6]·2C5H5N, is a polymorph of a previously reported compound [Chen & Liu (2005). Chin. J. Inorg. Chem. 21, 15–20]. The 1,2-disalicyloylhydrazine ligand lies on an inversion center and coordinates to two NiII atoms. Each NiII atom is octa­hedrally coordinated by a phenolate O atom, a carbonyl O atom and a hydrazine N atom of the ligand and three pyridine N atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033582/hy2070sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033582/hy2070Isup2.hkl
Contains datablock I

CCDC reference: 648656

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.053
  • wR factor = 0.152
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT601_ALERT_2_B Structure Contains Solvent Accessible VOIDS of . 200.00 A   3
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.18 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C11 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C16 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for N5 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for C24 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for C26 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C23 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C25 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C27 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.12 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 102
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently, we have synthesized two metallacrowns using N-acyl-3-hydroxy-2-naphthalenecarbohydrazide (Dou et al., 2006). As an extension of our work on the structural characterization of naphthalenecarbohydrazide compounds, the title complex, (I), was synthesized and characterized by X-ray diffraction.

The complex (I) (space group I41/a) is a polymorph of the compound (space group P21/c) previously reported by Chen & Liu (2005), with the same formula [Ni2(C14H8N2O4)(C5H5N)6].2C5H5N. The complex molecule of (I) lies on an inversion center (Fig. 1). The 1,2-disalicyloylhydrazine molecule acts as a hexadentate tetravalent anionic ligand linking two NiII atoms. The iminophenolate group (O2 and N1) and the iminoacyl group (O1i and N1; symmetry code: (i) 1 - x, -y, -z) of the ligand are coordinated to the Ni1 atom to form six-membered and five-membered chelating rings, respectively, with a dihedral angle of 1.7 (4)°. Besides the above three atoms coordinated to the Ni1 atom, there are other three pyridine N atoms bonded to the Ni1 atom. So the coordination geometry of the Ni1 atom can be described as an N4O2 octahedron. As shown in Table 1, the axial Ni—N distances are longer than the equatorial Ni—N and Ni—O distances, which shows the NiII atom in a distorted octahedral geometry. This typical Jahn-Teller elongation has been observed in the other complexes (Kwak et al., 2000).

Related literature top

For related literature, see: Chen & Liu (2005); Dou et al. (2006); Kwak et al. (2000).

Experimental top

A solution of Ni(CH3CO2)2.H2O (0.100 g, 0.4 mmol) in methanol (10 ml) was added to the mixture of 1,2-disalicyloylhydrazine (0.054 g, 0.2 mmol) and sodium hydroxide (0.032 g, 0.8 mmol) in pyridine (10 ml). A red solution was generated after stirring for 2 h at room temperature. The solution was allowed to stand for 2 weeks, whereupon red needle crystals were obtained (0.070 g, yield 34%).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, we have synthesized two metallacrowns using N-acyl-3-hydroxy-2-naphthalenecarbohydrazide (Dou et al., 2006). As an extension of our work on the structural characterization of naphthalenecarbohydrazide compounds, the title complex, (I), was synthesized and characterized by X-ray diffraction.

The complex (I) (space group I41/a) is a polymorph of the compound (space group P21/c) previously reported by Chen & Liu (2005), with the same formula [Ni2(C14H8N2O4)(C5H5N)6].2C5H5N. The complex molecule of (I) lies on an inversion center (Fig. 1). The 1,2-disalicyloylhydrazine molecule acts as a hexadentate tetravalent anionic ligand linking two NiII atoms. The iminophenolate group (O2 and N1) and the iminoacyl group (O1i and N1; symmetry code: (i) 1 - x, -y, -z) of the ligand are coordinated to the Ni1 atom to form six-membered and five-membered chelating rings, respectively, with a dihedral angle of 1.7 (4)°. Besides the above three atoms coordinated to the Ni1 atom, there are other three pyridine N atoms bonded to the Ni1 atom. So the coordination geometry of the Ni1 atom can be described as an N4O2 octahedron. As shown in Table 1, the axial Ni—N distances are longer than the equatorial Ni—N and Ni—O distances, which shows the NiII atom in a distorted octahedral geometry. This typical Jahn-Teller elongation has been observed in the other complexes (Kwak et al., 2000).

For related literature, see: Chen & Liu (2005); Dou et al. (2006); Kwak et al. (2000).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, -y, -z.]
[µ-1,2-Disalicyloylhydrazine(2-)- κ3N,O,O':κ3N',O'',O''']bis[tripyridinenickel(II)] pyridine disolvate top
Crystal data top
[Ni2(C14H8N2O4)(C5H5N)6]·2C5H5NDx = 1.292 Mg m3
Mr = 1018.44Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3046 reflections
Hall symbol: -I 4adθ = 2.2–21.5°
a = 27.040 (2) ŵ = 0.77 mm1
c = 14.3178 (18) ÅT = 298 K
V = 10468.6 (17) Å3Block, red
Z = 80.34 × 0.23 × 0.20 mm
F(000) = 4240
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4609 independent reflections
Radiation source: fine-focus sealed tube2743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1332
Tmin = 0.779, Tmax = 0.861k = 3230
21466 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
4609 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.31 e Å3
102 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni2(C14H8N2O4)(C5H5N)6]·2C5H5NZ = 8
Mr = 1018.44Mo Kα radiation
Tetragonal, I41/aµ = 0.77 mm1
a = 27.040 (2) ÅT = 298 K
c = 14.3178 (18) Å0.34 × 0.23 × 0.20 mm
V = 10468.6 (17) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4609 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2743 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.861Rint = 0.064
21466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053102 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
4609 reflectionsΔρmin = 0.43 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.547168 (18)0.061356 (19)0.07264 (4)0.0430 (2)
N10.50175 (11)0.00672 (11)0.0474 (2)0.0402 (8)
N20.49003 (13)0.11803 (14)0.0520 (3)0.0576 (9)
N30.61032 (12)0.01068 (13)0.0880 (3)0.0498 (9)
N40.59618 (12)0.12023 (12)0.0881 (2)0.0465 (9)
N50.7088 (6)0.3732 (4)0.3455 (7)0.175 (4)
O10.44541 (9)0.05583 (9)0.07017 (18)0.0443 (7)
O20.53200 (10)0.05767 (9)0.2084 (2)0.0492 (7)
C10.47284 (14)0.02083 (14)0.1014 (3)0.0384 (9)
C20.47115 (14)0.00872 (14)0.2032 (3)0.0381 (9)
C30.49896 (14)0.02951 (14)0.2477 (3)0.0420 (10)
C40.48975 (16)0.03587 (16)0.3447 (3)0.0501 (11)
H40.50680.06070.37610.060*
C50.45740 (16)0.00756 (17)0.3939 (3)0.0533 (11)
H50.45280.01350.45720.064*
C60.43109 (17)0.03022 (17)0.3502 (3)0.0565 (12)
H60.40940.05020.38360.068*
C70.43824 (14)0.03701 (16)0.2565 (3)0.0468 (10)
H70.42030.06170.22660.056*
C80.4812 (2)0.1372 (2)0.0297 (5)0.0941 (16)
H80.49770.12380.08070.113*
C90.4494 (2)0.1757 (3)0.0462 (5)0.1082 (17)
H90.44580.18840.10620.130*
C100.4239 (2)0.1948 (2)0.0245 (5)0.1061 (17)
H100.40140.22040.01540.127*
C110.4319 (3)0.1754 (3)0.1097 (5)0.1206 (19)
H110.41490.18760.16130.145*
C120.4651 (2)0.1376 (2)0.1203 (5)0.1042 (17)
H120.47020.12510.18010.125*
C130.61964 (19)0.02483 (18)0.0272 (4)0.0725 (15)
H130.59920.02780.02470.087*
C140.6578 (2)0.0574 (2)0.0369 (5)0.0954 (19)
H140.66260.08190.00770.115*
C150.6881 (2)0.0543 (3)0.1102 (6)0.101 (2)
H150.71420.07630.11760.121*
C160.6796 (2)0.0176 (3)0.1742 (5)0.109 (2)
H160.69980.01400.22640.131*
C170.6407 (2)0.0136 (2)0.1591 (4)0.0812 (17)
H170.63540.03880.20230.097*
C180.62427 (18)0.13505 (18)0.0177 (4)0.0663 (14)
H180.62140.11840.03890.080*
C190.65742 (19)0.17364 (19)0.0229 (4)0.0746 (15)
H190.67600.18280.02890.090*
C200.66227 (19)0.19768 (18)0.1045 (4)0.0708 (15)
H200.68440.22390.11040.085*
C210.6339 (2)0.18282 (19)0.1793 (4)0.0796 (16)
H210.63650.19870.23680.096*
C220.60200 (19)0.14440 (18)0.1675 (3)0.0679 (14)
H220.58310.13450.21850.081*
C230.6591 (6)0.3744 (4)0.3440 (8)0.159 (4)
H230.64070.35140.37750.191*
C240.6371 (4)0.4087 (7)0.2945 (11)0.185 (6)
H240.60290.41190.29790.223*
C250.6630 (7)0.4396 (4)0.2384 (10)0.166 (6)
H250.64650.46140.19900.199*
C260.7111 (7)0.4387 (4)0.2398 (8)0.177 (5)
H260.72910.46090.20360.213*
C270.7346 (3)0.4057 (5)0.2934 (11)0.156 (4)
H270.76900.40530.29480.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0436 (3)0.0457 (3)0.0396 (3)0.0082 (2)0.0003 (2)0.0042 (2)
N10.0420 (18)0.048 (2)0.0302 (17)0.0042 (16)0.0010 (15)0.0027 (15)
N20.056 (2)0.060 (2)0.058 (2)0.0037 (18)0.0054 (18)0.0014 (18)
N30.047 (2)0.049 (2)0.053 (2)0.0053 (17)0.0005 (18)0.0004 (18)
N40.049 (2)0.044 (2)0.047 (2)0.0061 (16)0.0016 (17)0.0021 (17)
N50.249 (13)0.146 (8)0.131 (8)0.039 (9)0.048 (8)0.037 (6)
O10.0460 (16)0.0466 (16)0.0402 (17)0.0145 (13)0.0017 (12)0.0025 (13)
O20.0572 (18)0.0501 (17)0.0403 (17)0.0147 (15)0.0006 (13)0.0016 (13)
C10.037 (2)0.041 (2)0.037 (2)0.0008 (18)0.0024 (17)0.0012 (18)
C20.039 (2)0.041 (2)0.034 (2)0.0028 (18)0.0001 (17)0.0000 (17)
C30.041 (2)0.044 (2)0.041 (2)0.0062 (19)0.0039 (19)0.0007 (19)
C40.056 (3)0.055 (3)0.039 (3)0.002 (2)0.000 (2)0.010 (2)
C50.057 (3)0.069 (3)0.034 (2)0.004 (2)0.006 (2)0.000 (2)
C60.055 (3)0.064 (3)0.050 (3)0.006 (2)0.012 (2)0.003 (2)
C70.041 (2)0.055 (3)0.045 (3)0.005 (2)0.0049 (19)0.001 (2)
C80.105 (3)0.096 (3)0.081 (3)0.040 (3)0.003 (3)0.006 (3)
C90.119 (4)0.110 (4)0.096 (4)0.045 (3)0.003 (3)0.010 (3)
C100.111 (4)0.104 (4)0.104 (4)0.046 (3)0.003 (3)0.010 (3)
C110.133 (4)0.125 (4)0.105 (4)0.058 (3)0.022 (3)0.004 (3)
C120.113 (4)0.114 (4)0.086 (4)0.056 (3)0.020 (3)0.013 (3)
C130.085 (4)0.067 (3)0.066 (4)0.023 (3)0.008 (3)0.007 (3)
C140.112 (5)0.091 (4)0.083 (5)0.044 (4)0.014 (4)0.005 (3)
C150.071 (4)0.114 (6)0.118 (6)0.035 (4)0.003 (4)0.026 (5)
C160.085 (5)0.109 (5)0.133 (7)0.011 (4)0.054 (4)0.001 (5)
C170.075 (4)0.075 (4)0.093 (4)0.008 (3)0.031 (3)0.009 (3)
C180.070 (3)0.070 (3)0.059 (3)0.021 (3)0.012 (3)0.006 (3)
C190.070 (3)0.072 (4)0.082 (4)0.025 (3)0.011 (3)0.002 (3)
C200.063 (3)0.055 (3)0.094 (4)0.020 (3)0.011 (3)0.004 (3)
C210.088 (4)0.071 (4)0.080 (4)0.033 (3)0.006 (3)0.019 (3)
C220.076 (3)0.071 (3)0.056 (3)0.028 (3)0.007 (3)0.012 (3)
C230.184 (11)0.172 (11)0.121 (9)0.005 (10)0.069 (9)0.017 (7)
C240.128 (9)0.245 (17)0.184 (14)0.104 (11)0.004 (8)0.064 (11)
C250.223 (15)0.094 (7)0.181 (13)0.054 (9)0.090 (12)0.019 (7)
C260.257 (16)0.071 (6)0.204 (12)0.036 (9)0.035 (11)0.032 (6)
C270.131 (8)0.101 (7)0.235 (14)0.010 (7)0.024 (9)0.058 (8)
Geometric parameters (Å, º) top
Ni1—N11.955 (3)C9—H90.9300
Ni1—O21.989 (3)C10—C111.346 (9)
Ni1—O1i2.060 (3)C10—H100.9300
Ni1—N42.083 (3)C11—C121.369 (8)
Ni1—N22.196 (4)C11—H110.9300
Ni1—N32.201 (3)C12—H120.9300
N1—C11.328 (5)C13—C141.363 (7)
N1—N1i1.409 (6)C13—H130.9300
N2—C121.300 (6)C14—C151.335 (8)
N2—C81.301 (6)C14—H140.9300
N3—C171.310 (6)C15—C161.371 (9)
N3—C131.320 (6)C15—H150.9300
N4—C221.320 (5)C16—C171.366 (8)
N4—C181.325 (5)C16—H160.9300
N5—C231.345 (11)C17—H170.9300
N5—C271.348 (11)C18—C191.378 (6)
O1—C11.283 (4)C18—H180.9300
O1—Ni1i2.060 (3)C19—C201.344 (7)
O2—C31.302 (4)C19—H190.9300
C1—C21.495 (5)C20—C211.378 (7)
C2—C71.399 (5)C20—H200.9300
C2—C31.428 (5)C21—C221.361 (6)
C3—C41.421 (5)C21—H210.9300
C4—C51.359 (5)C22—H220.9300
C4—H40.9300C23—C241.310 (11)
C5—C61.393 (6)C23—H230.9300
C5—H50.9300C24—C251.354 (12)
C6—C71.368 (6)C24—H240.9300
C6—H60.9300C25—C261.30 (3)
C7—H70.9300C25—H250.9300
C8—C91.371 (7)C26—C271.337 (10)
C8—H80.9300C26—H260.9300
C9—C101.329 (8)C27—H270.9300
N1—Ni1—O290.75 (11)C8—C9—H9120.4
N1—Ni1—O1i79.81 (11)C9—C10—C11117.1 (7)
O2—Ni1—O1i170.55 (10)C9—C10—H10121.4
N1—Ni1—N4175.46 (13)C11—C10—H10121.4
O2—Ni1—N493.76 (12)C10—C11—C12119.8 (7)
O1i—Ni1—N495.68 (12)C10—C11—H11120.1
N1—Ni1—N293.47 (13)C12—C11—H11120.1
O2—Ni1—N291.23 (13)N2—C12—C11124.1 (6)
O1i—Ni1—N289.17 (13)N2—C12—H12118.0
N4—Ni1—N285.91 (13)C11—C12—H12118.0
N1—Ni1—N392.03 (13)N3—C13—C14123.2 (5)
O2—Ni1—N391.77 (12)N3—C13—H13118.4
O1i—Ni1—N388.77 (12)C14—C13—H13118.4
N4—Ni1—N388.37 (12)C15—C14—C13120.3 (6)
N2—Ni1—N3173.70 (13)C15—C14—H14119.8
C1—N1—N1i112.1 (4)C13—C14—H14119.8
C1—N1—Ni1133.4 (3)C14—C15—C16117.9 (6)
N1i—N1—Ni1114.5 (3)C14—C15—H15121.1
C12—N2—C8114.8 (5)C16—C15—H15121.1
C12—N2—Ni1123.2 (4)C17—C16—C15118.1 (6)
C8—N2—Ni1121.9 (4)C17—C16—H16120.9
C17—N3—C13115.9 (4)C15—C16—H16120.9
C17—N3—Ni1121.8 (3)N3—C17—C16124.6 (6)
C13—N3—Ni1122.3 (3)N3—C17—H17117.7
C22—N4—C18115.9 (4)C16—C17—H17117.7
C22—N4—Ni1123.1 (3)N4—C18—C19124.1 (5)
C18—N4—Ni1121.0 (3)N4—C18—H18117.9
C23—N5—C27119.5 (9)C19—C18—H18117.9
C1—O1—Ni1i110.1 (2)C20—C19—C18118.5 (5)
C3—O2—Ni1126.4 (2)C20—C19—H19120.7
O1—C1—N1123.5 (4)C18—C19—H19120.7
O1—C1—C2118.9 (3)C19—C20—C21118.7 (5)
N1—C1—C2117.6 (3)C19—C20—H20120.6
C7—C2—C3119.2 (4)C21—C20—H20120.6
C7—C2—C1115.5 (3)C22—C21—C20118.6 (5)
C3—C2—C1125.3 (3)C22—C21—H21120.7
O2—C3—C4118.2 (4)C20—C21—H21120.7
O2—C3—C2126.3 (4)N4—C22—C21124.1 (5)
C4—C3—C2115.5 (4)N4—C22—H22117.9
C5—C4—C3123.4 (4)C21—C22—H22117.9
C5—C4—H4118.3C24—C23—N5118.7 (9)
C3—C4—H4118.3C24—C23—H23120.6
C4—C5—C6120.6 (4)N5—C23—H23120.6
C4—C5—H5119.7C23—C24—C25121.5 (10)
C6—C5—H5119.7C23—C24—H24119.3
C7—C6—C5117.8 (4)C25—C24—H24119.3
C7—C6—H6121.1C26—C25—C24119.8 (10)
C5—C6—H6121.1C26—C25—H25120.1
C6—C7—C2123.4 (4)C24—C25—H25120.1
C6—C7—H7118.3C25—C26—C27119.7 (9)
C2—C7—H7118.3C25—C26—H26120.1
N2—C8—C9124.9 (6)C27—C26—H26120.1
N2—C8—H8117.5C26—C27—N5120.4 (9)
C9—C8—H8117.5C26—C27—H27119.8
C10—C9—C8119.3 (7)N5—C27—H27119.8
C10—C9—H9120.4
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C14H8N2O4)(C5H5N)6]·2C5H5N
Mr1018.44
Crystal system, space groupTetragonal, I41/a
Temperature (K)298
a, c (Å)27.040 (2), 14.3178 (18)
V3)10468.6 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.34 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.779, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
21466, 4609, 2743
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.152, 1.02
No. of reflections4609
No. of parameters316
No. of restraints102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected bond lengths (Å) top
Ni1—N11.955 (3)Ni1—N42.083 (3)
Ni1—O21.989 (3)Ni1—N22.196 (4)
Ni1—O1i2.060 (3)Ni1—N32.201 (3)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds