Download citation
Download citation
link to html
The thio­phene ring of the title compound, C14H16N6O2S, is disordered over two positions, with a site-occupancy ratio of approximately 5:4, corresponding to rotation of approximately 180° about the single C—C bond. Inter­molecular C—H...N and C—H...O inter­actions stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703231X/is2184sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703231X/is2184Isup2.hkl
Contains datablock I

CCDC reference: 657722

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.033
  • wR factor = 0.097
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.65 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C52 PLAT301_ALERT_3_C Main Residue Disorder ......................... 18.00 Perc. PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C53 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C14 H16 N6 O2 S
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.12 From the CIF: _reflns_number_total 3357 Count of symmetry unique reflns 1793 Completeness (_total/calc) 187.23% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1564 Fraction of Friedel pairs measured 0.872 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 179
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In a continuing search for pharmacologically active, 1,2,4-triazol and 1,2,4-triazol-5-one compounds, it has been found that most azole fungicides have been developed for diseases of cereal crops; examples include fluconazole (Ichikawa et al., 2001), ravuconazole (Ueda, 2003) and posaconazole (Kim et al., 2003). Moreover, 1,2,4-triazole derivatives have broad-spectrum biological effects, such as insecticidal (Tsuda et al., 2004), herbicidal (Chai et al., 2003), anticonvulsant (Er-Rahimini & Mornet, 1992), antitumor (Nakib et al., 1994) and plant growth regulatory activities (Jenkins et al., 1989).

The title compound, (I), consists of a triazole ring with an acetonyl group substituted at atom N5, a thienylmethyl group substituted at C4, a 1,2,4-triazole ring substituted at N4 atom and an oxo O atom at C3 (Fig. 1). The C1N2 bond length, 1.298 (3) Å, is a little longer than some values reported in the literature [1.288 (3) Å in C16H28N6O2 Çoruh et al., 2003) and 1.267 (2) Å in 4-(4-hydroxybenzylidenamino)-4H-1,2,4-triazole hemihydrate (Zhu et al., 2000)]. In the central 1,2,4-triazole ring, atoms N2 and N3 have no substituents and the N2—N3 bond length, 1.398 (3) Å, is essentially identical to that [1.403 (8) Å] reported for a similar compound (Sancak et al., 2005). Atom C4 has a trigonal configuration, the sums of the three bond angles around them being 359.99 (13)°.

The thiophene ring is disordered over two positions, corresponding to rotation of approximately 180° about the single C41—C42 bond, with a major-minor ratio of 55.9 (3):44.1 (3). The crystal structure of (I) is stabilized by two C—H···N and five C—H···O intermolecular hydrogen bonds (Table 1).

Related literature top

For related literature, see: Chai et al. (2003); Er-Rahimini & Mornet (1992); Ichikawa et al. (2001); Jenkins et al. (1989); Kim et al. (2003); Nakib et al. (1994); Sancak et al. (2005); Tsuda et al. (2004); Ueda (2003); Zhu et al. (2000); Çoruh et al. (2003).

Experimental top

4-(3,5-Dimethyl-4H-1,2,4-triazol-4-yl)-3-(2-thienyl methyl)-1H-1,2,4-triazol-5(4H)-one (0.001 mol) was refluxed with sodium metal (0.001 mol) in absolute ethanol (50 ml) for 1 h. Chloroacetone (0.001 mol) was added and the solution refluxed for 8 h. The resulting solution was filtered and then evaporated under reduced pressure. The solid residue was crystallized from absolute ethanol-diethylether (1:4) (yield 67%; m.p. 493–494 K).

Refinement top

The thiophene ring is disordered over two positions about the C41—C42 bond, with major:minor ratio of 55.9 (3):44.1 (3). The geometry of these disordered components were restrained to be similar (SAME in SHELXL). The rigid bond and similar displacement parameter restraints (DELU and SIMU, respectively) were applied for the atoms involved. All H atoms were positioned geometrically [C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene)] and treated as riding on their parent atoms, with Uiso(H) = 1.13Ueq(aromatic C), 1.5Ueq(methyl C) and 1.2Ueq(methylene C).

Structure description top

In a continuing search for pharmacologically active, 1,2,4-triazol and 1,2,4-triazol-5-one compounds, it has been found that most azole fungicides have been developed for diseases of cereal crops; examples include fluconazole (Ichikawa et al., 2001), ravuconazole (Ueda, 2003) and posaconazole (Kim et al., 2003). Moreover, 1,2,4-triazole derivatives have broad-spectrum biological effects, such as insecticidal (Tsuda et al., 2004), herbicidal (Chai et al., 2003), anticonvulsant (Er-Rahimini & Mornet, 1992), antitumor (Nakib et al., 1994) and plant growth regulatory activities (Jenkins et al., 1989).

The title compound, (I), consists of a triazole ring with an acetonyl group substituted at atom N5, a thienylmethyl group substituted at C4, a 1,2,4-triazole ring substituted at N4 atom and an oxo O atom at C3 (Fig. 1). The C1N2 bond length, 1.298 (3) Å, is a little longer than some values reported in the literature [1.288 (3) Å in C16H28N6O2 Çoruh et al., 2003) and 1.267 (2) Å in 4-(4-hydroxybenzylidenamino)-4H-1,2,4-triazole hemihydrate (Zhu et al., 2000)]. In the central 1,2,4-triazole ring, atoms N2 and N3 have no substituents and the N2—N3 bond length, 1.398 (3) Å, is essentially identical to that [1.403 (8) Å] reported for a similar compound (Sancak et al., 2005). Atom C4 has a trigonal configuration, the sums of the three bond angles around them being 359.99 (13)°.

The thiophene ring is disordered over two positions, corresponding to rotation of approximately 180° about the single C41—C42 bond, with a major-minor ratio of 55.9 (3):44.1 (3). The crystal structure of (I) is stabilized by two C—H···N and five C—H···O intermolecular hydrogen bonds (Table 1).

For related literature, see: Chai et al. (2003); Er-Rahimini & Mornet (1992); Ichikawa et al. (2001); Jenkins et al. (1989); Kim et al. (2003); Nakib et al. (1994); Sancak et al. (2005); Tsuda et al. (2004); Ueda (2003); Zhu et al. (2000); Çoruh et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Both disorder components are shown.
1-acetonyl-4-(2,5-dimethyl-4H-\1,2,4-triazol-4-yl)-3-(2-thienylmethyl)-1H-1,2,4-triazol-5(4H)-one top
Crystal data top
C14H16N6O2SF(000) = 696
Mr = 332.39Dx = 1.364 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3185 reflections
a = 21.1928 (16) Åθ = 2.4–27.1°
b = 9.6058 (6) ŵ = 0.22 mm1
c = 8.3020 (7) ÅT = 293 K
β = 106.696 (6)°Prism, colourless
V = 1618.8 (2) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3185 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 27.1°, θmin = 2.4°
φ and ω scansh = 2727
9238 measured reflectionsk = 1212
3357 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.126P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
3357 reflectionsΔρmin = 0.18 e Å3
246 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
179 restraintsExtinction coefficient: 0.015 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1644 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (8)
Crystal data top
C14H16N6O2SV = 1618.8 (2) Å3
Mr = 332.39Z = 4
Monoclinic, CcMo Kα radiation
a = 21.1928 (16) ŵ = 0.22 mm1
b = 9.6058 (6) ÅT = 293 K
c = 8.3020 (7) Å0.30 × 0.20 × 0.15 mm
β = 106.696 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3185 reflections with I > 2σ(I)
9238 measured reflectionsRint = 0.039
3357 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.18 e Å3
3357 reflectionsAbsolute structure: Flack (1983), 1644 Friedel pairs
246 parametersAbsolute structure parameter: 0.02 (8)
179 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.03169 (6)0.79946 (12)0.49156 (15)0.0472 (3)
N10.13400 (7)0.64873 (13)0.25347 (17)0.0422 (3)
N60.11847 (7)0.99970 (13)0.14966 (18)0.0393 (3)
N50.07161 (7)0.98340 (12)0.30460 (17)0.0398 (3)
C410.19981 (8)0.84790 (17)0.0412 (2)0.0438 (3)
H41A0.19280.75560.08030.053*
H41B0.19760.91390.12780.053*
C420.26718 (8)0.85404 (16)0.0173 (2)0.0445 (3)0.559 (3)
S10.32023 (8)0.71922 (19)0.0776 (3)0.0634 (5)0.559 (3)
C430.3784 (4)0.8126 (10)0.0046 (16)0.0627 (17)0.559 (3)
H430.41990.77700.01100.075*0.559 (3)
C440.3585 (4)0.9386 (11)0.0606 (16)0.0633 (15)0.559 (3)
H440.38311.00130.10330.076*0.559 (3)
C450.2952 (5)0.9576 (8)0.0527 (14)0.0614 (16)0.559 (3)
H450.27201.03850.09380.074*0.559 (3)
C42'0.26718 (8)0.85404 (16)0.0173 (2)0.0445 (3)0.441 (3)
S1'0.29405 (13)0.9970 (2)0.0653 (4)0.0565 (5)0.441 (3)
C43'0.3687 (5)0.9102 (13)0.047 (2)0.0600 (18)0.441 (3)
H43'0.40270.95150.07980.072*0.441 (3)
C44'0.3743 (7)0.7795 (13)0.018 (2)0.068 (2)0.441 (3)
H44'0.40960.71850.03420.082*0.441 (3)
C45'0.3165 (5)0.7580 (9)0.0556 (15)0.0654 (19)0.441 (3)
H45'0.31050.67570.10850.078*0.441 (3)
C30.06799 (7)0.85162 (14)0.36608 (19)0.0381 (3)
C520.03960 (8)1.0779 (2)0.3428 (2)0.0517 (4)
O20.05226 (8)0.97759 (18)0.2716 (2)0.0688 (4)
N40.11834 (6)0.78629 (12)0.24189 (17)0.0396 (3)
C40.14634 (7)0.87926 (14)0.11427 (19)0.0372 (3)
C10.09964 (10)0.53665 (16)0.2186 (2)0.0487 (4)
N30.17852 (10)0.46323 (18)0.3180 (3)0.0668 (5)
N20.12657 (10)0.42417 (16)0.2552 (2)0.0648 (5)
C510.02666 (8)1.09491 (16)0.3740 (2)0.0442 (3)
H51A0.02051.09960.49430.053*
H51B0.04601.18230.32520.053*
C20.18161 (9)0.59797 (19)0.3193 (2)0.0506 (4)
C110.04103 (12)0.5476 (2)0.1593 (3)0.0646 (5)
H11A0.03280.64370.14080.097*
H11B0.04820.49700.05590.097*
H11C0.00380.50930.24230.097*
C530.08696 (15)1.1932 (4)0.4126 (5)0.0988 (10)
H53A0.12781.17560.38800.148*
H53B0.09461.19810.53220.148*
H53C0.06881.27980.36250.148*
C220.22523 (12)0.6864 (3)0.3854 (3)0.0695 (6)
H22A0.21690.78250.36740.104*
H22B0.21690.66950.50370.104*
H22C0.27030.66470.32830.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0443 (6)0.0462 (6)0.0463 (7)0.0034 (4)0.0053 (5)0.0036 (4)
N10.0450 (6)0.0316 (6)0.0473 (7)0.0032 (5)0.0089 (5)0.0028 (5)
N60.0380 (6)0.0364 (6)0.0433 (7)0.0000 (4)0.0115 (5)0.0026 (5)
N50.0375 (5)0.0363 (6)0.0430 (7)0.0038 (4)0.0074 (5)0.0014 (5)
C410.0437 (7)0.0436 (7)0.0413 (9)0.0009 (6)0.0078 (6)0.0003 (6)
C420.0420 (7)0.0429 (7)0.0433 (8)0.0031 (6)0.0038 (6)0.0019 (6)
S10.0519 (5)0.0596 (9)0.0741 (9)0.0193 (6)0.0109 (5)0.0121 (6)
C430.0359 (17)0.068 (4)0.079 (3)0.007 (2)0.0082 (18)0.002 (3)
C440.049 (3)0.064 (4)0.074 (3)0.005 (2)0.013 (2)0.002 (3)
C450.054 (2)0.057 (3)0.067 (3)0.009 (3)0.0088 (18)0.003 (3)
C42'0.0420 (7)0.0429 (7)0.0433 (8)0.0031 (6)0.0038 (6)0.0019 (6)
S1'0.0475 (7)0.0541 (11)0.0683 (9)0.0008 (8)0.0174 (6)0.0090 (9)
C43'0.043 (3)0.060 (5)0.078 (4)0.010 (2)0.018 (3)0.008 (3)
C44'0.053 (3)0.062 (4)0.084 (3)0.013 (3)0.010 (3)0.012 (3)
C45'0.062 (3)0.053 (4)0.072 (4)0.013 (3)0.004 (2)0.011 (3)
C30.0361 (6)0.0366 (6)0.0416 (8)0.0014 (5)0.0111 (5)0.0003 (6)
C520.0412 (8)0.0618 (10)0.0495 (10)0.0039 (7)0.0091 (7)0.0066 (8)
O20.0551 (7)0.0827 (10)0.0708 (11)0.0165 (7)0.0218 (7)0.0037 (7)
N40.0405 (6)0.0312 (5)0.0443 (8)0.0022 (4)0.0074 (5)0.0042 (4)
C40.0357 (6)0.0355 (7)0.0413 (8)0.0022 (5)0.0127 (5)0.0026 (5)
C10.0615 (10)0.0363 (7)0.0411 (9)0.0047 (6)0.0031 (7)0.0001 (6)
N30.0782 (11)0.0488 (8)0.0673 (11)0.0169 (8)0.0111 (9)0.0156 (7)
N20.0870 (12)0.0369 (7)0.0619 (11)0.0018 (7)0.0078 (9)0.0044 (6)
C510.0442 (7)0.0380 (7)0.0484 (9)0.0064 (6)0.0102 (6)0.0020 (6)
C20.0495 (8)0.0488 (8)0.0485 (9)0.0093 (7)0.0062 (7)0.0115 (7)
C110.0683 (12)0.0631 (11)0.0615 (12)0.0164 (10)0.0171 (10)0.0037 (9)
C530.0668 (14)0.112 (2)0.116 (2)0.0472 (15)0.0246 (15)0.0128 (17)
C220.0564 (10)0.0831 (14)0.0750 (15)0.0073 (9)0.0284 (10)0.0232 (11)
Geometric parameters (Å, º) top
O1—C31.2114 (19)C44'—H44'0.9300
N1—C21.368 (2)C45'—H45'0.9300
N1—N41.3726 (17)C3—N41.4011 (19)
N1—C11.376 (2)C52—O21.201 (3)
N6—C41.2939 (19)C52—C531.495 (3)
N6—N51.3897 (19)C52—C511.508 (2)
N5—C31.3587 (18)N4—C41.3824 (19)
N5—C511.4392 (19)C1—N21.298 (3)
C41—C41.483 (2)C1—C111.465 (3)
C41—C421.498 (2)N3—C21.296 (3)
C41—H41A0.9700N3—N21.398 (3)
C41—H41B0.9700C51—H51A0.9700
C42—C451.371 (9)C51—H51B0.9700
C42—S11.694 (2)C2—C221.473 (3)
S1—C431.766 (8)C11—H11A0.9600
C43—C441.343 (8)C11—H11B0.9600
C43—H430.9300C11—H11C0.9600
C44—C451.375 (13)C53—H53A0.9600
C44—H440.9300C53—H53B0.9600
C45—H450.9300C53—H53C0.9600
S1'—C43'1.756 (10)C22—H22A0.9600
C43'—C44'1.358 (10)C22—H22B0.9600
C43'—H43'0.9300C22—H22C0.9600
C44'—C45'1.362 (16)
C2—N1—N4126.30 (14)N1—N4—C4128.05 (12)
C2—N1—C1107.52 (14)N1—N4—C3121.87 (12)
N4—N1—C1125.81 (14)C4—N4—C3110.07 (12)
C4—N6—N5105.52 (12)N6—C4—N4109.64 (13)
C3—N5—N6113.63 (12)N6—C4—C41124.33 (14)
C3—N5—C51125.70 (14)N4—C4—C41126.02 (13)
N6—N5—C51120.09 (13)N2—C1—N1107.86 (18)
C4—C41—C42113.30 (12)N2—C1—C11127.64 (18)
C4—C41—H41A108.9N1—C1—C11124.42 (15)
C42—C41—H41A108.9C2—N3—N2108.53 (15)
C4—C41—H41B108.9C1—N2—N3108.08 (16)
C42—C41—H41B108.9N5—C51—C52113.11 (14)
H41A—C41—H41B107.7N5—C51—H51A109.0
C45—C42—C41129.1 (4)C52—C51—H51A109.0
C45—C42—S1110.4 (4)N5—C51—H51B109.0
C41—C42—S1120.51 (14)C52—C51—H51B109.0
C42—S1—C4388.8 (4)H51A—C51—H51B107.8
C44—C43—S1115.3 (9)N3—C2—N1107.94 (18)
C44—C43—H43122.3N3—C2—C22128.11 (17)
S1—C43—H43122.3N1—C2—C22123.88 (17)
C43—C44—C45107.3 (10)C1—C11—H11A109.5
C43—C44—H44126.4C1—C11—H11B109.5
C45—C44—H44126.4H11A—C11—H11B109.5
C42—C45—C44118.2 (8)C1—C11—H11C109.5
C42—C45—H45120.9H11A—C11—H11C109.5
C44—C45—H45120.9H11B—C11—H11C109.5
C44'—C43'—S1'116.6 (12)C52—C53—H53A109.5
C44'—C43'—H43'121.7C52—C53—H53B109.5
S1'—C43'—H43'121.7H53A—C53—H53B109.5
C43'—C44'—C45'104.4 (13)C52—C53—H53C109.5
C43'—C44'—H44'127.8H53A—C53—H53C109.5
C45'—C44'—H44'127.8H53B—C53—H53C109.5
C44'—C45'—H45'119.2C2—C22—H22A109.5
O1—C3—N5131.43 (14)C2—C22—H22B109.5
O1—C3—N4127.49 (13)H22A—C22—H22B109.5
N5—C3—N4101.07 (12)C2—C22—H22C109.5
O2—C52—C53124.4 (2)H22A—C22—H22C109.5
O2—C52—C51121.49 (16)H22B—C22—H22C109.5
C53—C52—C51114.1 (2)
C4—N6—N5—C31.96 (16)N5—N6—C4—C41179.87 (13)
C4—N6—N5—C51173.77 (13)N1—N4—C4—N6179.59 (14)
C4—C41—C42—C4550.9 (6)C3—N4—C4—N61.31 (16)
C4—C41—C42—S1128.07 (16)N1—N4—C4—C410.9 (2)
C45—C42—S1—C430.3 (7)C3—N4—C4—C41178.23 (13)
C41—C42—S1—C43179.5 (4)C42—C41—C4—N697.73 (17)
C42—S1—C43—C440.3 (9)C42—C41—C4—N482.80 (18)
S1—C43—C44—C450.8 (13)C2—N1—C1—N22.27 (19)
C41—C42—C45—C44180.0 (8)N4—N1—C1—N2175.59 (15)
S1—C42—C45—C440.9 (12)C2—N1—C1—C11174.74 (19)
C43—C44—C45—C421.1 (15)N4—N1—C1—C111.4 (3)
S1'—C43'—C44'—C45'1.8 (18)N1—C1—N2—N31.1 (2)
N6—N5—C3—O1176.56 (14)C11—C1—N2—N3175.8 (2)
C51—N5—C3—O15.3 (3)C2—N3—N2—C10.5 (2)
N6—N5—C3—N42.60 (16)C3—N5—C51—C5272.9 (2)
C51—N5—C3—N4173.87 (13)N6—N5—C51—C5297.89 (16)
C2—N1—N4—C487.1 (2)O2—C52—C51—N52.3 (2)
C1—N1—N4—C4100.82 (19)C53—C52—C51—N5179.6 (2)
C2—N1—N4—C393.89 (19)N2—N3—C2—N11.9 (2)
C1—N1—N4—C378.2 (2)N2—N3—C2—C22175.4 (2)
O1—C3—N4—N12.3 (2)N4—N1—C2—N3175.84 (15)
N5—C3—N4—N1178.52 (13)C1—N1—C2—N32.57 (19)
O1—C3—N4—C4176.90 (14)N4—N1—C2—C221.6 (3)
N5—C3—N4—C42.31 (15)C1—N1—C2—C22174.83 (19)
N5—N6—C4—N40.33 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···N2i0.962.563.352 (3)140
C41—H41A···N3ii0.972.323.287 (3)178
C43—H43···O1iii0.932.493.414 (10)174
C44—H44···O2iii0.932.463.162 (14)132
C51—H51A···O2iv0.972.493.318 (2)143
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H16N6O2S
Mr332.39
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)21.1928 (16), 9.6058 (6), 8.3020 (7)
β (°) 106.696 (6)
V3)1618.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9238, 3357, 3185
Rint0.039
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.097, 1.06
No. of reflections3357
No. of parameters246
No. of restraints179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18
Absolute structureFlack (1983), 1644 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···N2i0.962.5573.352 (3)140
C41—H41A···N3ii0.972.3173.287 (3)178
C43—H43···O1iii0.932.4873.414 (10)174
C44'—H44'···O2iii0.932.4603.162 (14)132
C51—H51A···O2iv0.972.4883.318 (2)143
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds