Download citation
Download citation
link to html
In the title compound, C17H14N2O2, the pyrazole ring makes dihedral angles of 18.8 (1) and 81.1 (1)° with the phenyl and benzyl rings, respectively. In the crystal structure, carboxyl groups are connected by O—H...O hydrogen bonds, creating a centrosymmetric ring typical of organic carboxylic acids.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033363/kp2120sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033363/kp2120Isup2.hkl
Contains datablock I

CCDC reference: 657746

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.164
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrazole moiety plays an essential role in biologically active compounds. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anticoagulant (Jia et al., 2004), antipyretic, antibacterial, hypoglycaemic, antihyperglycaemic, analgesic, anti-inflammatory, sedative-hypnotic (Cottineau et al., 2002; Finn et al., 2003), and antitumour (Wei et al., 2006) activities. We report here the crystal structure of the title compound (I).

Related literature top

For related literature, see: Jia et al. (2004); Cottineau et al. (2002); Finn et al. (2003); Wei et al. (2006); Xia et al. (2007).

For related literature, see: Ding et al. (2007).

Experimental top

A mixture of ethyl 1-benzyl-3-phenyl-1H-pyrazole-5-carboxylate (0.01 mol) and potassium hydroxide (0.02 mol) in ethanol (40 ml) was heated to reflux for 2 h (Ding et al., 2007). The solvent was removed under reduced pressure and the residue was dissolved in water and acidified with hydrochloric acid (10%). The precipitate was filtered and dried to give a white solid (yield 80%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in acetone at room temperature for 6 d.

Refinement top

All H atoms were placed at geometrically calculated positions and allowed to ride with C—H = 0.97 Å (for CH2 groups), and O—H = 0.82 Å; their isotropic displacement parameters were set to 1.2 times (CH2 groups) or 1.5 times (O—H groups) the equivalent displacement parameter of their parent atoms.

Structure description top

Pyrazole moiety plays an essential role in biologically active compounds. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anticoagulant (Jia et al., 2004), antipyretic, antibacterial, hypoglycaemic, antihyperglycaemic, analgesic, anti-inflammatory, sedative-hypnotic (Cottineau et al., 2002; Finn et al., 2003), and antitumour (Wei et al., 2006) activities. We report here the crystal structure of the title compound (I).

For related literature, see: Jia et al. (2004); Cottineau et al. (2002); Finn et al. (2003); Wei et al. (2006); Xia et al. (2007).

For related literature, see: Ding et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular strure of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing view of (I) along the a axis. Hydrogen bonds creating dimeric units are drawn as dashed lines. Hydrogen bonded rings are stacked perpendicular to the c axis forming hydrophilic channels.
1-Benzyl-3-phenyl-1H-pyrazole-5-carboxylic acid top
Crystal data top
C17H14N2O2F(000) = 584
Mr = 278.30Dx = 1.325 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1764 (5) ÅCell parameters from 2168 reflections
b = 5.3356 (2) Åθ = 3.1–24.9°
c = 20.6646 (7) ŵ = 0.09 mm1
β = 106.132 (3)°T = 293 K
V = 1395.60 (9) Å3Prism, colourless
Z = 40.30 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3175 independent reflections
Radiation source: fine-focus sealed tube1921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1716
Tmin = 0.974, Tmax = 0.985k = 66
8816 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.1P)2 + 0.212P]
where P = (Fo2 + 2Fc2)/3
3175 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H14N2O2V = 1395.60 (9) Å3
Mr = 278.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1764 (5) ŵ = 0.09 mm1
b = 5.3356 (2) ÅT = 293 K
c = 20.6646 (7) Å0.30 × 0.21 × 0.17 mm
β = 106.132 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3175 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
1921 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.985Rint = 0.035
8816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 0.90Δρmax = 0.15 e Å3
3175 reflectionsΔρmin = 0.19 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3797 (2)0.3005 (5)0.34905 (13)0.0702 (7)
H10.40760.41200.32390.084*
C20.2974 (2)0.1482 (5)0.31785 (12)0.0722 (7)
H20.26900.15730.27140.087*
C30.25613 (19)0.0193 (4)0.35477 (10)0.0584 (6)
H30.20040.12300.33290.070*
C40.29696 (15)0.0340 (4)0.42403 (9)0.0445 (5)
C50.37994 (17)0.1229 (4)0.45512 (11)0.0560 (6)
H50.40820.11670.50160.067*
C60.42100 (19)0.2885 (5)0.41757 (13)0.0664 (6)
H60.47700.39230.43890.080*
C70.25032 (14)0.2085 (4)0.46310 (9)0.0411 (4)
C80.18501 (15)0.4147 (4)0.44101 (9)0.0443 (5)
H80.16290.47790.39740.053*
C90.15998 (14)0.5055 (4)0.49666 (9)0.0407 (4)
C100.09260 (14)0.7196 (4)0.50114 (9)0.0419 (4)
C110.20965 (16)0.3581 (4)0.61995 (9)0.0484 (5)
H11A0.20450.18710.63470.058*
H11B0.14750.44760.62370.058*
C120.30615 (15)0.4784 (4)0.66620 (9)0.0440 (5)
C130.35187 (18)0.6884 (4)0.64740 (12)0.0591 (6)
H130.32520.75450.60440.071*
C140.4374 (2)0.8010 (5)0.69235 (15)0.0783 (8)
H140.46810.94250.67950.094*
C150.4771 (2)0.7040 (6)0.75619 (15)0.0832 (9)
H150.53440.78040.78650.100*
C160.4325 (2)0.4969 (6)0.77479 (12)0.0802 (8)
H160.45960.43130.81780.096*
C170.34734 (19)0.3830 (5)0.73023 (10)0.0619 (6)
H170.31740.24090.74340.074*
N10.26556 (13)0.1739 (3)0.52914 (8)0.0460 (4)
N20.21010 (12)0.3551 (3)0.54916 (7)0.0435 (4)
O10.07681 (11)0.7942 (3)0.55347 (7)0.0529 (4)
O20.04902 (11)0.8197 (3)0.44201 (6)0.0549 (4)
H2A0.00870.93210.44600.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0844 (17)0.0574 (15)0.0805 (17)0.0054 (14)0.0421 (15)0.0104 (13)
C20.0992 (19)0.0666 (17)0.0541 (14)0.0088 (15)0.0267 (13)0.0071 (12)
C30.0759 (14)0.0518 (13)0.0475 (12)0.0096 (12)0.0173 (11)0.0001 (10)
C40.0517 (11)0.0373 (11)0.0472 (11)0.0058 (9)0.0178 (9)0.0008 (9)
C50.0554 (12)0.0594 (14)0.0533 (12)0.0028 (11)0.0153 (10)0.0005 (10)
C60.0659 (14)0.0633 (15)0.0732 (16)0.0148 (13)0.0246 (12)0.0009 (13)
C70.0462 (10)0.0361 (10)0.0402 (10)0.0043 (9)0.0105 (8)0.0014 (8)
C80.0501 (10)0.0440 (11)0.0376 (10)0.0045 (10)0.0100 (8)0.0013 (8)
C90.0418 (9)0.0384 (10)0.0408 (10)0.0021 (9)0.0098 (8)0.0023 (8)
C100.0389 (9)0.0429 (11)0.0427 (10)0.0034 (9)0.0095 (8)0.0027 (8)
C110.0578 (11)0.0491 (12)0.0408 (10)0.0025 (10)0.0181 (9)0.0072 (9)
C120.0515 (11)0.0426 (11)0.0390 (10)0.0077 (9)0.0143 (8)0.0036 (8)
C130.0624 (13)0.0492 (13)0.0620 (14)0.0024 (11)0.0111 (11)0.0015 (11)
C140.0727 (16)0.0616 (16)0.097 (2)0.0076 (14)0.0183 (15)0.0156 (15)
C150.0659 (15)0.095 (2)0.0775 (19)0.0039 (16)0.0020 (14)0.0396 (17)
C160.0821 (18)0.104 (2)0.0454 (13)0.0168 (18)0.0029 (12)0.0116 (14)
C170.0740 (14)0.0721 (16)0.0393 (11)0.0113 (13)0.0153 (10)0.0048 (11)
N10.0536 (9)0.0406 (9)0.0444 (9)0.0036 (8)0.0144 (7)0.0027 (7)
N20.0502 (9)0.0431 (9)0.0380 (8)0.0003 (8)0.0136 (7)0.0027 (7)
O10.0580 (8)0.0570 (9)0.0442 (8)0.0094 (7)0.0151 (7)0.0011 (7)
O20.0626 (9)0.0545 (9)0.0446 (8)0.0145 (7)0.0098 (7)0.0037 (6)
Geometric parameters (Å, º) top
C1—C21.365 (3)C10—O21.311 (2)
C1—C61.370 (3)C11—N21.465 (2)
C1—H10.9300C11—C121.506 (3)
C2—C31.381 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.384 (3)C12—C131.378 (3)
C3—H30.9300C12—C171.380 (3)
C4—C51.385 (3)C13—C141.383 (3)
C4—C71.474 (3)C13—H130.9300
C5—C61.381 (3)C14—C151.378 (4)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—C161.356 (4)
C7—N11.336 (2)C15—H150.9300
C7—C81.393 (3)C16—C171.379 (3)
C8—C91.370 (2)C16—H160.9300
C8—H80.9300C17—H170.9300
C9—N21.363 (2)N1—N21.345 (2)
C9—C101.465 (3)O2—H2A0.8200
C10—O11.223 (2)
C2—C1—C6119.7 (2)N2—C11—C12113.68 (15)
C2—C1—H1120.2N2—C11—H11A108.8
C6—C1—H1120.2C12—C11—H11A108.8
C1—C2—C3120.5 (2)N2—C11—H11B108.8
C1—C2—H2119.8C12—C11—H11B108.8
C3—C2—H2119.8H11A—C11—H11B107.7
C2—C3—C4120.5 (2)C13—C12—C17118.9 (2)
C2—C3—H3119.7C13—C12—C11121.73 (18)
C4—C3—H3119.7C17—C12—C11119.29 (19)
C3—C4—C5118.38 (19)C12—C13—C14120.2 (2)
C3—C4—C7120.05 (18)C12—C13—H13119.9
C5—C4—C7121.55 (18)C14—C13—H13119.9
C6—C5—C4120.5 (2)C15—C14—C13120.1 (3)
C6—C5—H5119.7C15—C14—H14119.9
C4—C5—H5119.7C13—C14—H14119.9
C1—C6—C5120.4 (2)C16—C15—C14119.9 (3)
C1—C6—H6119.8C16—C15—H15120.1
C5—C6—H6119.8C14—C15—H15120.1
N1—C7—C8110.35 (16)C15—C16—C17120.4 (3)
N1—C7—C4120.34 (17)C15—C16—H16119.8
C8—C7—C4129.27 (17)C17—C16—H16119.8
C9—C8—C7105.97 (16)C16—C17—C12120.5 (2)
C9—C8—H8127.0C16—C17—H17119.7
C7—C8—H8127.0C12—C17—H17119.7
N2—C9—C8106.46 (16)C7—N1—N2105.94 (15)
N2—C9—C10125.21 (16)N1—N2—C9111.28 (14)
C8—C9—C10128.33 (17)N1—N2—C11117.94 (15)
O1—C10—O2123.60 (18)C9—N2—C11130.75 (16)
O1—C10—C9124.37 (17)C10—O2—H2A109.5
O2—C10—C9112.02 (16)
C6—C1—C2—C30.5 (4)N2—C11—C12—C1338.8 (3)
C1—C2—C3—C40.5 (4)N2—C11—C12—C17144.13 (18)
C2—C3—C4—C50.0 (3)C17—C12—C13—C140.2 (3)
C2—C3—C4—C7178.3 (2)C11—C12—C13—C14176.9 (2)
C3—C4—C5—C60.4 (3)C12—C13—C14—C150.1 (4)
C7—C4—C5—C6178.70 (19)C13—C14—C15—C160.3 (4)
C2—C1—C6—C50.1 (4)C14—C15—C16—C170.2 (4)
C4—C5—C6—C10.4 (4)C15—C16—C17—C120.2 (4)
C3—C4—C7—N1159.65 (19)C13—C12—C17—C160.4 (3)
C5—C4—C7—N118.6 (3)C11—C12—C17—C16176.8 (2)
C3—C4—C7—C817.8 (3)C8—C7—N1—N20.4 (2)
C5—C4—C7—C8163.97 (19)C4—C7—N1—N2177.49 (16)
N1—C7—C8—C90.4 (2)C7—N1—N2—C90.3 (2)
C4—C7—C8—C9177.26 (18)C7—N1—N2—C11178.09 (16)
C7—C8—C9—N20.2 (2)C8—C9—N2—N10.0 (2)
C7—C8—C9—C10179.40 (17)C10—C9—N2—N1179.64 (16)
N2—C9—C10—O13.0 (3)C8—C9—N2—C11178.03 (18)
C8—C9—C10—O1177.48 (19)C10—C9—N2—C111.6 (3)
N2—C9—C10—O2175.67 (17)C12—C11—N2—N181.3 (2)
C8—C9—C10—O23.9 (3)C12—C11—N2—C9100.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.852.662 (2)173
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H14N2O2
Mr278.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.1764 (5), 5.3356 (2), 20.6646 (7)
β (°) 106.132 (3)
V3)1395.60 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.974, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
8816, 3175, 1921
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.164, 0.90
No. of reflections3175
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: APEX2 (Bruker, 2005), APEX2, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.852.662 (2)172.9
Symmetry code: (i) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds