Download citation
Download citation
link to html
The title centrosymmetric complex, [Cd2Cl4(C14H13NO3)2]·2CH3OH, contains two protonated Schiff base ligands which were derived from the condensation of o-vanillin and 2-hydroxy­aniline. The CdII ion is five-coordinated by three Cl atoms and two O atoms in a distorted square-pyramidal geometry. A basal edge containing two bridging chloride ligands is shared by both symmetry-related CdII ions. The four atoms of the Cd2Cl2 core are coplanar, giving a rhomboidal geometry with two short and two long Cd—Cl distances and acute Cl—Cd—Cl and obtuse Cd—Cl—Cd angles. The crystal structure is stabilized by inter­molecular hydrogen bonds and weak π–π stacking inter­actions with a centroid-to-centroid distance of 3.710 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035210/lh2451sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035210/lh2451Isup2.hkl
Contains datablock I

CCDC reference: 657623

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.047
  • wR factor = 0.117
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.92 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.924 Tmax scaled 0.512 Tmin scaled 0.471 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd1 (2) 2.04
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

There has been growing interest in the coordination chemistry of cadmium(II) complexes due to the increased recognition of their role in biological organisms (Strasdeit et al., 1988), as well as in molecular-based materials (Veith et al., 1996). As part of our ongoing studies of Schiff beses, we report herein the synthesis and crystal structure of a new bis cadmium(II) complex with Schiff base ligand derived from the condensation of o-vanillin and 2-hydroxyaniline.

The complex possesses a crystallographically imposed centre of inversion, forming a bis([mu]-chlorido)-bridged binuclear structure with both cadmium centres being five-coordinated (Fig.1). In the title complex, each CdII ion is coordinated in a highly distorted square-pyramidal geometry, in which O1, O2, Cl1, and Cl1i(symmetry code:(i) -x + 1,-y,-z + 2) lie in basal plane, and Cl2 lies in the apical position. The CdII ion lies 0.594 (3)Å above the equatorial plane, sharing the basal edge containing the bridging chloro ligands; the apical atom Cl2 is almost perpendicular the basal equatiorial plane. The four atoms of the Cd2Cl2 core, by virtue of the inversion center, are exactly planar, and form a rhomboidal geometry with two short Cd1—Cl1i (symmetry code: (i) -x + 1,-y,-z + 2) distances 2.548 (2)Å and two long Cd1—Cl1 distances 2.563 (2) Å. The core bond angles of Cl1i—Cd1—Cl1 and Cd1i—Cl1—Cd1 are 88.49 (6)° and 91.51 (6)°, respectively and are similar to those already reported (Choi, et al. 2003). The ligands of Schiff base moiety related by centers of symmetry have a centroid-centroid separation of 3.710 (4)Å (perpendicular distance 3.396 (5) Å) for rings (formed by atoms C2—C7 and atoms C9—C14 at (-x,-y,2 - z)) and the slip angle is 23.74 (23)°, indicating significant π-π interactions (Tong et al., 1999). In the crystal structure, the weak π-π stacking interactions and intermolecular hydrogen bonds resulted in the two-dimensional network structure (Fig. 2).

Related literature top

For related literature, see: Choi & Jeon (2003); Strasdeit et al. (1988); Tong et al. (1999); Veith et al. (1996).

Experimental top

2-Hydroxyaniline(1 mmol, 109.12 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) and added in portions to a methanol solution of o-vanillin (1 mmol, 152.2 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution(2 ml) of cadmium chloride hydrate(1 mmol, 228.35 mg) was added dropwise and stirred for another 4 h. The solution was held at room temperature for ten days, whereupon yellow blocky crystals suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were placed in geometrically calculated positions (C—H = 0.93 - 0.96 Å, O—H =0.82 Å, N—H =0.86 Å), and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2–1.5Ueq(parent atom).

Structure description top

There has been growing interest in the coordination chemistry of cadmium(II) complexes due to the increased recognition of their role in biological organisms (Strasdeit et al., 1988), as well as in molecular-based materials (Veith et al., 1996). As part of our ongoing studies of Schiff beses, we report herein the synthesis and crystal structure of a new bis cadmium(II) complex with Schiff base ligand derived from the condensation of o-vanillin and 2-hydroxyaniline.

The complex possesses a crystallographically imposed centre of inversion, forming a bis([mu]-chlorido)-bridged binuclear structure with both cadmium centres being five-coordinated (Fig.1). In the title complex, each CdII ion is coordinated in a highly distorted square-pyramidal geometry, in which O1, O2, Cl1, and Cl1i(symmetry code:(i) -x + 1,-y,-z + 2) lie in basal plane, and Cl2 lies in the apical position. The CdII ion lies 0.594 (3)Å above the equatorial plane, sharing the basal edge containing the bridging chloro ligands; the apical atom Cl2 is almost perpendicular the basal equatiorial plane. The four atoms of the Cd2Cl2 core, by virtue of the inversion center, are exactly planar, and form a rhomboidal geometry with two short Cd1—Cl1i (symmetry code: (i) -x + 1,-y,-z + 2) distances 2.548 (2)Å and two long Cd1—Cl1 distances 2.563 (2) Å. The core bond angles of Cl1i—Cd1—Cl1 and Cd1i—Cl1—Cd1 are 88.49 (6)° and 91.51 (6)°, respectively and are similar to those already reported (Choi, et al. 2003). The ligands of Schiff base moiety related by centers of symmetry have a centroid-centroid separation of 3.710 (4)Å (perpendicular distance 3.396 (5) Å) for rings (formed by atoms C2—C7 and atoms C9—C14 at (-x,-y,2 - z)) and the slip angle is 23.74 (23)°, indicating significant π-π interactions (Tong et al., 1999). In the crystal structure, the weak π-π stacking interactions and intermolecular hydrogen bonds resulted in the two-dimensional network structure (Fig. 2).

For related literature, see: Choi & Jeon (2003); Strasdeit et al. (1988); Tong et al. (1999); Veith et al. (1996).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabeled atoms are are related by the symmetry operator (-x + 1,-y,-z + 2).
[Figure 2] Fig. 2. The packing of the title compound. Hydrogen bond are shown as dashed lines.
Di-µ-chlorido-bis(chlorido{2-[(2-hydroxyphenyl)iminiomethyl]-6- methoxyphenolato-κ2O,O']cadium(II)) dimethanol solvate top
Crystal data top
[Cd2Cl4(C14H13NO3)2]·2CH4OF(000) = 912
Mr = 917.19Dx = 1.764 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3509 reflections
a = 9.845 (6) Åθ = 2.4–27.6°
b = 18.253 (10) ŵ = 1.59 mm1
c = 9.792 (6) ÅT = 298 K
β = 101.157 (6)°Block, yellow
V = 1726.3 (17) Å30.49 × 0.47 × 0.42 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3025 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.509, Tmax = 0.555k = 2115
8174 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0233P)2 + 6.6242P]
where P = (Fo2 + 2Fc2)/3
3025 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cd2Cl4(C14H13NO3)2]·2CH4OV = 1726.3 (17) Å3
Mr = 917.19Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.845 (6) ŵ = 1.59 mm1
b = 18.253 (10) ÅT = 298 K
c = 9.792 (6) Å0.49 × 0.47 × 0.42 mm
β = 101.157 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3025 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2233 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.555Rint = 0.061
8174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.11Δρmax = 1.00 e Å3
3025 reflectionsΔρmin = 0.69 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.38169 (5)0.02721 (3)0.84003 (5)0.03929 (18)
Cl10.43742 (18)0.07287 (10)1.09219 (17)0.0434 (4)
Cl20.4903 (2)0.10392 (10)0.68766 (19)0.0523 (5)
N10.0539 (5)0.0914 (3)0.9234 (5)0.0298 (11)
H10.03400.08960.92680.036*
O10.1587 (4)0.0338 (2)0.8376 (4)0.0375 (10)
O20.2568 (5)0.0548 (3)0.6671 (4)0.0416 (11)
O30.1336 (5)0.1781 (3)1.0652 (6)0.0556 (14)
H30.18410.21111.10200.083*
O40.3157 (8)0.2598 (4)0.2280 (7)0.093 (2)
H40.36000.29370.20350.139*
C10.1286 (7)0.0454 (3)0.8386 (6)0.0328 (14)
H1A0.22360.04440.83550.039*
C20.0730 (7)0.0028 (3)0.7516 (6)0.0341 (15)
C30.0706 (7)0.0063 (3)0.7523 (6)0.0304 (14)
C40.1171 (7)0.0553 (3)0.6572 (6)0.0337 (14)
C50.0252 (8)0.0975 (3)0.5681 (7)0.0403 (16)
H50.05710.12900.50650.048*
C60.1167 (8)0.0936 (4)0.5690 (8)0.0510 (19)
H60.17820.12240.50750.061*
C70.1655 (7)0.0486 (4)0.6574 (7)0.0429 (17)
H70.26000.04720.65730.051*
C80.3163 (9)0.1007 (5)0.5748 (8)0.058 (2)
H8A0.30180.15120.59530.086*
H8B0.41380.09120.58730.086*
H8C0.27300.09040.48030.086*
C90.1002 (6)0.1441 (3)1.0108 (6)0.0309 (14)
C100.0041 (7)0.1893 (3)1.0857 (7)0.0359 (15)
C110.0332 (9)0.2426 (4)1.1743 (7)0.0461 (18)
H110.03380.27311.22480.055*
C120.1690 (9)0.2495 (4)1.1863 (8)0.053 (2)
H120.19280.28471.24620.064*
C130.2719 (8)0.2054 (4)1.1114 (7)0.0463 (18)
H130.36370.21131.12000.056*
C140.2356 (7)0.1525 (4)1.0239 (7)0.0379 (15)
H140.30350.12250.97340.046*
C150.3774 (12)0.2377 (5)0.3610 (10)0.088 (3)
H15A0.47420.24960.37750.132*
H15B0.36640.18580.36970.132*
H15C0.33440.26260.42800.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0293 (3)0.0492 (3)0.0400 (3)0.0012 (2)0.00819 (19)0.0026 (3)
Cl10.0392 (10)0.0491 (10)0.0412 (9)0.0107 (8)0.0059 (7)0.0046 (8)
Cl20.0546 (12)0.0552 (11)0.0531 (10)0.0044 (9)0.0255 (9)0.0120 (9)
N10.022 (3)0.032 (3)0.036 (3)0.001 (2)0.005 (2)0.000 (2)
O10.030 (2)0.041 (3)0.040 (2)0.000 (2)0.0047 (19)0.011 (2)
O20.035 (3)0.052 (3)0.038 (2)0.006 (2)0.010 (2)0.010 (2)
O30.042 (3)0.058 (3)0.066 (3)0.014 (3)0.007 (3)0.020 (3)
O40.098 (6)0.088 (5)0.078 (4)0.050 (4)0.017 (4)0.001 (4)
C10.023 (3)0.041 (4)0.035 (3)0.002 (3)0.008 (3)0.002 (3)
C20.034 (4)0.030 (3)0.038 (4)0.003 (3)0.006 (3)0.001 (3)
C30.036 (4)0.032 (3)0.024 (3)0.001 (3)0.005 (3)0.005 (3)
C40.041 (4)0.032 (3)0.030 (3)0.003 (3)0.009 (3)0.001 (3)
C50.053 (5)0.032 (4)0.034 (4)0.004 (3)0.006 (3)0.006 (3)
C60.055 (5)0.042 (4)0.054 (4)0.013 (4)0.005 (4)0.009 (4)
C70.033 (4)0.049 (4)0.047 (4)0.013 (3)0.007 (3)0.006 (3)
C80.054 (5)0.074 (6)0.048 (4)0.009 (4)0.019 (4)0.012 (4)
C90.032 (4)0.031 (3)0.029 (3)0.004 (3)0.004 (3)0.005 (3)
C100.039 (4)0.030 (4)0.039 (4)0.005 (3)0.010 (3)0.007 (3)
C110.063 (5)0.031 (4)0.042 (4)0.006 (3)0.004 (4)0.000 (3)
C120.076 (6)0.036 (4)0.049 (4)0.007 (4)0.018 (4)0.007 (3)
C130.040 (4)0.054 (5)0.045 (4)0.009 (3)0.010 (3)0.003 (4)
C140.034 (4)0.042 (4)0.038 (4)0.000 (3)0.007 (3)0.000 (3)
C150.109 (9)0.066 (6)0.083 (7)0.022 (6)0.004 (6)0.002 (5)
Geometric parameters (Å, º) top
Cd1—O12.194 (4)C5—C61.401 (11)
Cd1—O22.411 (4)C5—H50.9300
Cd1—Cl22.439 (2)C6—C71.348 (10)
Cd1—Cl1i2.548 (2)C6—H60.9300
Cd1—Cl12.563 (2)C7—H70.9300
Cl1—Cd1i2.548 (2)C8—H8A0.9600
N1—C11.303 (7)C8—H8B0.9600
N1—C91.420 (8)C8—H8C0.9600
N1—H10.8600C9—C141.372 (9)
O1—C31.307 (7)C9—C101.408 (9)
O2—C41.360 (8)C10—C111.398 (10)
O2—C81.438 (8)C11—C121.371 (11)
O3—C101.345 (8)C11—H110.9300
O3—H30.8200C12—C131.387 (10)
O4—C151.386 (11)C12—H120.9300
O4—H40.8200C13—C141.383 (10)
C1—C21.407 (9)C13—H130.9300
C1—H1A0.9300C14—H140.9300
C2—C31.414 (9)C15—H15A0.9600
C2—C71.433 (9)C15—H15B0.9600
C3—C41.429 (9)C15—H15C0.9600
C4—C51.366 (9)
O1—Cd1—O269.70 (15)C7—C6—H6119.5
O1—Cd1—Cl2121.20 (13)C5—C6—H6119.5
O2—Cd1—Cl298.70 (13)C6—C7—C2120.5 (7)
O1—Cd1—Cl1i133.60 (13)C6—C7—H7119.7
O2—Cd1—Cl1i88.49 (12)C2—C7—H7119.7
Cl2—Cd1—Cl1i101.77 (7)O2—C8—H8A109.5
O1—Cd1—Cl191.13 (11)O2—C8—H8B109.5
O2—Cd1—Cl1149.70 (12)H8A—C8—H8B109.5
Cl2—Cd1—Cl1111.43 (7)O2—C8—H8C109.5
Cl1i—Cd1—Cl188.49 (6)H8A—C8—H8C109.5
Cd1i—Cl1—Cd191.51 (6)H8B—C8—H8C109.5
C1—N1—C9127.8 (5)C14—C9—C10120.6 (6)
C1—N1—H1116.1C14—C9—N1124.3 (6)
C9—N1—H1116.1C10—C9—N1115.1 (6)
C3—O1—Cd1121.0 (4)O3—C10—C11124.7 (6)
C4—O2—C8118.7 (5)O3—C10—C9116.7 (6)
C4—O2—Cd1115.2 (4)C11—C10—C9118.6 (7)
C8—O2—Cd1126.1 (4)C12—C11—C10119.7 (7)
C10—O3—H3109.5C12—C11—H11120.2
C15—O4—H4109.5C10—C11—H11120.2
N1—C1—C2123.4 (6)C11—C12—C13121.7 (7)
N1—C1—H1A118.3C11—C12—H12119.2
C2—C1—H1A118.3C13—C12—H12119.2
C1—C2—C3122.1 (6)C14—C13—C12118.9 (7)
C1—C2—C7118.8 (6)C14—C13—H13120.6
C3—C2—C7119.1 (6)C12—C13—H13120.6
O1—C3—C2121.1 (5)C9—C14—C13120.6 (6)
O1—C3—C4120.7 (6)C9—C14—H14119.7
C2—C3—C4118.1 (6)C13—C14—H14119.7
O2—C4—C5125.8 (6)O4—C15—H15A109.5
O2—C4—C3113.3 (5)O4—C15—H15B109.5
C5—C4—C3120.9 (6)H15A—C15—H15B109.5
C4—C5—C6120.3 (6)O4—C15—H15C109.5
C4—C5—H5119.9H15A—C15—H15C109.5
C6—C5—H5119.9H15B—C15—H15C109.5
C7—C6—C5121.0 (7)
O1—Cd1—Cl1—Cd1i133.59 (13)Cd1—O2—C4—C5179.4 (5)
O2—Cd1—Cl1—Cd1i84.4 (2)C8—O2—C4—C3178.8 (6)
Cl2—Cd1—Cl1—Cd1i102.05 (8)Cd1—O2—C4—C30.1 (6)
Cl1i—Cd1—Cl1—Cd1i0.0O1—C3—C4—O20.2 (8)
O2—Cd1—O1—C30.4 (4)C2—C3—C4—O2179.6 (5)
Cl2—Cd1—O1—C388.4 (4)O1—C3—C4—C5179.8 (6)
Cl1i—Cd1—O1—C366.6 (5)C2—C3—C4—C50.0 (9)
Cl1—Cd1—O1—C3155.6 (4)O2—C4—C5—C6179.3 (6)
O1—Cd1—O2—C40.3 (4)C3—C4—C5—C60.2 (10)
Cl2—Cd1—O2—C4120.4 (4)C4—C5—C6—C70.2 (11)
Cl1i—Cd1—O2—C4137.9 (4)C5—C6—C7—C20.9 (11)
Cl1—Cd1—O2—C453.5 (5)C1—C2—C7—C6177.7 (7)
O1—Cd1—O2—C8178.5 (6)C3—C2—C7—C61.1 (10)
Cl2—Cd1—O2—C858.4 (5)C1—N1—C9—C143.1 (10)
Cl1i—Cd1—O2—C843.3 (5)C1—N1—C9—C10176.5 (6)
Cl1—Cd1—O2—C8127.7 (5)C14—C9—C10—O3179.0 (6)
C9—N1—C1—C2177.2 (6)N1—C9—C10—O30.6 (8)
N1—C1—C2—C31.8 (10)C14—C9—C10—C110.5 (9)
N1—C1—C2—C7177.0 (6)N1—C9—C10—C11179.9 (5)
Cd1—O1—C3—C2179.3 (4)O3—C10—C11—C12179.5 (7)
Cd1—O1—C3—C40.5 (7)C9—C10—C11—C120.0 (10)
C1—C2—C3—O12.1 (9)C10—C11—C12—C130.7 (11)
C7—C2—C3—O1179.2 (6)C11—C12—C13—C140.8 (11)
C1—C2—C3—C4178.1 (6)C10—C9—C14—C130.3 (10)
C7—C2—C3—C40.7 (9)N1—C9—C14—C13179.9 (6)
C8—O2—C4—C51.7 (9)C12—C13—C14—C90.3 (10)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···Cl2ii0.822.293.093 (7)167
O3—H3···O4iii0.821.842.622 (7)160
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd2Cl4(C14H13NO3)2]·2CH4O
Mr917.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.845 (6), 18.253 (10), 9.792 (6)
β (°) 101.157 (6)
V3)1726.3 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.49 × 0.47 × 0.42
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.509, 0.555
No. of measured, independent and
observed [I > 2σ(I)] reflections
8174, 3025, 2233
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.11
No. of reflections3025
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.69

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cd1—O12.194 (4)Cd1—Cl1i2.548 (2)
Cd1—O22.411 (4)Cd1—Cl12.563 (2)
Cd1—Cl22.439 (2)
O1—Cd1—O269.70 (15)O1—Cd1—Cl191.13 (11)
O1—Cd1—Cl2121.20 (13)O2—Cd1—Cl1149.70 (12)
O2—Cd1—Cl298.70 (13)Cl2—Cd1—Cl1111.43 (7)
O1—Cd1—Cl1i133.60 (13)Cl1i—Cd1—Cl188.49 (6)
O2—Cd1—Cl1i88.49 (12)Cd1i—Cl1—Cd191.51 (6)
Cl2—Cd1—Cl1i101.77 (7)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···Cl2ii0.822.293.093 (7)166.8
O3—H3···O4iii0.821.842.622 (7)160.2
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds