Download citation
Download citation
link to html
The title compound, [K(C11H19O2)(C12H8N2)2]·1.5C6H6, is a potassium heteroligand β-diketonate complex with a mononuclear mol­ecular structure in which a K+ cation is coordinated by a dipivaloylmethanate anion (2,2,6,6-tetra­methyl­heptane-3,5-dionate, dpm) and two 1,10-phenanthroline (phen) mol­ecules as bidentate ligands. The coordination number (CN) of K in the K(dpm)(phen)2 mol­ecule is 6 and the coordinating atoms form a distorted trigonal prism. Face-to-face stacking inter­actions between phen ligands of neighbouring mol­ecules [with perpendicular separations of 3.48 (5) Å] cause them to associate into chains along the [001] direction. The benzene solvent mol­ecules in the structural cavities are edge-to-face stacked with the phen ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034988/lh2459sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034988/lh2459Isup2.hkl
Contains datablock I

CCDC reference: 657617

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.066
  • wR factor = 0.126
  • Data-to-parameter ratio = 21.2

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT220_ALERT_2_A Large Non-Solvent C Ueq(max)/Ueq(min) ... 6.21 Ratio
Author Response: The high value of Ueq(max)/Ueq(min)=6.21 is observed only for C atoms from tert-butyl moieties which are known to be rather flexible. Moreover, high Ueq are observed only for one of two t-butyl groups, namely for that directed to lattice cavity. The other t-butyl group directed to the neighboring phen-molecule has satisfactory Ueq. For C atoms from rigid phen-ligands Ueq(max)/Ueq(min)= 2.57.
PLAT222_ALERT_3_A Large Non-Solvent    H     Ueq(max)/Ueq(min) ...       6.52 Ratio
Author Response: The Ueq parameters for H atoms were constrained as 1.5Ueq(C) for t-butyl H atoms or 1.2Ueq(C) for all other H atoms. The high value of Ueq(max)/Ueq(min)=6.52 for H atoms originates from the high value of Ueq(max)/Ueq(min)=6.21 for C atoms (see above _vrf_PLAT220_ktp2a). For H atoms from rigid phen-ligands Ueq(max)/Ueq(min)= 2.26.

Alert level B PLAT213_ALERT_2_B Atom C8 has ADP max/min Ratio ............. 4.20 prola PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C6
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT213_ALERT_2_C Atom C7 has ADP max/min Ratio ............. 3.60 prola
2 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal β-diketonates (especially acetylacetonates and dipivaloylmethanates) are widely used as volatile precursors for MOCVD deposition of thin films. In order to obtain a volatile precursor one should synthesize a substance with molecular crystal structure and low inter-molecular interactions. This task has not been solved yet for potassium, a large single charged cation that forms usually ionic crystals. Unfortunately, the coordination sphere of potassium (also Alkali Earth and Rare Earth elements) is not saturated by only the β-diketonate anion. This leads to the polymerization due to bridging function of ligands or solvent molecules and therefore to the reduction of volatility. A potassium precursor is essential for MOCVD of ferroelectric KNbO3 thin films (Romanov et al., 2004, Murzina et al., 2006). We report here the first potassium heteroligand β-diketonate complex with a mononuclear structure K(dpm)(phen)1.5C6H6.

The crystal structure is built by the packing of voluminous K(dpm)(phen)2 molecules and solvate benzene molecules lying in the lattice cavities. In the K(dpm)(phen)2 molecule, the potassium cation has a distorted trigonal-prismatical coordination (CN=6) formed by four nitrogen atoms from two chelating phenanthroline ligands and by two oxygen atoms from chelating dipivaloylmethanate-anion (Fig. 1). The ligands do not exhibit a bridging function, therefore the molecules are monomeric and the compound has a molecular structure. The K···O1 and K···O2 distances are similar because of electron density delocalization in the chelating part of the dpm--anion. The K+ ion is displaced from the planes of the phenanthroline ligangs by 0.80 (1) Å. The K···N distances are comparable with those found in [K2(phen)6]2+[BPh4]-2 (Bombieri et al., 1984).

The phenanthroline molecules lie in nearly orthogonal planes and participate in intermolecular stacking interaction of the face-to-face type with the neighboring K(dpm)(phen)2 molecules (Fig. 2). No intramolecular stacking interaction similar to that found in [K2(phen)6]2+[BPh4]-2 (Bombieri et al., 1984) occurs in the title crystal structure. The distance between parallel planes of phen-ligands (3.48 (5) Å) is typical for stacking distances in related compounds like Ba(dpm)2(phen)2 (Soboleva et al., 1995) or La(dpm)3(phen) (Minacheva et al., 2003) or La(hfa)3(phen)2 (Rogachev et al., 2005). The stacking interaction between phen-ligands of neighboring molecules causes their association with the formation of chains along [001] direction. The solvate benzene molecules are edge-to-face stacked with phenanthroline ligands, while the molecular centroid separations are 4.9 – 5.2 Å, being in a good agreement with the values observed for the stacking interaction in a benzene pair (C6H6)2 (Dance, 2003).

Related literature top

For background information, see: Romanov et al. (2004); Murzina et al. (2006). For related crystal structures, see: Bombieri et al., (1984); Soboleva et al. (1995); Minacheva et al. (2003); Rogachev et al. (2005). For related literature, see: Dance (2003).

Experimental top

The potassium tert-butyloxide (0.192 g, 1.72 mmol) and 1,10-phenanthroline (0.619 g, 3.44 mmol) were dissolved in dried benzene (15 ml) and stirred at room temperature. Then the solution of dipivaloylmethane (2,2,6,6-tetramethylheptane-3,5-dione, 0.332 g, 1.80 mmol) in benzene (5 ml) was added slowly under continuous stirring of mixture. All operations were performed in a glove box. X-ray quality single-crystals were obtained by slow evaporation of benzene solution in evacuated sealed ampoules during two months.

Refinement top

H-atoms were placed in idealized positions and refined using a riding model with C—H = 0.95 Å (or 0.98 Å) and with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Metal β-diketonates (especially acetylacetonates and dipivaloylmethanates) are widely used as volatile precursors for MOCVD deposition of thin films. In order to obtain a volatile precursor one should synthesize a substance with molecular crystal structure and low inter-molecular interactions. This task has not been solved yet for potassium, a large single charged cation that forms usually ionic crystals. Unfortunately, the coordination sphere of potassium (also Alkali Earth and Rare Earth elements) is not saturated by only the β-diketonate anion. This leads to the polymerization due to bridging function of ligands or solvent molecules and therefore to the reduction of volatility. A potassium precursor is essential for MOCVD of ferroelectric KNbO3 thin films (Romanov et al., 2004, Murzina et al., 2006). We report here the first potassium heteroligand β-diketonate complex with a mononuclear structure K(dpm)(phen)1.5C6H6.

The crystal structure is built by the packing of voluminous K(dpm)(phen)2 molecules and solvate benzene molecules lying in the lattice cavities. In the K(dpm)(phen)2 molecule, the potassium cation has a distorted trigonal-prismatical coordination (CN=6) formed by four nitrogen atoms from two chelating phenanthroline ligands and by two oxygen atoms from chelating dipivaloylmethanate-anion (Fig. 1). The ligands do not exhibit a bridging function, therefore the molecules are monomeric and the compound has a molecular structure. The K···O1 and K···O2 distances are similar because of electron density delocalization in the chelating part of the dpm--anion. The K+ ion is displaced from the planes of the phenanthroline ligangs by 0.80 (1) Å. The K···N distances are comparable with those found in [K2(phen)6]2+[BPh4]-2 (Bombieri et al., 1984).

The phenanthroline molecules lie in nearly orthogonal planes and participate in intermolecular stacking interaction of the face-to-face type with the neighboring K(dpm)(phen)2 molecules (Fig. 2). No intramolecular stacking interaction similar to that found in [K2(phen)6]2+[BPh4]-2 (Bombieri et al., 1984) occurs in the title crystal structure. The distance between parallel planes of phen-ligands (3.48 (5) Å) is typical for stacking distances in related compounds like Ba(dpm)2(phen)2 (Soboleva et al., 1995) or La(dpm)3(phen) (Minacheva et al., 2003) or La(hfa)3(phen)2 (Rogachev et al., 2005). The stacking interaction between phen-ligands of neighboring molecules causes their association with the formation of chains along [001] direction. The solvate benzene molecules are edge-to-face stacked with phenanthroline ligands, while the molecular centroid separations are 4.9 – 5.2 Å, being in a good agreement with the values observed for the stacking interaction in a benzene pair (C6H6)2 (Dance, 2003).

For background information, see: Romanov et al. (2004); Murzina et al. (2006). For related crystal structures, see: Bombieri et al., (1984); Soboleva et al. (1995); Minacheva et al. (2003); Rogachev et al. (2005). For related literature, see: Dance (2003).

Computing details top

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: publCIF (Version 1.0c; Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of K(dpm)(phen)2, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal unit cell of K(dpm)(phen)1.5C6H6 viewed along the a axis, showing the stacking interaction between phen-ligands from the neighboring molecules of K(dpm)(phen)2. H atoms were omitted for clarity.
Bis(1,10-phenanthroline)(2,2,6,6-tetramethylheptane-3,5-dionato)potassium(I) benzene sesquisolvate top
Crystal data top
[K(C11H19O2)(C12H8N2)2]·1.5C6H6F(000) = 1484
Mr = 699.93Dx = 1.213 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11312 reflections
a = 10.110 (2) Åθ = 4–29°
b = 22.419 (5) ŵ = 0.18 mm1
c = 17.099 (3) ÅT = 100 K
β = 98.55 (3)°Block, colourless
V = 3832.5 (13) Å30.50 × 0.30 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
6012 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.087
Graphite monochromatorθmax = 29.2°, θmin = 3.4°
φ scansh = 1310
26291 measured reflectionsk = 3030
9857 independent reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.05P)2 + ]
where P = (Fo2 + 2Fc2)/3
9857 reflections(Δ/σ)max < 0.001
466 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[K(C11H19O2)(C12H8N2)2]·1.5C6H6V = 3832.5 (13) Å3
Mr = 699.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.110 (2) ŵ = 0.18 mm1
b = 22.419 (5) ÅT = 100 K
c = 17.099 (3) Å0.50 × 0.30 × 0.20 mm
β = 98.55 (3)°
Data collection top
Stoe IPDS
diffractometer
6012 reflections with I > 2σ(I)
26291 measured reflectionsRint = 0.087
9857 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
9857 reflectionsΔρmin = 0.30 e Å3
466 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.15866 (5)0.739467 (18)0.81820 (3)0.01858 (11)
O10.07787 (15)0.62510 (6)0.82200 (9)0.0186 (3)
O20.35426 (16)0.66272 (6)0.83782 (10)0.0243 (4)
N10.1315 (2)0.81523 (7)0.68171 (12)0.0213 (4)
N20.06129 (19)0.73100 (7)0.69319 (12)0.0207 (4)
N30.27796 (19)0.78168 (7)0.97236 (12)0.0210 (4)
N40.0723 (2)0.84560 (7)0.89032 (12)0.0235 (4)
C10.0546 (2)0.53894 (9)0.90463 (15)0.0231 (5)
H1A0.11960.50700.90830.035*
H1B0.10220.57620.88930.035*
H1C0.00140.54420.95610.035*
C20.0337 (2)0.52239 (8)0.84243 (14)0.0179 (4)
C30.1318 (2)0.57547 (8)0.83721 (13)0.0161 (4)
C40.2711 (2)0.56481 (8)0.85082 (14)0.0191 (5)
H40.29920.52480.86110.023*
C50.3723 (2)0.60814 (8)0.85059 (14)0.0183 (4)
C60.5213 (2)0.58812 (9)0.86698 (16)0.0240 (5)
C70.5438 (3)0.52337 (13)0.8882 (3)0.0878 (17)
H7A0.50890.49850.84260.132*
H7B0.49720.51350.93290.132*
H7C0.63980.51600.90290.132*
C80.5829 (4)0.6024 (3)0.7945 (3)0.1001 (18)
H8A0.67840.59250.80410.150*
H8B0.57180.64500.78240.150*
H8C0.53870.57890.74980.150*
C90.5923 (3)0.62340 (17)0.9365 (3)0.0737 (13)
H9A0.68680.61180.94660.111*
H9B0.55060.61510.98360.111*
H9C0.58550.66610.92440.111*
C100.1010 (2)0.46250 (9)0.86561 (17)0.0282 (6)
H10A0.03240.43220.86950.042*
H10B0.15840.46650.91680.042*
H10C0.15520.45050.82530.042*
C110.0556 (3)0.51592 (10)0.76224 (16)0.0317 (6)
H11A0.00120.50310.72240.048*
H11B0.09740.55440.74660.048*
H11C0.12510.48610.76640.048*
C120.2269 (3)0.85464 (9)0.67433 (16)0.0268 (5)
H120.28310.86720.72090.032*
C130.2496 (3)0.87876 (9)0.60206 (16)0.0283 (6)
H130.32000.90650.60020.034*
C140.1695 (2)0.86196 (9)0.53437 (15)0.0238 (5)
H140.18400.87730.48460.029*
C150.0645 (2)0.82131 (8)0.53949 (14)0.0193 (5)
C160.0504 (2)0.79856 (8)0.61459 (13)0.0167 (4)
C170.0537 (2)0.75454 (8)0.62091 (14)0.0180 (4)
C180.1392 (2)0.73712 (9)0.55162 (14)0.0211 (5)
C190.2382 (2)0.69438 (10)0.55995 (16)0.0268 (5)
H190.29940.68200.51530.032*
C200.2456 (2)0.67086 (10)0.63288 (16)0.0280 (5)
H200.31170.64200.63950.034*
C210.1542 (2)0.68994 (9)0.69768 (15)0.0254 (5)
H210.15910.67250.74780.031*
C220.0260 (2)0.80299 (9)0.47072 (14)0.0231 (5)
H220.01730.81930.42050.028*
C230.1230 (2)0.76289 (10)0.47713 (14)0.0237 (5)
H230.18200.75150.43110.028*
C240.3764 (2)0.75095 (10)1.01334 (16)0.0286 (6)
H240.42220.72270.98580.034*
C250.4175 (3)0.75747 (12)1.09456 (17)0.0373 (7)
H250.48990.73461.12070.045*
C260.3527 (3)0.79685 (12)1.13567 (17)0.0378 (7)
H260.37870.80171.19100.045*
C270.2462 (3)0.83057 (10)1.09509 (15)0.0299 (6)
C280.2124 (2)0.82164 (9)1.01298 (14)0.0208 (5)
C290.1039 (2)0.85520 (9)0.96913 (15)0.0218 (5)
C300.0349 (3)0.89660 (10)1.01031 (17)0.0306 (6)
C310.0709 (3)0.92863 (10)0.9654 (2)0.0420 (8)
H310.12040.95690.99060.050*
C320.1018 (3)0.91895 (11)0.8863 (2)0.0430 (8)
H320.17260.94020.85560.052*
C330.0270 (3)0.87695 (10)0.85130 (18)0.0336 (6)
H330.04880.87050.79600.040*
C340.1722 (3)0.87284 (12)1.13465 (17)0.0399 (7)
H340.19470.87881.19000.048*
C350.0715 (3)0.90404 (11)1.09369 (19)0.0417 (8)
H350.02340.93171.12080.050*
C360.4871 (3)0.85637 (12)0.85390 (18)0.0366 (6)
H360.43230.86200.89380.044*
C370.5279 (3)0.90462 (12)0.8136 (2)0.0456 (8)
H370.50130.94370.82580.055*
C380.6068 (3)0.89627 (16)0.7558 (2)0.0589 (10)
H380.63280.92960.72740.071*
C390.6488 (3)0.83982 (17)0.7386 (2)0.0526 (9)
H390.70540.83430.69950.063*
C400.6082 (3)0.79190 (14)0.77838 (19)0.0448 (7)
H400.63620.75290.76650.054*
C410.5269 (3)0.79958 (12)0.83556 (17)0.0364 (6)
H410.49830.76600.86240.044*
C420.4839 (3)0.95220 (12)1.0482 (2)0.0540 (9)
H420.47300.91901.08120.065*
C430.3789 (3)0.97211 (11)0.9961 (2)0.0485 (9)
H430.29440.95310.99340.058*
C440.3940 (3)1.02007 (13)0.9467 (3)0.0586 (10)
H440.32061.03350.90970.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0224 (2)0.01534 (17)0.0169 (3)0.00253 (18)0.00066 (17)0.00038 (18)
O10.0193 (8)0.0167 (6)0.0203 (9)0.0024 (6)0.0049 (6)0.0020 (6)
O20.0182 (8)0.0173 (7)0.0370 (11)0.0016 (6)0.0024 (7)0.0033 (6)
N10.0246 (11)0.0176 (8)0.0207 (12)0.0001 (7)0.0005 (8)0.0001 (7)
N20.0203 (10)0.0195 (8)0.0220 (12)0.0001 (7)0.0027 (8)0.0017 (7)
N30.0237 (10)0.0223 (8)0.0167 (12)0.0040 (7)0.0026 (8)0.0025 (7)
N40.0255 (11)0.0196 (8)0.0249 (13)0.0003 (7)0.0021 (8)0.0003 (7)
C10.0178 (11)0.0241 (10)0.0290 (15)0.0024 (9)0.0092 (10)0.0015 (9)
C20.0191 (11)0.0162 (9)0.0195 (13)0.0024 (8)0.0061 (9)0.0005 (8)
C30.0183 (11)0.0182 (9)0.0130 (12)0.0008 (8)0.0063 (8)0.0002 (7)
C40.0210 (11)0.0127 (8)0.0245 (14)0.0036 (8)0.0065 (9)0.0011 (8)
C50.0187 (11)0.0196 (9)0.0175 (13)0.0029 (8)0.0051 (9)0.0005 (8)
C60.0141 (11)0.0207 (10)0.0375 (16)0.0022 (8)0.0049 (10)0.0026 (9)
C70.0196 (16)0.0328 (15)0.205 (5)0.0059 (12)0.004 (2)0.023 (2)
C80.038 (2)0.198 (5)0.073 (3)0.058 (3)0.037 (2)0.062 (3)
C90.0305 (18)0.081 (2)0.100 (3)0.0238 (17)0.0241 (19)0.042 (2)
C100.0239 (13)0.0173 (9)0.0453 (18)0.0005 (9)0.0116 (11)0.0050 (9)
C110.0427 (16)0.0267 (11)0.0250 (16)0.0116 (11)0.0027 (12)0.0003 (9)
C120.0276 (13)0.0194 (10)0.0309 (16)0.0043 (9)0.0038 (11)0.0031 (9)
C130.0256 (13)0.0190 (10)0.0403 (17)0.0012 (9)0.0046 (11)0.0047 (9)
C140.0247 (12)0.0204 (10)0.0282 (15)0.0072 (9)0.0099 (10)0.0074 (9)
C150.0207 (12)0.0166 (9)0.0210 (14)0.0056 (8)0.0049 (9)0.0011 (8)
C160.0152 (11)0.0156 (8)0.0194 (13)0.0043 (7)0.0027 (9)0.0003 (8)
C170.0176 (11)0.0172 (9)0.0194 (13)0.0061 (8)0.0036 (8)0.0001 (8)
C180.0203 (11)0.0217 (9)0.0208 (13)0.0055 (9)0.0009 (9)0.0031 (9)
C190.0186 (12)0.0290 (11)0.0314 (16)0.0012 (9)0.0011 (10)0.0074 (10)
C200.0173 (12)0.0293 (11)0.0375 (17)0.0056 (9)0.0047 (10)0.0003 (10)
C210.0210 (12)0.0266 (10)0.0296 (16)0.0004 (9)0.0065 (10)0.0039 (9)
C220.0279 (13)0.0266 (10)0.0156 (14)0.0085 (9)0.0058 (10)0.0043 (8)
C230.0243 (12)0.0271 (10)0.0181 (13)0.0070 (9)0.0019 (9)0.0033 (9)
C240.0242 (13)0.0300 (12)0.0310 (16)0.0031 (9)0.0022 (10)0.0086 (9)
C250.0310 (14)0.0456 (14)0.0316 (17)0.0126 (12)0.0077 (11)0.0166 (12)
C260.0439 (17)0.0471 (15)0.0200 (16)0.0288 (13)0.0028 (12)0.0033 (11)
C270.0368 (15)0.0334 (12)0.0204 (15)0.0224 (11)0.0076 (11)0.0022 (10)
C280.0243 (12)0.0198 (9)0.0192 (14)0.0112 (8)0.0060 (9)0.0022 (8)
C290.0238 (12)0.0181 (9)0.0251 (15)0.0084 (8)0.0087 (10)0.0041 (8)
C300.0299 (14)0.0248 (11)0.0419 (18)0.0103 (10)0.0210 (12)0.0102 (10)
C310.0318 (15)0.0245 (12)0.076 (3)0.0001 (11)0.0271 (15)0.0089 (13)
C320.0308 (16)0.0278 (12)0.070 (3)0.0064 (11)0.0058 (15)0.0025 (13)
C330.0321 (15)0.0274 (11)0.0398 (18)0.0021 (10)0.0003 (12)0.0025 (10)
C340.060 (2)0.0430 (14)0.0216 (17)0.0269 (14)0.0208 (14)0.0147 (12)
C350.056 (2)0.0329 (13)0.045 (2)0.0174 (13)0.0366 (16)0.0201 (12)
C360.0315 (15)0.0456 (14)0.0315 (18)0.0009 (12)0.0013 (12)0.0012 (11)
C370.0307 (16)0.0387 (14)0.064 (2)0.0054 (12)0.0029 (15)0.0056 (14)
C380.041 (2)0.072 (2)0.063 (3)0.0188 (16)0.0051 (17)0.0289 (18)
C390.0329 (18)0.093 (3)0.033 (2)0.0104 (17)0.0060 (14)0.0017 (17)
C400.0405 (18)0.0554 (17)0.036 (2)0.0009 (14)0.0015 (14)0.0138 (14)
C410.0383 (16)0.0397 (13)0.0287 (18)0.0027 (12)0.0033 (12)0.0060 (11)
C420.0445 (19)0.0283 (13)0.093 (3)0.0069 (12)0.0244 (19)0.0141 (15)
C430.0297 (16)0.0271 (12)0.094 (3)0.0072 (11)0.0253 (16)0.0026 (14)
C440.0370 (18)0.0374 (15)0.101 (3)0.0001 (13)0.0097 (19)0.0148 (16)
Geometric parameters (Å, º) top
K—O22.6051 (16)C32—C331.397 (4)
K—O12.6946 (15)C34—C351.344 (5)
K—N22.852 (2)C36—C371.378 (4)
K—N12.866 (2)C36—C411.385 (4)
K—N42.8749 (19)C37—C381.372 (5)
K—N32.890 (2)C38—C391.380 (5)
O1—C31.249 (2)C39—C401.367 (5)
O2—C51.252 (2)C40—C411.378 (4)
N1—C121.328 (3)C42—C431.355 (5)
N1—C161.360 (3)C42—C44i1.373 (4)
N2—C211.326 (3)C43—C441.390 (4)
N2—C171.357 (3)C44—C42i1.373 (4)
N3—C241.323 (3)C1—H1A0.98
N3—C281.364 (3)C1—H1B0.98
N4—C331.322 (3)C1—H1C0.98
N4—C291.355 (3)C4—H40.95
C1—C21.532 (3)C7—H7A0.98
C2—C101.531 (3)C7—H7B0.98
C2—C111.532 (3)C7—H7C0.98
C2—C31.560 (3)C8—H8A0.98
C3—C41.413 (3)C8—H8B0.98
C4—C51.412 (3)C8—H8C0.98
C5—C61.557 (3)C9—H9A0.98
C6—C81.501 (4)C9—H9B0.98
C6—C71.505 (3)C9—H9C0.98
C6—C91.517 (4)C10—H10A0.98
C12—C131.399 (4)C10—H10B0.98
C13—C141.363 (4)C10—H10C0.98
C14—C151.411 (3)C11—H11A0.98
C15—C161.408 (3)C11—H11B0.98
C15—C221.438 (3)C11—H11C0.98
C16—C171.458 (3)C12—H120.95
C17—C181.414 (3)C13—H130.95
C18—C191.408 (3)C14—H140.95
C18—C231.430 (3)C19—H190.95
C19—C201.366 (4)C20—H200.95
C20—C211.400 (3)C21—H210.95
C22—C231.346 (3)C22—H220.95
C24—C251.397 (4)C23—H230.95
C25—C261.356 (4)C24—H240.95
C26—C271.411 (4)C25—H250.95
C27—C281.409 (3)C26—H260.95
C27—C341.437 (4)C31—H310.95
C28—C291.444 (3)C32—H320.95
C29—C301.410 (3)C33—H330.95
C30—C311.416 (4)C34—H340.95
C30—C351.428 (4)C35—H350.95
C31—C321.360 (5)
O2—K—O166.14 (5)C31—C32—C33118.3 (3)
O2—K—N2123.01 (5)N4—C33—C32124.1 (3)
O1—K—N275.49 (5)C35—C34—C27120.3 (3)
O2—K—N1118.37 (6)C34—C35—C30121.5 (3)
O1—K—N1126.21 (5)C37—C36—C41119.3 (3)
N2—K—N157.30 (5)C38—C37—C36120.1 (3)
O2—K—N4139.87 (6)C37—C38—C39120.6 (3)
O1—K—N4131.66 (6)C40—C39—C38119.3 (3)
N2—K—N497.12 (6)C39—C40—C41120.7 (3)
N1—K—N481.98 (6)C40—C41—C36120.0 (3)
O2—K—N383.86 (6)C43—C42—C44i120.1 (3)
O1—K—N3112.11 (5)C42—C43—C44120.5 (3)
N2—K—N3151.44 (6)C42i—C44—C43119.3 (3)
N1—K—N3121.67 (5)C2—C1—H1A109
N4—K—N356.63 (6)C2—C1—H1B110
C3—O1—K136.73 (14)C2—C1—H1C110
C5—O2—K139.17 (14)H1A—C1—H1B109
C12—N1—C16117.3 (2)H1A—C1—H1C109
C12—N1—K119.26 (16)H1B—C1—H1C109
C16—N1—K119.80 (13)C3—C4—H4117
C21—N2—C17117.4 (2)C5—C4—H4117
C21—N2—K118.88 (15)C6—C7—H7A109
C17—N2—K120.89 (14)C6—C7—H7B109
C24—N3—C28117.2 (2)C6—C7—H7C109
C24—N3—K119.45 (16)H7A—C7—H7B109
C28—N3—K120.72 (15)H7A—C7—H7C109
C33—N4—C29117.8 (2)H7B—C7—H7C110
C33—N4—K118.67 (17)C6—C8—H8A109
C29—N4—K121.08 (14)C6—C8—H8B109
C10—C2—C11109.19 (19)C6—C8—H8C109
C10—C2—C1108.36 (18)H8A—C8—H8B110
C11—C2—C1108.5 (2)H8A—C8—H8C109
C10—C2—C3114.97 (18)H8B—C8—H8C110
C11—C2—C3108.41 (18)C6—C9—H9A110
C1—C2—C3107.21 (16)C6—C9—H9B109
O1—C3—C4125.32 (18)C6—C9—H9C110
O1—C3—C2115.46 (18)H9A—C9—H9B109
C4—C3—C2119.21 (17)H9A—C9—H9C109
C5—C4—C3126.05 (18)H9B—C9—H9C109
O2—C5—C4125.9 (2)C2—C10—H10A109
O2—C5—C6115.19 (18)C2—C10—H10B109
C4—C5—C6118.94 (17)C2—C10—H10C109
C8—C6—C7109.8 (3)H10A—C10—H10B110
C8—C6—C9109.3 (3)H10A—C10—H10C109
C7—C6—C9106.1 (3)H10B—C10—H10C110
C8—C6—C5107.4 (2)C2—C11—H11A109
C7—C6—C5115.4 (2)C2—C11—H11B109
C9—C6—C5108.8 (2)C2—C11—H11C109
N1—C12—C13123.9 (2)H11A—C11—H11B109
C14—C13—C12119.2 (2)H11A—C11—H11C109
C13—C14—C15118.9 (2)H11B—C11—H11C110
C16—C15—C14118.0 (2)N1—C12—H12118
C16—C15—C22120.3 (2)C13—C12—H12118
C14—C15—C22121.8 (2)C12—C13—H13120
N1—C16—C15122.69 (19)C14—C13—H13120
N1—C16—C17118.3 (2)C13—C14—H14121
C15—C16—C17119.0 (2)C15—C14—H14120
N2—C17—C18123.1 (2)C18—C19—H19120
N2—C17—C16118.0 (2)C20—C19—H19120
C18—C17—C16118.9 (2)C19—C20—H20120
C19—C18—C17117.3 (2)C21—C20—H20121
C19—C18—C23122.8 (2)N2—C21—H21118
C17—C18—C23119.9 (2)C20—C21—H21118
C20—C19—C18119.4 (2)C15—C22—H22120
C19—C20—C21119.1 (2)C23—C22—H22120
N2—C21—C20123.8 (2)C18—C23—H23119
C23—C22—C15120.4 (2)C22—C23—H23119
C22—C23—C18121.6 (2)N3—C24—H24118
N3—C24—C25124.1 (3)C25—C24—H24118
C26—C25—C24119.3 (3)C24—C25—H25120
C25—C26—C27119.1 (3)C26—C25—H25120
C28—C27—C26117.9 (3)C25—C26—H26120
C28—C27—C34119.8 (3)C27—C26—H26120
C26—C27—C34122.3 (3)C30—C31—H31120
N3—C28—C27122.4 (2)C32—C31—H31120
N3—C28—C29117.8 (2)C31—C32—H32121
C27—C28—C29119.8 (2)C33—C32—H32121
N4—C29—C30122.7 (2)N4—C33—H33118
N4—C29—C28118.8 (2)C32—C33—H33118
C30—C29—C28118.5 (2)C27—C34—H34120
C29—C30—C31116.9 (3)C35—C34—H34120
C29—C30—C35120.1 (3)C30—C35—H35119
C31—C30—C35123.0 (3)C34—C35—H35119
C32—C31—C30120.1 (2)
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[K(C11H19O2)(C12H8N2)2]·1.5C6H6
Mr699.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.110 (2), 22.419 (5), 17.099 (3)
β (°) 98.55 (3)
V3)3832.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerStoe IPDS
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26291, 9857, 6012
Rint0.087
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.126, 1.00
No. of reflections9857
No. of parameters466
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: IPDS (Stoe & Cie, 1996), IPDS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff et al., 1996), publCIF (Version 1.0c; Westrip, 2007).

Selected geometric parameters (Å, º) top
K—O22.6051 (16)K—N12.866 (2)
K—O12.6946 (15)K—N42.8749 (19)
K—N22.852 (2)K—N32.890 (2)
O2—K—O166.14 (5)N4—K—N356.63 (6)
N2—K—N157.30 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds