Download citation
Download citation
link to html
In the crystal structure of the title compound, C11H14N2O, there are two crystallographically independent mol­ecules in the asymmetric unit, which are connected into dimers via N—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031662/nc2042sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031662/nc2042Isup2.hkl
Contains datablock I

CCDC reference: 657664

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.056
  • wR factor = 0.191
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 47 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The structure determination of the title compound (I) was undertaken as a part of our project on the synthesis of new schiff base compounds. The crystal structure of the title compound consists of two crystallographically independent molecules of similar conformation. Both molecules are are connected into dimers via N—H···O hydrogen bonding between the amino and the carbonyl group. Bond lengths and angles of these hydrogen bonds shows, that this is a strong interaction.

Related literature top

Do you wish to cite any related literature?

Experimental top

Acetophenone (0.1 mol)and propionylhydrazine (0.1 mol)were mixed in ethanol (30 ml) and were heated under reflux for 5 h. The mixture was transfered into water to afford a colourless solid if I, which were filtered off, washed with water and dried at room temperature. Single crystals of the title compound were obtained by recrystallization from EtOH at room temperature.

Refinement top

C—H H atoms were positioned with idealized geometry and refined isotropic using a riding model with C—H distances of =0.93–0.97Å and Uiso=1.2–1.5Ueq(parent atom). The N—H H atoms were located in difference map, their bond lengths set to ideal values and afterwards they were refined using a riding model.

Structure description top

The structure determination of the title compound (I) was undertaken as a part of our project on the synthesis of new schiff base compounds. The crystal structure of the title compound consists of two crystallographically independent molecules of similar conformation. Both molecules are are connected into dimers via N—H···O hydrogen bonding between the amino and the carbonyl group. Bond lengths and angles of these hydrogen bonds shows, that this is a strong interaction.

Do you wish to cite any related literature?

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Acetophenone propionylhydrazone top
Crystal data top
C11H14N2OZ = 4
Mr = 190.24F(000) = 408
Triclinic, P1Dx = 1.163 Mg m3
a = 9.554 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.007 (8) ÅCell parameters from 1128 reflections
c = 12.555 (9) Åθ = 2.3–25.7°
α = 76.603 (13)°µ = 0.08 mm1
β = 68.836 (12)°T = 293 K
γ = 81.643 (13)°Block, colorless
V = 1086.4 (14) Å30.22 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3810 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1110
Tmin = 0.983, Tmax = 0.992k = 1011
5630 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0791P)2 + 0.1785P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
3810 reflectionsΔρmax = 0.18 e Å3
258 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
C11H14N2Oγ = 81.643 (13)°
Mr = 190.24V = 1086.4 (14) Å3
Triclinic, P1Z = 4
a = 9.554 (7) ÅMo Kα radiation
b = 10.007 (8) ŵ = 0.08 mm1
c = 12.555 (9) ÅT = 293 K
α = 76.603 (13)°0.22 × 0.20 × 0.10 mm
β = 68.836 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3810 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1798 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.992Rint = 0.028
5630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
3810 reflectionsΔρmin = 0.13 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1027 (3)0.6056 (2)0.53651 (18)0.0901 (8)
O20.1040 (2)0.1031 (2)0.54184 (17)0.0854 (7)
N10.1903 (2)0.6784 (2)0.2353 (2)0.0581 (6)
N20.1246 (3)0.6901 (2)0.3508 (2)0.0648 (7)
H20.05860.75650.37010.078*
N30.1916 (2)0.1813 (2)0.2399 (2)0.0557 (6)
N40.1230 (3)0.1879 (2)0.3564 (2)0.0634 (7)
H40.05240.25050.37690.076*
C10.3038 (3)0.6283 (3)0.0099 (3)0.0641 (8)
H10.30300.55400.07030.077*
C20.3745 (4)0.6114 (4)0.1036 (3)0.0765 (10)
H2A0.42000.52600.11900.092*
C30.3779 (4)0.7198 (4)0.1938 (3)0.0876 (11)
H30.42520.70800.27040.105*
C40.3116 (4)0.8454 (4)0.1710 (3)0.0891 (11)
H4A0.31480.91920.23230.107*
C50.2397 (3)0.8634 (3)0.0571 (3)0.0715 (9)
H50.19510.94940.04280.086*
C60.2334 (3)0.7548 (3)0.0357 (2)0.0530 (7)
C70.1579 (3)0.7736 (3)0.1579 (2)0.0531 (7)
C80.0530 (4)0.8986 (3)0.1836 (3)0.0752 (9)
H8A0.03130.87290.25280.113*
H8B0.01810.93650.11930.113*
H8C0.10530.96610.19500.113*
C90.1646 (3)0.5966 (3)0.4334 (3)0.0653 (8)
C100.2856 (4)0.4870 (3)0.3955 (3)0.0767 (10)
H10A0.37570.53010.34090.092*
H10B0.25350.43190.35550.092*
C110.3227 (4)0.3942 (4)0.4964 (3)0.1062 (14)
H11A0.35940.44750.53400.159*
H11B0.39840.32420.46830.159*
H11C0.23370.35180.55110.159*
C120.3670 (3)0.1940 (3)0.0065 (3)0.0661 (9)
H120.41550.16130.06070.079*
C130.4412 (4)0.1836 (4)0.1083 (3)0.0777 (10)
H130.53870.14290.13050.093*
C140.3726 (4)0.2329 (4)0.1901 (3)0.0799 (10)
H140.42340.22630.26750.096*
C150.2291 (4)0.2917 (3)0.1567 (3)0.0796 (10)
H150.18220.32510.21180.096*
C160.1530 (3)0.3018 (3)0.0415 (3)0.0676 (9)
H160.05530.34210.02010.081*
C170.2206 (3)0.2526 (3)0.0425 (2)0.0521 (7)
C180.1405 (3)0.2647 (3)0.1661 (2)0.0525 (7)
C190.0089 (4)0.3676 (3)0.1965 (3)0.0862 (11)
H19A0.08220.32050.23310.129*
H19B0.00460.43020.12690.129*
H19C0.02000.41810.24900.129*
C200.1663 (3)0.0963 (3)0.4384 (3)0.0621 (8)
C210.2895 (3)0.0106 (3)0.3990 (3)0.0734 (9)
H21A0.37850.03470.34510.088*
H21B0.25890.06500.35750.088*
C220.3283 (4)0.1046 (4)0.4975 (3)0.1058 (14)
H22A0.37110.05320.53270.159*
H22B0.39990.17680.46850.159*
H22C0.23900.14380.55450.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1141 (19)0.0844 (16)0.0533 (14)0.0394 (13)0.0209 (13)0.0188 (12)
O20.1033 (17)0.0857 (16)0.0496 (14)0.0328 (13)0.0186 (12)0.0157 (12)
N10.0622 (15)0.0567 (15)0.0493 (15)0.0053 (12)0.0157 (12)0.0094 (12)
N20.0728 (17)0.0587 (16)0.0508 (15)0.0214 (13)0.0159 (13)0.0118 (13)
N30.0602 (15)0.0558 (15)0.0482 (15)0.0037 (12)0.0170 (12)0.0115 (12)
N40.0691 (16)0.0602 (16)0.0502 (15)0.0189 (13)0.0159 (13)0.0120 (13)
C10.070 (2)0.060 (2)0.061 (2)0.0004 (16)0.0227 (16)0.0115 (16)
C20.085 (2)0.078 (2)0.064 (2)0.0070 (18)0.0194 (18)0.0261 (19)
C30.096 (3)0.102 (3)0.056 (2)0.009 (2)0.0174 (18)0.022 (2)
C40.104 (3)0.094 (3)0.054 (2)0.015 (2)0.0223 (19)0.006 (2)
C50.077 (2)0.068 (2)0.060 (2)0.0120 (17)0.0219 (17)0.0083 (17)
C60.0500 (17)0.0558 (18)0.0537 (18)0.0015 (14)0.0207 (14)0.0097 (15)
C70.0520 (17)0.0542 (18)0.0525 (18)0.0002 (14)0.0180 (14)0.0114 (15)
C80.096 (2)0.062 (2)0.067 (2)0.0168 (17)0.0329 (18)0.0168 (17)
C90.073 (2)0.060 (2)0.052 (2)0.0120 (16)0.0153 (17)0.0118 (17)
C100.083 (2)0.073 (2)0.063 (2)0.0287 (18)0.0220 (17)0.0167 (17)
C110.114 (3)0.102 (3)0.080 (3)0.050 (2)0.033 (2)0.014 (2)
C120.0565 (19)0.081 (2)0.060 (2)0.0008 (16)0.0204 (15)0.0116 (17)
C130.060 (2)0.101 (3)0.065 (2)0.0006 (18)0.0099 (17)0.024 (2)
C140.087 (3)0.092 (3)0.055 (2)0.009 (2)0.0150 (19)0.0176 (19)
C150.098 (3)0.084 (2)0.060 (2)0.003 (2)0.037 (2)0.0108 (18)
C160.070 (2)0.068 (2)0.063 (2)0.0074 (16)0.0270 (17)0.0093 (17)
C170.0544 (18)0.0485 (17)0.0514 (18)0.0057 (14)0.0181 (15)0.0040 (14)
C180.0515 (17)0.0495 (17)0.0526 (18)0.0038 (14)0.0185 (14)0.0055 (15)
C190.082 (2)0.091 (3)0.069 (2)0.0302 (19)0.0219 (18)0.0112 (19)
C200.068 (2)0.0589 (19)0.051 (2)0.0122 (16)0.0174 (16)0.0100 (16)
C210.076 (2)0.078 (2)0.058 (2)0.0263 (18)0.0244 (16)0.0153 (17)
C220.110 (3)0.110 (3)0.075 (3)0.053 (2)0.033 (2)0.011 (2)
Geometric parameters (Å, º) top
O1—C91.233 (3)C10—H10A0.9700
O2—C201.231 (3)C10—H10B0.9700
N1—C71.285 (3)C11—H11A0.9600
N1—N21.383 (3)C11—H11B0.9600
N2—C91.352 (4)C11—H11C0.9600
N2—H20.8600C12—C131.379 (4)
N3—C181.282 (3)C12—C171.390 (4)
N3—N41.384 (3)C12—H120.9300
N4—C201.353 (3)C13—C141.373 (4)
N4—H40.8600C13—H130.9300
C1—C21.377 (4)C14—C151.366 (4)
C1—C61.395 (4)C14—H140.9300
C1—H10.9300C15—C161.385 (4)
C2—C31.369 (4)C15—H150.9300
C2—H2A0.9300C16—C171.389 (4)
C3—C41.366 (5)C16—H160.9300
C3—H30.9300C17—C181.487 (4)
C4—C51.387 (4)C18—C191.499 (4)
C4—H4A0.9300C19—H19A0.9600
C5—C61.387 (4)C19—H19B0.9600
C5—H50.9300C19—H19C0.9600
C6—C71.485 (4)C20—C211.495 (4)
C7—C81.504 (4)C21—C221.498 (4)
C8—H8A0.9600C21—H21A0.9700
C8—H8B0.9600C21—H21B0.9700
C8—H8C0.9600C22—H22A0.9600
C9—C101.497 (4)C22—H22B0.9600
C10—C111.508 (4)C22—H22C0.9600
C7—N1—N2118.3 (2)H11A—C11—H11B109.5
C9—N2—N1119.6 (2)C10—C11—H11C109.5
C9—N2—H2120.2H11A—C11—H11C109.5
N1—N2—H2120.2H11B—C11—H11C109.5
C18—N3—N4118.1 (2)C13—C12—C17121.0 (3)
C20—N4—N3120.4 (2)C13—C12—H12119.5
C20—N4—H4119.8C17—C12—H12119.5
N3—N4—H4119.8C14—C13—C12120.6 (3)
C2—C1—C6121.2 (3)C14—C13—H13119.7
C2—C1—H1119.4C12—C13—H13119.7
C6—C1—H1119.4C15—C14—C13119.4 (3)
C3—C2—C1120.3 (3)C15—C14—H14120.3
C3—C2—H2A119.8C13—C14—H14120.3
C1—C2—H2A119.8C14—C15—C16120.6 (3)
C4—C3—C2119.7 (3)C14—C15—H15119.7
C4—C3—H3120.1C16—C15—H15119.7
C2—C3—H3120.1C15—C16—C17120.8 (3)
C3—C4—C5120.4 (3)C15—C16—H16119.6
C3—C4—H4A119.8C17—C16—H16119.6
C5—C4—H4A119.8C16—C17—C12117.7 (3)
C4—C5—C6120.9 (3)C16—C17—C18121.3 (3)
C4—C5—H5119.6C12—C17—C18121.1 (3)
C6—C5—H5119.6N3—C18—C17115.1 (3)
C5—C6—C1117.4 (3)N3—C18—C19124.9 (3)
C5—C6—C7121.2 (3)C17—C18—C19120.0 (3)
C1—C6—C7121.4 (3)C18—C19—H19A109.5
N1—C7—C6115.4 (3)C18—C19—H19B109.5
N1—C7—C8124.7 (3)H19A—C19—H19B109.5
C6—C7—C8119.9 (3)C18—C19—H19C109.5
C7—C8—H8A109.5H19A—C19—H19C109.5
C7—C8—H8B109.5H19B—C19—H19C109.5
H8A—C8—H8B109.5O2—C20—N4119.7 (3)
C7—C8—H8C109.5O2—C20—C21122.3 (3)
H8A—C8—H8C109.5N4—C20—C21118.0 (3)
H8B—C8—H8C109.5C20—C21—C22112.9 (3)
O1—C9—N2119.3 (3)C20—C21—H21A109.0
O1—C9—C10122.2 (3)C22—C21—H21A109.0
N2—C9—C10118.4 (3)C20—C21—H21B109.0
C9—C10—C11112.4 (3)C22—C21—H21B109.0
C9—C10—H10A109.1H21A—C21—H21B107.8
C11—C10—H10A109.1C21—C22—H22A109.5
C9—C10—H10B109.1C21—C22—H22B109.5
C11—C10—H10B109.1H22A—C22—H22B109.5
H10A—C10—H10B107.8C21—C22—H22C109.5
C10—C11—H11A109.5H22A—C22—H22C109.5
C10—C11—H11B109.5H22B—C22—H22C109.5
C7—N1—N2—C9175.3 (3)N2—C9—C10—C11177.6 (3)
C18—N3—N4—C20175.7 (3)C17—C12—C13—C140.9 (5)
C6—C1—C2—C30.5 (5)C12—C13—C14—C150.5 (5)
C1—C2—C3—C40.4 (5)C13—C14—C15—C160.0 (5)
C2—C3—C4—C50.6 (6)C14—C15—C16—C170.0 (5)
C3—C4—C5—C60.1 (5)C15—C16—C17—C120.4 (4)
C4—C5—C6—C10.9 (4)C15—C16—C17—C18179.2 (3)
C4—C5—C6—C7179.4 (3)C13—C12—C17—C160.8 (4)
C2—C1—C6—C51.2 (4)C13—C12—C17—C18179.6 (3)
C2—C1—C6—C7179.6 (3)N4—N3—C18—C17179.5 (2)
N2—N1—C7—C6179.6 (2)N4—N3—C18—C191.4 (4)
N2—N1—C7—C80.1 (4)C16—C17—C18—N3159.4 (3)
C5—C6—C7—N1163.5 (3)C12—C17—C18—N321.8 (4)
C1—C6—C7—N114.9 (4)C16—C17—C18—C1919.8 (4)
C5—C6—C7—C816.0 (4)C12—C17—C18—C19159.0 (3)
C1—C6—C7—C8165.6 (3)N3—N4—C20—O2179.8 (3)
N1—N2—C9—O1178.1 (3)N3—N4—C20—C210.0 (4)
N1—N2—C9—C103.2 (4)O2—C20—C21—C220.8 (5)
O1—C9—C10—C111.1 (5)N4—C20—C21—C22179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.112.954 (3)166
N4—H4···O1i0.862.102.937 (3)166
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H14N2O
Mr190.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.554 (7), 10.007 (8), 12.555 (9)
α, β, γ (°)76.603 (13), 68.836 (12), 81.643 (13)
V3)1086.4 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.983, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5630, 3810, 1798
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.191, 1.01
No. of reflections3810
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.112.954 (3)166.2
N4—H4···O1i0.862.102.937 (3)165.5
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds