Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cd(C18H10NO2)(NCS)(CH3OH)]n, the CdII atom is O,O′-chelated by the monoanionic carboxyl­ate group and N,N′-chelated by the diaza­fluorene portion of a symmetry-related ligand. The geometry is seven-coordinate penta­gonal bipyramidal. The crystal structure exhibits intermolecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019460/ng2247sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019460/ng2247Isup2.hkl
Contains datablock I

CCDC reference: 657601

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.029
  • wR factor = 0.073
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C19
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

4,5-Diazafluorene-9-one and its derivatives are excellent chelating agents (Wang et al., 1998; Xiao et al., 2000; Xu et al., 2003). 4-(4,5-Diazafluoren-9-ylidieneamino)benzoic acid possesses a carboxylic acid substituent, and is then capable of binding through both the diazafluorene as well as the carboxyl parts of the deprotonated carboxylic acid.

In the crystal structure of the title complex (I), the CdII atom shows pentagonal bipyramid coordination. The carboxylate group functions in µ3 bridging mode; it chelates to two metal atoms through the carboxyl and diazafluorene parts and additionally, it uses the oxygen atom of the carboxyl portion to interact with a third metal atom (Fig. 1). Such a bridging mode gives rise to a layer. The coordinated methanol molecular engages in a hydrogen bonding interaction to lead to a three-dimensional hydrogen-bonded structure.

Related literature top

For related literature, see: Wang et al. (1998); Xiao et al. (2000); Xu et al. (2003).

Experimental top

The dafb compound was synthesized by the condensation of 4,5-diazafluorene-9-one with 4-amino-benzoic acid in 1:1 molar ratio in anhydrous ethanol. The title complex was prepared by the reaction of Cd(NO3)2.4H2O (0.308 g, 1.0 mmol), NaSCN (0.081 g, 1.0 mmol) and acid (0.301 g, 1.0 mmol) in 50 ml me thanol; the solution was heated for 2 h. Light yellow crystals were obtained by slow evaporation of the solvent.

Refinement top

H atom bonded to O atom was located in a difference map and refined with O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

4,5-Diazafluorene-9-one and its derivatives are excellent chelating agents (Wang et al., 1998; Xiao et al., 2000; Xu et al., 2003). 4-(4,5-Diazafluoren-9-ylidieneamino)benzoic acid possesses a carboxylic acid substituent, and is then capable of binding through both the diazafluorene as well as the carboxyl parts of the deprotonated carboxylic acid.

In the crystal structure of the title complex (I), the CdII atom shows pentagonal bipyramid coordination. The carboxylate group functions in µ3 bridging mode; it chelates to two metal atoms through the carboxyl and diazafluorene parts and additionally, it uses the oxygen atom of the carboxyl portion to interact with a third metal atom (Fig. 1). Such a bridging mode gives rise to a layer. The coordinated methanol molecular engages in a hydrogen bonding interaction to lead to a three-dimensional hydrogen-bonded structure.

For related literature, see: Wang et al. (1998); Xiao et al. (2000); Xu et al. (2003).

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title complex showing the atom-numbering scheme.
Poly[[µ3-4-(4,5-diazafluoren-9-ylideneamino)benzoato- κ3O,O':N](methanol-κO)(thiocyanoato- κN)cadmium(II)] top
Crystal data top
[Cd(C18H10NO2)(NCS)(CH4O)]F(000) = 1000
Mr = 502.81Dx = 1.711 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6196 reflections
a = 8.3118 (7) Åθ = 2.4–28.0°
b = 8.8422 (7) ŵ = 1.26 mm1
c = 26.829 (2) ÅT = 291 K
β = 98.193 (1)°Block, yellow
V = 1951.7 (3) Å30.28 × 0.18 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
4767 independent reflections
Radiation source: fine-focus sealed tube4054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.718, Tmax = 0.871k = 1111
17426 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0347P)2 + 1.156P]
where P = (Fo2 + 2Fc2)/3
4767 reflections(Δ/σ)max = 0.002
263 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Cd(C18H10NO2)(NCS)(CH4O)]V = 1951.7 (3) Å3
Mr = 502.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3118 (7) ŵ = 1.26 mm1
b = 8.8422 (7) ÅT = 291 K
c = 26.829 (2) Å0.28 × 0.18 × 0.11 mm
β = 98.193 (1)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4767 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4054 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.871Rint = 0.023
17426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters not refined
S = 1.01Δρmax = 0.73 e Å3
4767 reflectionsΔρmin = 0.80 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.70919 (2)0.48390 (2)0.546677 (6)0.03675 (7)
S10.95499 (18)0.93208 (14)0.63347 (4)0.1048 (4)
O10.7890 (2)0.5393 (3)0.46472 (7)0.0523 (5)
O20.5646 (2)0.4085 (2)0.46208 (6)0.0444 (4)
O30.9340 (2)0.3282 (2)0.54939 (7)0.0519 (5)
H3O1.02090.37180.54900.078*
N10.5713 (2)0.2399 (2)0.06768 (6)0.0354 (4)
N20.7869 (3)0.0638 (3)0.14334 (7)0.0401 (5)
N30.5485 (3)0.4793 (3)0.22597 (8)0.0481 (6)
N40.8030 (3)0.7114 (3)0.57061 (9)0.0597 (7)
C10.4633 (3)0.3307 (3)0.04010 (9)0.0427 (6)
H10.44020.31370.00560.051*
C20.3851 (4)0.4483 (3)0.06077 (10)0.0495 (7)
H20.31100.50760.04010.059*
C30.4157 (4)0.4792 (3)0.11212 (10)0.0462 (6)
H30.36180.55620.12660.055*
C40.5301 (3)0.3895 (3)0.14043 (8)0.0372 (5)
C50.6003 (3)0.2731 (3)0.11655 (8)0.0332 (5)
C60.7071 (3)0.1857 (3)0.15418 (8)0.0344 (5)
C70.7030 (3)0.2487 (3)0.20194 (8)0.0352 (5)
C80.7956 (3)0.1783 (3)0.24217 (9)0.0439 (6)
H80.79940.21470.27480.053*
C90.8828 (4)0.0508 (3)0.23184 (10)0.0497 (7)
H90.94750.00120.25800.060*
C100.8745 (4)0.0036 (3)0.18286 (10)0.0488 (7)
H100.93240.09060.17740.059*
C110.5921 (3)0.3827 (3)0.19545 (8)0.0375 (5)
C120.5947 (3)0.4675 (3)0.27888 (9)0.0414 (6)
C130.7029 (3)0.5695 (3)0.30414 (9)0.0444 (6)
H130.75470.63970.28610.053*
C140.7345 (3)0.5677 (3)0.35641 (9)0.0430 (6)
H140.81130.63330.37320.052*
C150.6512 (3)0.4675 (3)0.38363 (8)0.0352 (5)
C160.5414 (3)0.3666 (3)0.35808 (9)0.0427 (6)
H160.48560.29960.37610.051*
C170.5141 (4)0.3645 (3)0.30582 (9)0.0483 (6)
H170.44230.29470.28890.058*
C180.6715 (3)0.4716 (3)0.43996 (9)0.0379 (5)
C190.8661 (4)0.8014 (3)0.59673 (10)0.0527 (7)
C200.9307 (4)0.1948 (4)0.52030 (14)0.0719 (9)
H20A0.86450.12030.53370.108*
H20B1.03920.15660.52130.108*
H20C0.88600.21690.48610.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03888 (11)0.04895 (12)0.02229 (9)0.00736 (8)0.00388 (7)0.00269 (7)
S10.1406 (11)0.0846 (7)0.0753 (7)0.0278 (7)0.0325 (7)0.0164 (6)
O10.0524 (12)0.0758 (13)0.0274 (8)0.0102 (10)0.0012 (8)0.0017 (8)
O20.0512 (11)0.0575 (11)0.0263 (8)0.0008 (9)0.0115 (7)0.0070 (8)
O30.0420 (10)0.0662 (13)0.0472 (10)0.0041 (9)0.0050 (8)0.0049 (9)
N10.0417 (11)0.0454 (11)0.0190 (8)0.0020 (9)0.0041 (8)0.0035 (7)
N20.0423 (12)0.0493 (12)0.0292 (10)0.0053 (10)0.0068 (8)0.0049 (9)
N30.0696 (16)0.0512 (13)0.0230 (10)0.0145 (11)0.0043 (10)0.0049 (9)
N40.0773 (18)0.0629 (16)0.0371 (12)0.0212 (14)0.0015 (12)0.0017 (11)
C10.0541 (16)0.0492 (15)0.0232 (11)0.0006 (12)0.0002 (10)0.0007 (10)
C20.0613 (18)0.0505 (15)0.0333 (13)0.0104 (13)0.0052 (12)0.0029 (11)
C30.0586 (17)0.0446 (14)0.0346 (13)0.0108 (12)0.0035 (12)0.0030 (10)
C40.0477 (14)0.0412 (13)0.0225 (10)0.0008 (11)0.0046 (9)0.0015 (9)
C50.0374 (12)0.0408 (12)0.0218 (10)0.0036 (10)0.0057 (9)0.0010 (9)
C60.0360 (12)0.0444 (13)0.0231 (10)0.0012 (10)0.0055 (9)0.0019 (9)
C70.0388 (13)0.0449 (13)0.0222 (10)0.0009 (10)0.0055 (9)0.0026 (9)
C80.0482 (15)0.0579 (16)0.0246 (11)0.0038 (12)0.0021 (10)0.0023 (10)
C90.0499 (16)0.0644 (18)0.0325 (13)0.0128 (14)0.0021 (11)0.0015 (12)
C100.0482 (15)0.0586 (17)0.0390 (14)0.0134 (13)0.0042 (12)0.0037 (11)
C110.0463 (14)0.0435 (13)0.0224 (10)0.0012 (11)0.0036 (9)0.0019 (9)
C120.0541 (15)0.0477 (14)0.0226 (10)0.0152 (12)0.0064 (10)0.0059 (9)
C130.0458 (15)0.0603 (16)0.0284 (12)0.0017 (12)0.0102 (10)0.0059 (11)
C140.0405 (14)0.0609 (16)0.0273 (11)0.0045 (12)0.0044 (10)0.0000 (11)
C150.0389 (12)0.0459 (13)0.0213 (10)0.0064 (10)0.0062 (9)0.0006 (9)
C160.0571 (16)0.0412 (13)0.0311 (12)0.0005 (12)0.0110 (11)0.0016 (10)
C170.0671 (18)0.0434 (14)0.0330 (13)0.0008 (13)0.0020 (12)0.0095 (11)
C180.0446 (14)0.0451 (13)0.0245 (11)0.0064 (11)0.0070 (10)0.0012 (9)
C190.0621 (18)0.0596 (18)0.0344 (13)0.0082 (14)0.0001 (12)0.0070 (12)
C200.066 (2)0.068 (2)0.083 (2)0.0048 (17)0.0171 (19)0.0144 (18)
Geometric parameters (Å, º) top
Cd1—N42.219 (3)C3—H30.9300
Cd1—O32.314 (2)C4—C51.385 (3)
Cd1—N1i2.394 (2)C4—C111.494 (3)
Cd1—O12.4351 (19)C5—C61.466 (3)
Cd1—O2ii2.4466 (19)C6—C71.402 (3)
Cd1—O22.5027 (17)C7—C81.382 (3)
Cd1—N2i2.6161 (19)C7—C111.496 (3)
S1—C191.626 (3)C8—C91.389 (4)
O1—C181.252 (3)C8—H80.9300
O2—C181.266 (3)C9—C101.392 (4)
O2—Cd1ii2.4466 (18)C9—H90.9300
O3—C201.412 (4)C10—H100.9300
O3—H3O0.8200C12—C131.381 (4)
N1—C51.332 (3)C12—C171.393 (4)
N1—C11.345 (3)C13—C141.390 (3)
N1—Cd1iii2.394 (2)C13—H130.9300
N2—C61.319 (3)C14—C151.394 (4)
N2—C101.338 (3)C14—H140.9300
N2—Cd1iii2.6161 (19)C15—C161.386 (4)
N3—C111.272 (3)C15—C181.497 (3)
N3—C121.421 (3)C16—C171.388 (3)
N4—C191.138 (4)C16—H160.9300
C1—C21.384 (4)C17—H170.9300
C1—H10.9300C20—H20A0.9600
C2—C31.392 (4)C20—H20B0.9600
C2—H20.9300C20—H20C0.9600
C3—C41.380 (4)
N4—Cd1—O3106.34 (9)N1—C5—C6124.7 (2)
N4—Cd1—N1i147.31 (8)C4—C5—C6109.10 (19)
O3—Cd1—N1i84.96 (7)N2—C6—C7127.2 (2)
N4—Cd1—O187.08 (8)N2—C6—C5123.57 (19)
O3—Cd1—O179.96 (7)C7—C6—C5109.2 (2)
N1i—Cd1—O1125.45 (7)C8—C7—C6116.8 (2)
N4—Cd1—O2ii87.65 (9)C8—C7—C11135.5 (2)
O3—Cd1—O2ii165.99 (7)C6—C7—C11107.66 (19)
N1i—Cd1—O2ii82.77 (7)C7—C8—C9117.3 (2)
O1—Cd1—O2ii101.78 (6)C7—C8—H8121.4
N4—Cd1—O2127.41 (7)C9—C8—H8121.4
O3—Cd1—O298.71 (6)C8—C9—C10120.8 (2)
N1i—Cd1—O278.99 (6)C8—C9—H9119.6
O1—Cd1—O252.57 (6)C10—C9—H9119.6
O2ii—Cd1—O272.34 (7)N2—C10—C9122.8 (2)
N4—Cd1—N2i80.35 (8)N2—C10—H10118.6
O3—Cd1—N2i77.79 (7)C9—C10—H10118.6
N1i—Cd1—N2i72.08 (6)N3—C11—C4121.3 (2)
O1—Cd1—N2i150.11 (7)N3—C11—C7133.2 (2)
O2ii—Cd1—N2i104.65 (6)C4—C11—C7105.50 (19)
O2—Cd1—N2i151.04 (7)C13—C12—C17120.0 (2)
C18—O1—Cd195.20 (15)C13—C12—N3120.4 (2)
C18—O2—Cd1ii119.27 (16)C17—C12—N3119.0 (2)
C18—O2—Cd191.66 (14)C12—C13—C14120.3 (2)
Cd1ii—O2—Cd1107.66 (7)C12—C13—H13119.9
C20—O3—Cd1121.83 (19)C14—C13—H13119.9
C20—O3—H3O109.5C13—C14—C15120.0 (2)
Cd1—O3—H3O115.4C13—C14—H14120.0
C5—N1—C1115.0 (2)C15—C14—H14120.0
C5—N1—Cd1iii112.84 (15)C16—C15—C14119.4 (2)
C1—N1—Cd1iii131.95 (15)C16—C15—C18119.1 (2)
C6—N2—C10115.0 (2)C14—C15—C18121.4 (2)
C6—N2—Cd1iii106.82 (15)C15—C16—C17120.7 (2)
C10—N2—Cd1iii138.01 (17)C15—C16—H16119.7
C11—N3—C12122.2 (2)C17—C16—H16119.7
C19—N4—Cd1157.6 (2)C16—C17—C12119.6 (2)
N1—C1—C2122.9 (2)C16—C17—H17120.2
N1—C1—H1118.5C12—C17—H17120.2
C2—C1—H1118.5O1—C18—O2120.6 (2)
C1—C2—C3120.9 (2)O1—C18—C15120.9 (2)
C1—C2—H2119.5O2—C18—C15118.5 (2)
C3—C2—H2119.5N4—C19—S1179.1 (3)
C4—C3—C2116.5 (2)O3—C20—H20A109.5
C4—C3—H3121.7O3—C20—H20B109.5
C2—C3—H3121.7H20A—C20—H20B109.5
C3—C4—C5118.4 (2)O3—C20—H20C109.5
C3—C4—C11132.9 (2)H20A—C20—H20C109.5
C5—C4—C11108.6 (2)H20B—C20—H20C109.5
N1—C5—C4126.2 (2)
N4—Cd1—O1—C18144.23 (18)Cd1iii—N2—C6—C51.2 (3)
O3—Cd1—O1—C18108.61 (17)N1—C5—C6—N20.1 (4)
N1i—Cd1—O1—C1832.23 (19)C4—C5—C6—N2177.4 (2)
O2ii—Cd1—O1—C1857.24 (17)N1—C5—C6—C7177.3 (2)
O2—Cd1—O1—C180.61 (15)C4—C5—C6—C70.0 (3)
N2i—Cd1—O1—C18150.96 (16)N2—C6—C7—C81.7 (4)
N4—Cd1—O2—C1848.83 (18)C5—C6—C7—C8179.0 (2)
O3—Cd1—O2—C1869.56 (15)N2—C6—C7—C11178.1 (2)
N1i—Cd1—O2—C18152.65 (15)C5—C6—C7—C110.8 (3)
O1—Cd1—O2—C180.60 (14)C6—C7—C8—C90.7 (4)
O2ii—Cd1—O2—C18121.51 (17)C11—C7—C8—C9179.1 (3)
N2i—Cd1—O2—C18150.06 (16)C7—C8—C9—C100.8 (4)
N4—Cd1—O2—Cd1ii72.68 (12)C6—N2—C10—C90.6 (4)
O3—Cd1—O2—Cd1ii168.93 (7)Cd1iii—N2—C10—C9176.0 (2)
N1i—Cd1—O2—Cd1ii85.84 (7)C8—C9—C10—N21.5 (5)
O1—Cd1—O2—Cd1ii120.91 (10)C12—N3—C11—C4174.4 (2)
O2ii—Cd1—O2—Cd1ii0.0C12—N3—C11—C75.6 (5)
N2i—Cd1—O2—Cd1ii88.43 (14)C3—C4—C11—N35.9 (5)
N4—Cd1—O3—C20156.4 (2)C5—C4—C11—N3178.8 (2)
N1i—Cd1—O3—C2054.9 (2)C3—C4—C11—C7174.2 (3)
O1—Cd1—O3—C2072.4 (2)C5—C4—C11—C71.2 (3)
O2ii—Cd1—O3—C2026.0 (4)C8—C7—C11—N31.5 (5)
O2—Cd1—O3—C2023.1 (2)C6—C7—C11—N3178.8 (3)
N2i—Cd1—O3—C20127.7 (2)C8—C7—C11—C4178.5 (3)
O3—Cd1—N4—C1963.6 (7)C6—C7—C11—C41.2 (3)
N1i—Cd1—N4—C1943.0 (8)C11—N3—C12—C13110.8 (3)
O1—Cd1—N4—C19142.3 (7)C11—N3—C12—C1777.4 (4)
O2ii—Cd1—N4—C19115.8 (7)C17—C12—C13—C141.5 (4)
O2—Cd1—N4—C19178.7 (7)N3—C12—C13—C14173.1 (2)
N2i—Cd1—N4—C1910.5 (7)C12—C13—C14—C153.1 (4)
C5—N1—C1—C21.2 (4)C13—C14—C15—C162.3 (4)
Cd1iii—N1—C1—C2173.6 (2)C13—C14—C15—C18174.6 (2)
N1—C1—C2—C30.3 (5)C14—C15—C16—C170.0 (4)
C1—C2—C3—C41.7 (4)C18—C15—C16—C17177.1 (2)
C2—C3—C4—C52.6 (4)C15—C16—C17—C121.7 (4)
C2—C3—C4—C11177.7 (3)C13—C12—C17—C160.9 (4)
C1—N1—C5—C40.1 (4)N3—C12—C17—C16170.9 (2)
Cd1iii—N1—C5—C4175.67 (19)Cd1—O1—C18—O21.1 (3)
C1—N1—C5—C6177.0 (2)Cd1—O1—C18—C15179.1 (2)
Cd1iii—N1—C5—C61.2 (3)Cd1ii—O2—C18—O1110.3 (2)
C3—C4—C5—N11.9 (4)Cd1—O2—C18—O11.1 (3)
C11—C4—C5—N1178.0 (2)Cd1ii—O2—C18—C1567.8 (3)
C3—C4—C5—C6175.4 (2)Cd1—O2—C18—C15179.1 (2)
C11—C4—C5—C60.8 (3)C16—C15—C18—O1166.5 (2)
C10—N2—C6—C71.0 (4)C14—C15—C18—O116.5 (4)
Cd1iii—N2—C6—C7175.7 (2)C16—C15—C18—O215.4 (4)
C10—N2—C6—C5178.0 (2)C14—C15—C18—O2161.5 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1iv0.821.852.658 (3)169
Symmetry code: (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C18H10NO2)(NCS)(CH4O)]
Mr502.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.3118 (7), 8.8422 (7), 26.829 (2)
β (°) 98.193 (1)
V3)1951.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.28 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.718, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
17426, 4767, 4054
Rint0.023
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.01
No. of reflections4767
No. of parameters263
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.73, 0.80

Computer programs: SMART (Bruker 2001), SAINT (Bruker 2001), SAINT, SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Cd1—N42.219 (3)Cd1—O2ii2.4466 (19)
Cd1—O32.314 (2)Cd1—O22.5027 (17)
Cd1—N1i2.394 (2)Cd1—N2i2.6161 (19)
Cd1—O12.4351 (19)
N4—Cd1—O3106.34 (9)O3—Cd1—O298.71 (6)
N4—Cd1—N1i147.31 (8)N1i—Cd1—O278.99 (6)
O3—Cd1—N1i84.96 (7)O1—Cd1—O252.57 (6)
N4—Cd1—O187.08 (8)O2ii—Cd1—O272.34 (7)
O3—Cd1—O179.96 (7)N4—Cd1—N2i80.35 (8)
N1i—Cd1—O1125.45 (7)O3—Cd1—N2i77.79 (7)
N4—Cd1—O2ii87.65 (9)N1i—Cd1—N2i72.08 (6)
O3—Cd1—O2ii165.99 (7)O1—Cd1—N2i150.11 (7)
N1i—Cd1—O2ii82.77 (7)O2ii—Cd1—N2i104.65 (6)
O1—Cd1—O2ii101.78 (6)O2—Cd1—N2i151.04 (7)
N4—Cd1—O2127.41 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1iii0.821.852.658 (3)169.1
Symmetry code: (iii) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds