Download citation
Download citation
link to html
The title compound, [HfCl2(C6H7)2], has the Hf atom in a distorted pseudo-tetra­hedral geometry. The mol­ecule lies about a mirror plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029868/ng2285sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029868/ng2285Isup2.hkl
Contains datablock I

CCDC reference: 657600

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.026
  • wR factor = 0.064
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.05 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.24
Alert level G ABSTM02_ALERT_3_G The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.360 0.469 Tmin and Tmax expected: 0.255 0.411 RR = 1.237 Please check that your absorption correction is appropriate.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The discrete molecule has the Hf atom in a pseudotetrahedral geometry. The bond dimensions involving the metal atom are similar to those in [(η5-C5H5)2HfCl2] (Soloveichik et al., 1988) and [(η5-C2H5C5H4)2HfCl2] (Dong et al., 1982). The molecule lies about a mirror plane defined by the Hf—Cl1—Cl2 atoms.

Related literature top

For dichloridobis(η5-cyclopentadienyl)hafnium(IV), see Soloveichik et al. (1988), and for dichloridobis(η5-ethylcyclopentadienyl)hafnium(IV), see Dong et al. (1982).

For related literature, see: Lappert et al. (1981).

Experimental top

The compound was been obtained as a white powder in the reaction of (CH3C5H4)Li with HfCl4 in THF (Lappert et al., 1981). Slow crystallization from THF at 203 K yielded colourless crystals.

Refinement top

All H atoms were refined as riding on C atoms with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å, and Uiso(H) = 1.2Ueq(C) for CH groups, 1.5Ueq(C) for CH3 groups. The final difference Fourier map had a large peak at about 1 Å from Hf1.

Structure description top

The discrete molecule has the Hf atom in a pseudotetrahedral geometry. The bond dimensions involving the metal atom are similar to those in [(η5-C5H5)2HfCl2] (Soloveichik et al., 1988) and [(η5-C2H5C5H4)2HfCl2] (Dong et al., 1982). The molecule lies about a mirror plane defined by the Hf—Cl1—Cl2 atoms.

For dichloridobis(η5-cyclopentadienyl)hafnium(IV), see Soloveichik et al. (1988), and for dichloridobis(η5-ethylcyclopentadienyl)hafnium(IV), see Dong et al. (1982).

For related literature, see: Lappert et al. (1981).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry code i: x, 1/2 - y, z.
Dichloridobis(η5-methylcyclopentadienyl)hafnium(IV) top
Crystal data top
[HfCl2(C6H7)2]F(000) = 768
Mr = 407.62Dx = 2.203 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 7628 reflections
a = 12.1368 (5) Åθ = 2.1–32.3°
b = 15.4218 (6) ŵ = 8.89 mm1
c = 6.5656 (4) ÅT = 120 K
V = 1228.89 (10) Å3Prism, colourless
Z = 40.16 × 0.14 × 0.1 mm
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
1132 independent reflections
Graphite monochromator1096 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.028
0.75° ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2005)
h = 1414
Tmin = 0.36, Tmax = 0.469k = 1018
5507 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.051P)2 + 0.3835P]
where P = (Fo2 + 2Fc2)/3
1132 reflections(Δ/σ)max = 0.001
74 parametersΔρmax = 2.01 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[HfCl2(C6H7)2]V = 1228.89 (10) Å3
Mr = 407.62Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.1368 (5) ŵ = 8.89 mm1
b = 15.4218 (6) ÅT = 120 K
c = 6.5656 (4) Å0.16 × 0.14 × 0.1 mm
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
1132 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2005)
1096 reflections with I > 2σ(I)
Tmin = 0.36, Tmax = 0.469Rint = 0.028
5507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.11Δρmax = 2.01 e Å3
1132 reflectionsΔρmin = 0.66 e Å3
74 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf10.080494 (13)0.250.90179 (3)0.01576 (14)
Cl10.27234 (9)0.251.01196 (18)0.0244 (3)
Cl20.12988 (9)0.250.5433 (2)0.0231 (3)
C10.0143 (3)0.1133 (2)0.7926 (5)0.0254 (7)
H10.03670.10710.65470.031*
C20.0770 (2)0.1505 (3)0.9496 (8)0.0265 (9)
H20.14940.17320.93670.032*
C30.0140 (3)0.1482 (2)1.1292 (6)0.0266 (8)
H30.03580.16991.25850.032*
C40.0869 (3)0.1082 (4)1.0834 (7)0.0270 (12)
H40.14480.09741.17750.032*
C50.0882 (3)0.0865 (3)0.8746 (8)0.0277 (11)
C60.1786 (3)0.0414 (3)0.7601 (6)0.0409 (11)
H6A0.24980.05540.82220.061*
H6B0.17820.06060.61780.061*
H6C0.16680.02150.76550.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf10.01493 (18)0.01262 (19)0.01974 (19)00.00026 (5)0
Cl10.0182 (5)0.0260 (6)0.0289 (7)00.0023 (5)0
Cl20.0238 (6)0.0233 (6)0.0223 (5)00.0005 (5)0
C10.0314 (16)0.0187 (17)0.0262 (18)0.0100 (13)0.0001 (14)0.0005 (14)
C20.019 (2)0.017 (2)0.043 (2)0.0055 (11)0.0028 (14)0.003 (2)
C30.0326 (19)0.0187 (17)0.0285 (18)0.0076 (15)0.0119 (15)0.0009 (14)
C40.023 (2)0.020 (3)0.038 (3)0.0034 (13)0.0037 (12)0.0115 (17)
C50.029 (2)0.012 (2)0.042 (3)0.0026 (13)0.0113 (14)0.0025 (17)
C60.042 (2)0.016 (2)0.065 (3)0.0017 (14)0.023 (2)0.0012 (14)
Geometric parameters (Å, º) top
Hf1—Cl22.4286 (13)C2—C31.406 (7)
Hf1—Cl12.4381 (11)C2—H20.95
Hf1—C3i2.451 (4)C3—C41.404 (6)
Hf1—C2i2.472 (4)C3—H30.95
Hf1—C4i2.492 (5)C4—C51.411 (6)
Hf1—C1i2.507 (3)C4—H40.95
Hf1—C5i2.529 (5)C5—C61.502 (6)
C1—C21.404 (6)C6—H6A0.98
C1—C51.416 (5)C6—H6B0.98
C1—H10.95C6—H6C0.98
Cl2—Hf1—Cl192.97 (4)C2—C1—C5108.4 (4)
Cl2—Hf1—C3i134.90 (9)C2—C1—H1125.8
Cl1—Hf1—C3i105.43 (10)C5—C1—H1125.8
Cl2—Hf1—C2i108.30 (13)C1—C2—C3108.1 (3)
Cl1—Hf1—C2i134.50 (11)C1—C2—H2125.9
C3i—Hf1—C2i33.18 (16)C3—C2—H2125.9
Cl2—Hf1—C4i117.13 (12)C4—C3—C2107.8 (4)
Cl1—Hf1—C4i80.11 (8)C4—C3—H3126.1
C3i—Hf1—C4i32.99 (13)C2—C3—H3126.1
C2i—Hf1—C4i54.43 (13)C3—C4—C5108.8 (3)
Cl2—Hf1—C1i80.56 (8)C3—C4—H4125.6
Cl1—Hf1—C1i121.53 (8)C5—C4—H4125.6
C3i—Hf1—C1i54.62 (11)C4—C5—C1106.9 (4)
C2i—Hf1—C1i32.76 (14)C4—C5—C6127.2 (4)
C4i—Hf1—C1i54.05 (13)C1—C5—C6125.9 (4)
Cl2—Hf1—C5i85.55 (11)C5—C6—H6A109.5
Cl1—Hf1—C5i89.19 (9)C5—C6—H6B109.5
C3i—Hf1—C5i54.69 (14)H6A—C6—H6B109.5
C2i—Hf1—C5i54.44 (13)C5—C6—H6C109.5
C4i—Hf1—C5i32.63 (15)H6A—C6—H6C109.5
C1i—Hf1—C5i32.66 (12)H6B—C6—H6C109.5
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[HfCl2(C6H7)2]
Mr407.62
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)120
a, b, c (Å)12.1368 (5), 15.4218 (6), 6.5656 (4)
V3)1228.89 (10)
Z4
Radiation typeMo Kα
µ (mm1)8.89
Crystal size (mm)0.16 × 0.14 × 0.1
Data collection
DiffractometerOxford Diffraction KM-4 CCD
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.36, 0.469
No. of measured, independent and
observed [I > 2σ(I)] reflections
5507, 1132, 1096
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.11
No. of reflections1132
No. of parameters74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.01, 0.66

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hf1—Cl22.4286 (13)Hf1—Cl12.4381 (11)
Cl2—Hf1—Cl192.97 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds