Download citation
Download citation
link to html
The title complex, [Fe(NCS)2(C32H46N4O2)2], is a mononuclear iron(II) complex with a distorted octa­hedral coordination geometry and the central Fe2+ ion, located on an inversion centre, is coordinated by four N atoms and two O atoms from two Schiff-base ligands and two thio­cyanate anions. The Schiff base was obtained by condensation of equimolar amounts of salicylaldehyde and N-cyclo­hexyl-1,3-diamino­propane in aceto­nitrile. The crystal structure involves intermolecular N—H...O and N—H...S hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031066/om2128sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031066/om2128Isup2.hkl
Contains datablock I

CCDC reference: 658941

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.062
  • wR factor = 0.198
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.101 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.10 PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 45 Perc. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N3 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C13 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Fe1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C17 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 N1 -FE1 -N1 -C1 13.00 0.00 3.567 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 8 N1 -FE1 -N1 -C8 6.00 0.00 3.567 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 N3 -FE1 -N3 -C17 -89.00 10.00 3.567 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 16 O1 -FE1 -O1 -C3 8.00 0.00 3.567 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 53 FE1 -N3 -C17 -S1 -81.00 19.00 1.555 1.555 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 2.77
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 17 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Because of their interesting physical and biological properties, many iron complexes with amines or imines have structurally been studied (Liu et al., 2004; You & Zhu, 2004, You et al., 2004, 2005; Zhu, Xia et al., 2003). When trying to synthesize iron(II) complexes with a Schiff base, condensed from salicylaldehyde and N-cyclohexyl-1,3-diaminopropane, we isolated the title complex.

The title complex is a discrete iron(II) complex, which isisostructural to those of the nickel (Zhu, Zeng et al., 2003), the cobalt (You et al., 2003; Yue et al., 2005), and the copper complexes (Nie, 2004). The central iron(II) atom is six-coordinated by two oxygen atoms and two nitrogen atoms from two Schiff base ligands, and by two nitrogen atoms from two thiocyanate anions. The Schiff base acts as a bidentate ligand with the amine nitrogen atom uncoordinated. The iron(II) atom is in a distorted octahedral coordination geometry and is located on an inversion centre.

In the crystal structure, the intramolecular (N2—H2B···O1i, symmetry code -x, -y + 1, -z + 2) and intermolecular (N2—H2A···S1ii, symmetry code -x, -y + 2, -z + 2) hydrogen bonds link the molecules to form one-dimensional chains along b axis. As expected, the cyclohexyl groups in the complex are in chair conformations.

Related literature top

For related literature, see: Liu et al. (2004); Nie (2004); You et al. (2003, 2004, 2005); Yue et al. (2005); You & Zhu (2004); Zhu, Xia et al. (2003); Zhu, Zeng et al. (2003).

Experimental top

In a similar procedure to that of Zhu, Zeng et al. (2003) the title complex was prepared. Yield 43%.

Refinement top

C– and N-bound H atoms were included in the riding model approximation with C—H = 0.93–0.97 Å and N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Because of their interesting physical and biological properties, many iron complexes with amines or imines have structurally been studied (Liu et al., 2004; You & Zhu, 2004, You et al., 2004, 2005; Zhu, Xia et al., 2003). When trying to synthesize iron(II) complexes with a Schiff base, condensed from salicylaldehyde and N-cyclohexyl-1,3-diaminopropane, we isolated the title complex.

The title complex is a discrete iron(II) complex, which isisostructural to those of the nickel (Zhu, Zeng et al., 2003), the cobalt (You et al., 2003; Yue et al., 2005), and the copper complexes (Nie, 2004). The central iron(II) atom is six-coordinated by two oxygen atoms and two nitrogen atoms from two Schiff base ligands, and by two nitrogen atoms from two thiocyanate anions. The Schiff base acts as a bidentate ligand with the amine nitrogen atom uncoordinated. The iron(II) atom is in a distorted octahedral coordination geometry and is located on an inversion centre.

In the crystal structure, the intramolecular (N2—H2B···O1i, symmetry code -x, -y + 1, -z + 2) and intermolecular (N2—H2A···S1ii, symmetry code -x, -y + 2, -z + 2) hydrogen bonds link the molecules to form one-dimensional chains along b axis. As expected, the cyclohexyl groups in the complex are in chair conformations.

For related literature, see: Liu et al. (2004); Nie (2004); You et al. (2003, 2004, 2005); Yue et al. (2005); You & Zhu (2004); Zhu, Xia et al. (2003); Zhu, Zeng et al. (2003).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code for unlabelled atoms: -x, -y + 1, -z + 2.]
trans-Bis{2-[3-(cyclohexylamino)propyliminomethyl]phenolato- κ2N,O}bis(thiocyanato-κN)iron(II) top
Crystal data top
[Fe(NCS)2(C32H46N4O2)2]F(000) = 736
Mr = 692.75Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.912 (7) ÅCell parameters from 1885 reflections
b = 7.797 (5) Åθ = 3.4–27.0°
c = 20.778 (13) ŵ = 0.59 mm1
β = 96.899 (13)°T = 293 K
V = 1755.1 (19) Å3Prism, red
Z = 20.30 × 0.20 × 0.15 mm
Data collection top
Bruker APEX area-detector
diffractometer
2975 independent reflections
Radiation source: fine-focus sealed tube1337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1012
Tmin = 0.843, Tmax = 0.917k = 97
7131 measured reflectionsl = 1224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0924P)2]
where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Fe(NCS)2(C32H46N4O2)2]V = 1755.1 (19) Å3
Mr = 692.75Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.912 (7) ŵ = 0.59 mm1
b = 7.797 (5) ÅT = 293 K
c = 20.778 (13) Å0.30 × 0.20 × 0.15 mm
β = 96.899 (13)°
Data collection top
Bruker APEX area-detector
diffractometer
2975 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1337 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.917Rint = 0.101
7131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 0.85Δρmax = 0.51 e Å3
2975 reflectionsΔρmin = 0.56 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.50001.00000.0428 (4)
N10.0966 (4)0.6470 (7)1.0731 (3)0.0574 (14)
N20.2901 (4)0.7562 (6)0.9480 (2)0.0560 (14)
H2A0.29190.87020.94150.067*
H2B0.21090.72210.93970.067*
N30.1560 (5)0.6574 (7)1.0106 (3)0.0685 (16)
O10.0527 (4)0.3417 (5)1.0693 (2)0.0609 (12)
S10.32276 (16)0.8260 (2)1.08020 (10)0.0731 (6)
C10.1231 (5)0.5937 (10)1.1321 (4)0.0647 (19)
H10.16270.67191.16140.078*
C20.0982 (5)0.4266 (10)1.1577 (3)0.0590 (18)
C30.0147 (5)0.3076 (9)1.1257 (3)0.0578 (17)
C40.0015 (6)0.1509 (9)1.1568 (3)0.0629 (18)
H40.05150.06861.13660.075*
C50.0640 (7)0.1157 (11)1.2159 (4)0.073 (2)
H50.05340.01011.23530.088*
C60.1438 (7)0.2356 (12)1.2477 (4)0.081 (2)
H60.18560.21201.28840.097*
C70.1591 (6)0.3859 (11)1.2186 (3)0.069 (2)
H70.21260.46631.23980.083*
C80.1343 (6)0.8239 (9)1.0603 (3)0.0663 (19)
H8A0.10640.89951.09270.080*
H8B0.09440.85961.01820.080*
C90.2736 (6)0.8421 (9)1.0616 (3)0.073 (2)
H9A0.29160.95891.04970.087*
H9B0.31170.82411.10570.087*
C100.3333 (6)0.7209 (9)1.0174 (3)0.0674 (19)
H10A0.42230.73371.02490.081*
H10B0.31340.60351.02750.081*
C110.3644 (5)0.6695 (8)0.8995 (3)0.0569 (17)
H110.37470.54820.91140.068*
C120.4912 (6)0.7514 (11)0.9035 (4)0.095 (3)
H12A0.53500.73440.94640.114*
H12B0.48280.87380.89580.114*
C130.5644 (7)0.6705 (14)0.8526 (4)0.111 (3)
H13A0.64330.72840.85360.134*
H13B0.58050.55100.86350.134*
C140.4981 (7)0.6816 (11)0.7869 (4)0.092 (3)
H14A0.54510.62310.75680.110*
H14B0.49020.80100.77400.110*
C150.3731 (7)0.6032 (12)0.7838 (4)0.098 (3)
H15A0.38150.48070.79120.118*
H15B0.32950.62040.74080.118*
C160.2983 (6)0.6799 (11)0.8336 (3)0.083 (2)
H16A0.28040.79900.82280.099*
H16B0.22040.61930.83220.099*
C170.2235 (6)0.7290 (8)1.0391 (3)0.0538 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0333 (7)0.0486 (8)0.0487 (7)0.0031 (5)0.0143 (5)0.0059 (6)
N10.045 (3)0.065 (4)0.066 (4)0.003 (3)0.021 (3)0.013 (3)
N20.046 (3)0.053 (3)0.070 (4)0.006 (2)0.010 (3)0.007 (3)
N30.054 (4)0.068 (4)0.084 (4)0.005 (3)0.012 (3)0.011 (3)
O10.052 (3)0.069 (3)0.063 (3)0.014 (2)0.009 (2)0.002 (2)
S10.0683 (12)0.0581 (12)0.0974 (15)0.0042 (9)0.0287 (10)0.0034 (11)
C10.050 (4)0.084 (6)0.061 (5)0.001 (4)0.010 (4)0.027 (4)
C20.044 (4)0.070 (5)0.065 (5)0.006 (3)0.017 (4)0.015 (4)
C30.037 (4)0.075 (5)0.065 (5)0.008 (3)0.021 (3)0.008 (4)
C40.050 (4)0.063 (5)0.079 (5)0.005 (3)0.019 (4)0.004 (4)
C50.062 (5)0.086 (6)0.076 (5)0.015 (4)0.022 (4)0.019 (5)
C60.070 (5)0.100 (7)0.073 (5)0.016 (5)0.014 (4)0.004 (5)
C70.052 (4)0.094 (6)0.061 (5)0.005 (4)0.005 (4)0.011 (4)
C80.074 (5)0.055 (5)0.073 (5)0.004 (3)0.026 (4)0.015 (4)
C90.077 (5)0.067 (5)0.077 (5)0.023 (4)0.021 (4)0.009 (4)
C100.053 (4)0.084 (6)0.065 (5)0.009 (4)0.006 (3)0.001 (4)
C110.050 (4)0.049 (4)0.075 (5)0.004 (3)0.022 (3)0.002 (3)
C120.045 (4)0.140 (8)0.101 (6)0.007 (4)0.020 (4)0.031 (6)
C130.055 (5)0.165 (10)0.119 (8)0.012 (5)0.032 (5)0.043 (7)
C140.082 (6)0.086 (6)0.116 (7)0.012 (4)0.046 (5)0.005 (5)
C150.072 (6)0.137 (8)0.089 (6)0.007 (5)0.021 (5)0.029 (6)
C160.062 (5)0.118 (7)0.072 (5)0.011 (4)0.021 (4)0.013 (5)
C170.059 (4)0.041 (4)0.061 (4)0.001 (3)0.006 (3)0.001 (3)
Geometric parameters (Å, º) top
Fe1—O1i2.031 (4)C7—H70.9300
Fe1—O12.031 (4)C8—C91.524 (9)
Fe1—N1i2.085 (5)C8—H8A0.9700
Fe1—N12.085 (5)C8—H8B0.9700
Fe1—N32.132 (6)C9—C101.519 (9)
Fe1—N3i2.132 (6)C9—H9A0.9700
N1—C11.294 (8)C9—H9B0.9700
N1—C81.472 (8)C10—H10A0.9700
N2—C101.488 (7)C10—H10B0.9700
N2—C111.524 (7)C11—C161.472 (9)
N2—H2A0.9000C11—C121.517 (8)
N2—H2B0.9000C11—H110.9800
N3—C171.143 (7)C12—C131.535 (10)
O1—C31.333 (7)C12—H12A0.9700
S1—C171.643 (8)C12—H12B0.9700
C1—C21.445 (10)C13—C141.468 (11)
C1—H10.9300C13—H13A0.9700
C2—C71.393 (9)C13—H13B0.9700
C2—C31.410 (9)C14—C151.488 (9)
C3—C41.398 (9)C14—H14A0.9700
C4—C51.359 (9)C14—H14B0.9700
C4—H40.9300C15—C161.516 (9)
C5—C61.389 (10)C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C6—C71.339 (9)C16—H16A0.9700
C6—H60.9300C16—H16B0.9700
O1i—Fe1—O1180.000 (1)C9—C8—H8B109.1
O1i—Fe1—N1i88.8 (2)H8A—C8—H8B107.8
O1—Fe1—N1i91.2 (2)C10—C9—C8115.5 (5)
O1i—Fe1—N191.2 (2)C10—C9—H9A108.4
O1—Fe1—N188.8 (2)C8—C9—H9A108.4
N1i—Fe1—N1180.000 (1)C10—C9—H9B108.4
O1i—Fe1—N391.2 (2)C8—C9—H9B108.4
O1—Fe1—N388.8 (2)H9A—C9—H9B107.5
N1i—Fe1—N393.0 (2)N2—C10—C9111.2 (6)
N1—Fe1—N387.0 (2)N2—C10—H10A109.4
O1i—Fe1—N3i88.8 (2)C9—C10—H10A109.4
O1—Fe1—N3i91.2 (2)N2—C10—H10B109.4
N1i—Fe1—N3i87.0 (2)C9—C10—H10B109.4
N1—Fe1—N3i93.0 (2)H10A—C10—H10B108.0
N3—Fe1—N3i180.000 (3)C16—C11—C12111.6 (6)
C1—N1—C8115.9 (6)C16—C11—N2110.5 (5)
C1—N1—Fe1123.3 (5)C12—C11—N2109.4 (5)
C8—N1—Fe1120.8 (4)C16—C11—H11108.4
C10—N2—C11115.2 (5)C12—C11—H11108.4
C10—N2—H2A108.5N2—C11—H11108.4
C11—N2—H2A108.5C11—C12—C13109.7 (6)
C10—N2—H2B108.5C11—C12—H12A109.7
C11—N2—H2B108.5C13—C12—H12A109.7
H2A—N2—H2B107.5C11—C12—H12B109.7
C17—N3—Fe1155.0 (5)C13—C12—H12B109.7
C3—O1—Fe1124.8 (4)H12A—C12—H12B108.2
N1—C1—C2127.4 (6)C14—C13—C12112.1 (7)
N1—C1—H1116.3C14—C13—H13A109.2
C2—C1—H1116.3C12—C13—H13A109.2
C7—C2—C3119.3 (7)C14—C13—H13B109.2
C7—C2—C1116.7 (6)C12—C13—H13B109.2
C3—C2—C1124.0 (7)H13A—C13—H13B107.9
O1—C3—C4120.3 (6)C13—C14—C15111.3 (7)
O1—C3—C2122.7 (7)C13—C14—H14A109.4
C4—C3—C2117.0 (7)C15—C14—H14A109.4
C5—C4—C3121.8 (7)C13—C14—H14B109.4
C5—C4—H4119.1C15—C14—H14B109.4
C3—C4—H4119.1H14A—C14—H14B108.0
C4—C5—C6120.7 (8)C14—C15—C16112.0 (7)
C4—C5—H5119.6C14—C15—H15A109.2
C6—C5—H5119.6C16—C15—H15A109.2
C7—C6—C5118.7 (8)C14—C15—H15B109.2
C7—C6—H6120.7C16—C15—H15B109.2
C5—C6—H6120.7H15A—C15—H15B107.9
C6—C7—C2122.5 (7)C11—C16—C15111.7 (6)
C6—C7—H7118.7C11—C16—H16A109.3
C2—C7—H7118.7C15—C16—H16A109.3
N1—C8—C9112.6 (5)C11—C16—H16B109.3
N1—C8—H8A109.1C15—C16—H16B109.3
C9—C8—H8A109.1H16A—C16—H16B107.9
N1—C8—H8B109.1N3—C17—S1178.1 (6)
O1i—Fe1—N1—C1164.6 (5)C1—C2—C3—O12.5 (9)
O1—Fe1—N1—C115.4 (5)C7—C2—C3—C42.1 (9)
N1i—Fe1—N1—C1126 (94)C1—C2—C3—C4179.7 (5)
N3—Fe1—N1—C1104.3 (5)O1—C3—C4—C5176.5 (6)
N3i—Fe1—N1—C175.7 (5)C2—C3—C4—C51.3 (9)
O1i—Fe1—N1—C818.1 (4)C3—C4—C5—C60.2 (10)
O1—Fe1—N1—C8161.9 (4)C4—C5—C6—C70.9 (11)
N1i—Fe1—N1—C857 (93)C5—C6—C7—C20.1 (11)
N3—Fe1—N1—C873.0 (4)C3—C2—C7—C61.5 (10)
N3i—Fe1—N1—C8107.0 (4)C1—C2—C7—C6179.8 (6)
O1i—Fe1—N3—C17136.2 (13)C1—N1—C8—C971.6 (7)
O1—Fe1—N3—C1743.8 (13)Fe1—N1—C8—C9110.9 (5)
N1i—Fe1—N3—C17135.0 (13)N1—C8—C9—C1054.0 (8)
N1—Fe1—N3—C1745.0 (13)C11—N2—C10—C9167.1 (5)
N3i—Fe1—N3—C1789 (10)C8—C9—C10—N265.0 (8)
O1i—Fe1—O1—C377 (100)C10—N2—C11—C16167.1 (6)
N1i—Fe1—O1—C3148.0 (5)C10—N2—C11—C1269.7 (7)
N1—Fe1—O1—C332.0 (5)C16—C11—C12—C1354.8 (9)
N3—Fe1—O1—C3119.1 (5)N2—C11—C12—C13177.4 (6)
N3i—Fe1—O1—C360.9 (5)C11—C12—C13—C1455.3 (10)
C8—N1—C1—C2179.3 (6)C12—C13—C14—C1555.6 (11)
Fe1—N1—C1—C23.3 (9)C13—C14—C15—C1654.6 (10)
N1—C1—C2—C7166.0 (6)C12—C11—C16—C1555.0 (9)
N1—C1—C2—C315.8 (10)N2—C11—C16—C15176.9 (6)
Fe1—O1—C3—C4151.8 (4)C14—C15—C16—C1154.5 (10)
Fe1—O1—C3—C230.4 (8)Fe1—N3—C17—S181 (19)
C7—C2—C3—O1175.7 (5)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.901.792.683 (6)175
N2—H2A···S1ii0.902.443.337 (6)173
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Fe(NCS)2(C32H46N4O2)2]
Mr692.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.912 (7), 7.797 (5), 20.778 (13)
β (°) 96.899 (13)
V3)1755.1 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.843, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
7131, 2975, 1337
Rint0.101
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.198, 0.85
No. of reflections2975
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.56

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.901.792.683 (6)174.8
N2—H2A···S1ii0.902.443.337 (6)172.7
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds