Download citation
Download citation
link to html
The crystal structure of the title compound, C21H18Cl2N4OS3, is stabilized by inter­molecular C—H...O and C—H...N hydrogen bonds. The dihydropyrimidine ring is almost planer, with a mean deviation from the plane of 0.132 (1) Å. The dihedral angles between the dihydropyrimidine ring and the phenyl, 1-thiazole and 2-thiazole rings are 88.5 (1), 13.6 (1) and 8.0 (1)°, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033764/pr2011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033764/pr2011Isup2.hkl
Contains datablock I

CCDC reference: 657781

Key indicators

  • Single-crystal X-ray study
  • T = 300 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.134
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT093_ALERT_1_A No su's on H-atoms, but refinement reported as . mixed
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.99 PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S3 in Main Residue . ?
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... R
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Biginelli reaction is one of the most powerful synthetic methodologies for the heterocyclic six-membered rings. 3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) and their derivatives have attracted considerable interest due to their wide range of therapeutic and pharmacological properties, such as antiviral, antitumor, antibacterial and antiinflammatory properties.(Kappe,1993).

We report here the crystal structure of (I) (Fig. 1), which was synthesized by introducing thiazole rings into a Biginelli Dihydropyrimidine molecular framework. The crystal packing shows that the intermolecular C12—H12A···N3i [symmetry code (i) -x + 1,y + 1/2,-z + 3/2] hydrogen bonds link molecules into rows along the c axis,while weak, inversion related C18—H18B···O1ii [symmetry code (ii) x - 1,y,z] hydrogen bonds join parallel rows forming a network, Fig, 2, Table 1.

Related literature top

For general background, see: Kappe (1993).

Experimental top

A solution of 1-(4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4- tetrahydropyrimidin-5-yl)ethanone(2 mmol),2-chloro-5-chloromethyl-thiazole (4 mmol) and potassium carbonate powder (2 mmol) in anhydrous Dimethyl Formamide (10 ml)was stirred vigorously at room temperature until the reaction was complete (monitored by thin-layer chromatography), the solid filtered off and the filtrate concentrated under vacuum.The residue was purified by column chromatography on silica gel using (2:1 v/v) petroleum ether/ethyl acetate as the eluent, giving a green solid (yield 88%, m.p.412 - 414 K). A yellow crystal grown from dichloromethane and hexane (2:1 v/v) was selected for X-ray structure analysis.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding-model approximation, with Uiso(H) = 1.2–1.5Ueq(carrier atom). A rotating group model was used for the methyl groups.

Structure description top

Biginelli reaction is one of the most powerful synthetic methodologies for the heterocyclic six-membered rings. 3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) and their derivatives have attracted considerable interest due to their wide range of therapeutic and pharmacological properties, such as antiviral, antitumor, antibacterial and antiinflammatory properties.(Kappe,1993).

We report here the crystal structure of (I) (Fig. 1), which was synthesized by introducing thiazole rings into a Biginelli Dihydropyrimidine molecular framework. The crystal packing shows that the intermolecular C12—H12A···N3i [symmetry code (i) -x + 1,y + 1/2,-z + 3/2] hydrogen bonds link molecules into rows along the c axis,while weak, inversion related C18—H18B···O1ii [symmetry code (ii) x - 1,y,z] hydrogen bonds join parallel rows forming a network, Fig, 2, Table 1.

For general background, see: Kappe (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I).Intermolecular C—H···N and C—H···O interactions (dashed lines). Other H atoms have been omitted for clarity. [Symmetry codes:(i) -x + 1,y + 1/2,-z + 3/2;(ii) x - 1,y,z.]
1-{1-[(2-Chlorothiazol-5-yl)methyl]-2-[(2-chlorothiazol-5-yl)methylsulfanyl]- 4-methyl-6-phenyl-1,6-dihydropyrimidin-5-yl}ethanone top
Crystal data top
C21H18Cl2N4OS3F(000) = 1048
Mr = 509.47Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5976 reflections
a = 10.6123 (5) Åθ = 2.4–27.5°
b = 18.7414 (6) ŵ = 0.59 mm1
c = 12.4631 (9) ÅT = 300 K
β = 113.820 (1)°Block, yellow
V = 2267.6 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4937 independent reflections
Radiation source: fine-focus sealed tube3980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000 or Sheldrick, 2001)
h = 1313
Tmin = 0.844, Tmax = 0.892k = 2323
15492 measured reflectionsl = 1015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0801P)2 + 0.0525P]
where P = (Fo2 + 2Fc2)/3
4937 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H18Cl2N4OS3V = 2267.6 (2) Å3
Mr = 509.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6123 (5) ŵ = 0.59 mm1
b = 18.7414 (6) ÅT = 300 K
c = 12.4631 (9) Å0.30 × 0.20 × 0.20 mm
β = 113.820 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4937 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000 or Sheldrick, 2001)
3980 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.892Rint = 0.043
15492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.07Δρmax = 0.76 e Å3
4937 reflectionsΔρmin = 0.26 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30256 (19)0.89461 (10)0.60611 (17)0.0352 (4)
C20.3048 (2)0.82610 (11)0.5661 (2)0.0465 (5)
H20.37660.79560.60910.056*
C30.2016 (3)0.80212 (13)0.4627 (2)0.0585 (6)
H30.20470.75590.43680.070*
C40.0950 (3)0.84651 (14)0.3985 (2)0.0559 (6)
H40.02530.83030.32950.067*
C50.0913 (2)0.91513 (13)0.4365 (2)0.0513 (5)
H50.01940.94540.39280.062*
C60.1943 (2)0.93915 (11)0.53947 (19)0.0436 (5)
H60.19120.98560.56450.052*
C70.41613 (19)0.92033 (10)0.71977 (17)0.0341 (4)
H70.47270.87890.75800.041*
C80.36497 (19)0.95276 (10)0.80526 (16)0.0330 (4)
C90.34482 (19)1.02505 (10)0.80124 (17)0.0346 (4)
C100.48273 (19)1.04236 (10)0.70042 (16)0.0351 (4)
C110.3459 (2)0.90123 (11)0.88574 (18)0.0396 (5)
C120.3194 (3)0.92329 (14)0.9906 (2)0.0549 (6)
H12A0.22510.93780.96560.082*
H12B0.37880.96241.02930.082*
H12C0.33750.88381.04380.082*
C130.2709 (3)1.06632 (12)0.8610 (2)0.0512 (6)
H13A0.20311.03630.87110.077*
H13B0.22631.10690.81400.077*
H13C0.33581.08220.93630.077*
C140.6133 (2)0.94307 (12)0.66158 (19)0.0425 (5)
H14A0.62860.97590.60780.051*
H14B0.58080.89840.62050.051*
C150.7465 (2)0.93043 (11)0.76409 (19)0.0429 (5)
C160.8646 (2)0.96685 (15)0.7921 (2)0.0635 (7)
H160.87231.00410.74580.076*
C170.9358 (2)0.89425 (14)0.9401 (2)0.0561 (6)
C180.4988 (2)1.18515 (11)0.6571 (2)0.0504 (6)
H18A0.47881.18650.72650.061*
H18B0.56261.22360.66350.061*
C190.3691 (2)1.19778 (10)0.5523 (2)0.0444 (5)
C200.3491 (3)1.24214 (12)0.4621 (2)0.0522 (6)
H200.41991.27090.46080.063*
C210.1427 (3)1.19993 (12)0.3961 (2)0.0510 (6)
Cl11.04156 (7)0.85525 (5)1.06951 (7)0.0834 (3)
Cl20.02682 (7)1.18481 (4)0.30615 (7)0.0712 (2)
N10.39481 (17)1.06949 (8)0.73819 (15)0.0377 (4)
N20.50686 (16)0.97250 (8)0.69595 (14)0.0356 (4)
N30.9741 (2)0.94605 (14)0.8934 (2)0.0749 (7)
N40.2201 (2)1.24354 (10)0.37161 (18)0.0582 (5)
O10.35742 (19)0.83736 (9)0.86936 (16)0.0620 (5)
S10.76960 (6)0.86607 (3)0.86811 (6)0.05590 (19)
S20.58141 (5)1.10075 (3)0.65412 (5)0.04610 (17)
S30.21580 (6)1.15434 (3)0.52678 (6)0.05366 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (10)0.0342 (10)0.0367 (11)0.0047 (7)0.0164 (8)0.0023 (8)
C20.0535 (13)0.0363 (11)0.0498 (13)0.0007 (9)0.0211 (11)0.0046 (9)
C30.0711 (16)0.0476 (13)0.0580 (16)0.0150 (12)0.0272 (13)0.0215 (12)
C40.0561 (14)0.0641 (15)0.0430 (14)0.0151 (12)0.0153 (11)0.0146 (11)
C50.0451 (12)0.0593 (14)0.0423 (13)0.0012 (10)0.0100 (10)0.0003 (11)
C60.0421 (11)0.0376 (11)0.0459 (13)0.0001 (8)0.0122 (10)0.0056 (9)
C70.0332 (9)0.0299 (9)0.0367 (10)0.0015 (7)0.0115 (8)0.0007 (8)
C80.0303 (9)0.0353 (10)0.0306 (10)0.0006 (7)0.0094 (8)0.0009 (8)
C90.0315 (9)0.0368 (10)0.0317 (10)0.0006 (7)0.0090 (8)0.0025 (8)
C100.0330 (9)0.0386 (10)0.0284 (10)0.0053 (7)0.0069 (8)0.0019 (8)
C110.0310 (10)0.0444 (12)0.0389 (11)0.0000 (8)0.0093 (8)0.0055 (9)
C120.0532 (13)0.0699 (16)0.0433 (13)0.0006 (11)0.0213 (11)0.0117 (11)
C130.0591 (14)0.0440 (12)0.0570 (15)0.0039 (10)0.0302 (12)0.0050 (10)
C140.0415 (11)0.0483 (12)0.0407 (12)0.0017 (9)0.0198 (9)0.0052 (9)
C150.0399 (11)0.0490 (12)0.0439 (12)0.0029 (9)0.0211 (10)0.0003 (9)
C160.0407 (12)0.0721 (17)0.0715 (17)0.0041 (11)0.0160 (12)0.0236 (14)
C170.0439 (12)0.0660 (16)0.0560 (15)0.0077 (11)0.0177 (11)0.0118 (12)
C180.0590 (14)0.0349 (11)0.0551 (14)0.0140 (9)0.0206 (11)0.0030 (10)
C190.0520 (12)0.0313 (10)0.0520 (13)0.0038 (8)0.0231 (10)0.0000 (9)
C200.0624 (15)0.0351 (11)0.0632 (16)0.0009 (10)0.0296 (13)0.0074 (10)
C210.0603 (14)0.0382 (11)0.0506 (14)0.0060 (10)0.0184 (11)0.0074 (10)
Cl10.0588 (4)0.1075 (6)0.0750 (5)0.0151 (4)0.0177 (4)0.0418 (4)
Cl20.0631 (4)0.0636 (4)0.0670 (4)0.0024 (3)0.0057 (3)0.0088 (3)
N10.0402 (9)0.0326 (8)0.0374 (9)0.0000 (7)0.0126 (7)0.0006 (7)
N20.0346 (9)0.0352 (8)0.0381 (9)0.0030 (6)0.0158 (7)0.0025 (7)
N30.0450 (12)0.0864 (17)0.0816 (17)0.0085 (11)0.0135 (12)0.0285 (14)
N40.0705 (14)0.0437 (11)0.0603 (14)0.0076 (10)0.0264 (11)0.0142 (9)
O10.0827 (12)0.0392 (9)0.0756 (13)0.0039 (8)0.0438 (10)0.0130 (8)
S10.0509 (3)0.0574 (4)0.0604 (4)0.0046 (3)0.0236 (3)0.0117 (3)
S20.0416 (3)0.0460 (3)0.0490 (3)0.0067 (2)0.0164 (2)0.0080 (2)
S30.0523 (3)0.0485 (3)0.0548 (4)0.0068 (2)0.0160 (3)0.0128 (3)
Geometric parameters (Å, º) top
C1—C21.381 (3)C12—H12C0.9600
C1—C61.391 (3)C13—H13A0.9600
C1—C71.521 (3)C13—H13B0.9600
C2—C31.387 (3)C13—H13C0.9600
C2—H20.9300C14—N21.468 (3)
C3—C41.372 (4)C14—C151.492 (3)
C3—H30.9300C14—H14A0.9700
C4—C51.376 (3)C14—H14B0.9700
C4—H40.9300C15—C161.344 (3)
C5—C61.382 (3)C15—S11.714 (2)
C5—H50.9300C16—N31.382 (3)
C6—H60.9300C16—H160.9300
C7—N21.484 (2)C17—N31.280 (3)
C7—C81.506 (3)C17—S11.708 (3)
C7—H70.9800C17—Cl11.712 (3)
C8—C91.369 (3)C18—C191.485 (3)
C8—C111.464 (3)C18—S21.816 (2)
C9—N11.389 (2)C18—H18A0.9700
C9—C131.497 (3)C18—H18B0.9700
C10—N11.306 (3)C19—C201.344 (3)
C10—N21.340 (3)C19—S31.730 (2)
C10—S21.7649 (19)C20—N41.378 (3)
C11—O11.229 (3)C20—H200.9300
C11—C121.501 (3)C21—N41.280 (3)
C12—H12A0.9600C21—Cl21.716 (3)
C12—H12B0.9600C21—S31.722 (2)
C2—C1—C6118.21 (19)H13A—C13—H13B109.5
C2—C1—C7120.55 (18)C9—C13—H13C109.5
C6—C1—C7121.24 (17)H13A—C13—H13C109.5
C1—C2—C3121.0 (2)H13B—C13—H13C109.5
C1—C2—H2119.5N2—C14—C15112.58 (17)
C3—C2—H2119.5N2—C14—H14A109.1
C4—C3—C2120.1 (2)C15—C14—H14A109.1
C4—C3—H3120.0N2—C14—H14B109.1
C2—C3—H3120.0C15—C14—H14B109.1
C3—C4—C5119.8 (2)H14A—C14—H14B107.8
C3—C4—H4120.1C16—C15—C14127.1 (2)
C5—C4—H4120.1C16—C15—S1109.09 (18)
C4—C5—C6120.1 (2)C14—C15—S1123.79 (16)
C4—C5—H5119.9C15—C16—N3116.5 (2)
C6—C5—H5119.9C15—C16—H16121.8
C5—C6—C1120.8 (2)N3—C16—H16121.8
C5—C6—H6119.6N3—C17—S1116.4 (2)
C1—C6—H6119.6N3—C17—Cl1123.0 (2)
N2—C7—C8108.91 (15)S1—C17—Cl1120.53 (15)
N2—C7—C1110.90 (15)C19—C18—S2113.85 (16)
C8—C7—C1114.23 (15)C19—C18—H18A108.8
N2—C7—H7107.5S2—C18—H18A108.8
C8—C7—H7107.5C19—C18—H18B108.8
C1—C7—H7107.5S2—C18—H18B108.8
C9—C8—C11127.94 (18)H18A—C18—H18B107.7
C9—C8—C7117.97 (17)C20—C19—C18127.7 (2)
C11—C8—C7114.07 (16)C20—C19—S3108.54 (18)
C8—C9—N1121.62 (17)C18—C19—S3123.73 (16)
C8—C9—C13126.75 (19)C19—C20—N4117.7 (2)
N1—C9—C13111.63 (17)C19—C20—H20121.1
N1—C10—N2124.88 (17)N4—C20—H20121.1
N1—C10—S2118.76 (15)N4—C21—Cl2123.68 (19)
N2—C10—S2116.34 (15)N4—C21—S3117.07 (19)
O1—C11—C8118.55 (19)Cl2—C21—S3119.25 (14)
O1—C11—C12118.6 (2)C10—N1—C9117.53 (16)
C8—C11—C12122.74 (19)C10—N2—C14124.19 (17)
C11—C12—H12A109.5C10—N2—C7119.04 (15)
C11—C12—H12B109.5C14—N2—C7116.66 (16)
H12A—C12—H12B109.5C17—N3—C16109.0 (2)
C11—C12—H12C109.5C21—N4—C20108.3 (2)
H12A—C12—H12C109.5C17—S1—C1588.97 (11)
H12B—C12—H12C109.5C10—S2—C18100.26 (10)
C9—C13—H13A109.5C21—S3—C1988.34 (12)
C9—C13—H13B109.5
C6—C1—C2—C30.4 (3)N2—C10—N1—C914.7 (3)
C7—C1—C2—C3179.9 (2)S2—C10—N1—C9163.91 (14)
C1—C2—C3—C40.1 (4)C8—C9—N1—C1012.2 (3)
C2—C3—C4—C50.6 (4)C13—C9—N1—C10167.42 (18)
C3—C4—C5—C60.4 (4)N1—C10—N2—C14175.22 (18)
C4—C5—C6—C10.1 (4)S2—C10—N2—C143.4 (2)
C2—C1—C6—C50.5 (3)N1—C10—N2—C78.7 (3)
C7—C1—C6—C5179.7 (2)S2—C10—N2—C7172.67 (13)
C2—C1—C7—N2108.2 (2)C15—C14—N2—C1092.6 (2)
C6—C1—C7—N271.5 (2)C15—C14—N2—C791.3 (2)
C2—C1—C7—C8128.2 (2)C8—C7—N2—C1030.7 (2)
C6—C1—C7—C852.1 (2)C1—C7—N2—C1095.8 (2)
N2—C7—C8—C932.2 (2)C8—C7—N2—C14152.93 (16)
C1—C7—C8—C992.4 (2)C1—C7—N2—C1480.5 (2)
N2—C7—C8—C11146.46 (16)S1—C17—N3—C160.4 (3)
C1—C7—C8—C1188.9 (2)Cl1—C17—N3—C16178.2 (2)
C11—C8—C9—N1165.72 (18)C15—C16—N3—C170.2 (4)
C7—C8—C9—N112.7 (3)Cl2—C21—N4—C20179.69 (18)
C11—C8—C9—C1313.8 (3)S3—C21—N4—C200.0 (3)
C7—C8—C9—C13167.71 (19)C19—C20—N4—C210.8 (3)
C9—C8—C11—O1173.7 (2)N3—C17—S1—C150.4 (2)
C7—C8—C11—O17.8 (3)Cl1—C17—S1—C15178.23 (18)
C9—C8—C11—C129.3 (3)C16—C15—S1—C170.2 (2)
C7—C8—C11—C12169.16 (18)C14—C15—S1—C17178.51 (19)
N2—C14—C15—C16109.7 (3)N1—C10—S2—C188.43 (18)
N2—C14—C15—S168.8 (2)N2—C10—S2—C18172.88 (16)
C14—C15—C16—N3178.6 (2)C19—C18—S2—C1080.61 (18)
S1—C15—C16—N30.1 (3)N4—C21—S3—C190.6 (2)
S2—C18—C19—C20105.1 (2)Cl2—C21—S3—C19179.16 (15)
S2—C18—C19—S373.8 (2)C20—C19—S3—C210.92 (18)
C18—C19—C20—N4177.9 (2)C18—C19—S3—C21178.2 (2)
S3—C19—C20—N41.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···N10.972.392.799 (3)105
C14—H14A···S20.972.512.972 (2)109
C7—H7···O10.982.322.687 (3)101
C18—H18B···O1i0.972.393.314 (3)159
C12—H12A···N3ii0.962.453.390 (3)167
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H18Cl2N4OS3
Mr509.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)10.6123 (5), 18.7414 (6), 12.4631 (9)
β (°) 113.820 (1)
V3)2267.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000 or Sheldrick, 2001)
Tmin, Tmax0.844, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
15492, 4937, 3980
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.07
No. of reflections4937
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···N10.972.392.799 (3)104.5
C14—H14A···S20.972.512.972 (2)109.1
C7—H7···O10.982.322.687 (3)100.9
C18—H18B···O1i0.972.393.314 (3)158.9
C12—H12A···N3ii0.962.453.390 (3)167.1
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds