Download citation
Download citation
link to html
The title compound, C12H18N4O6, exhibits a hydrogen-bonding network, which contains inter­molecular classical N—H...O=C(imidazolone rings) hydrogen bonds and, in addition, inter­molecular C—H...O inter­actions that stabilize the crystal structure. Two ethyl groups are each disordered over two positions, with site occupancy factors in a ratio of ca 3:2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032485/rk2021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032485/rk2021Isup2.hkl
Contains datablock I

CCDC reference: 657702

Key indicators

  • Single-crystal X-ray study
  • T = 300 K
  • Mean [sigma](C-C) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.056
  • wR factor = 0.152
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT220_ALERT_2_A Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.78 Ratio
Author Response: It may be due to some disorder in the ethyl group.
PLAT222_ALERT_3_A Large Non-Solvent    H     Ueq(max)/Ueq(min) ...       5.29 Ratio
Author Response: This could results from some disorder of the nearby ethyl group.

Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C7' PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C7 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT301_ALERT_3_C Main Residue Disorder ......................... 15.00 Perc. PLAT318_ALERT_2_C Check Hybridisation of N2 in Main Residue . ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 5 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 13.60 Deg. C7 -C6 -C7' 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 2.60 Deg. H6A -C6 -H6C 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 6.40 Deg. H6B -C6 -H6D 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 40.20 Deg. C11 -C10 -C11' 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 40.10 Deg. H10B -C10 -H10C 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 37.60 Deg. H10A -C10 -H10D 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 38.70 Deg. C10 -C11 -H10C 1.555 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 45
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 13 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Glycoluril –C4H6N4O2– skeleton moiety of the title compound (scheme 1) is an important building block for both molecular and supramolecular chemistry. Its derivatives have been used as the basis for molecular capsules (Hof et al., 2002), molecular clips (Rowan et al., 1999), self-complementary facial amphiphiles (Isaacs & Witt, 2002), and the cucurbit[n]uril (CB[n]) family (Kim et al., 2000), and its utilization has been explored as a platform for studies of crystal engineering (Wang et al., 2006; Chen et al., 2007). Despite a variety of crystal structures reported for a number of its derivatives, relatively few crystal structures are known for glycoluril derivatives without N-substituents, which exhibit two different H-bonded types (scheme 2). The mode A have been found for (R = H) (Li et al., 1994), (R = CH3) (Himes et al., 1978), (R = Ph) (Wu et al., 2002), and so on, but the mode B, so far was only observed in the (R = Ph) (Moon et al., 2003). Herein, we report the crystal structure of the title compound with R = –COO–n-C3H7) (Fig. 1), which exhibits the scarce mode B of hydrogen bonding (scheme 2).

In the crystal structure, the two-dimension hydrogen bonding network, shown in Fig. 2, is based on the formation of eight-membered rings and ten-membered rings H-bonding motifs. This is fully according with the scarce mode B of hydrogen bonding (scheme 2). While the mode A, reported in the crystal structure of the (scheme 2, R = H, CH3, Ph), is only made up of eight-membered rings H-bonding motifs. In addition, intermolecular C10–H10B···O3 interactions (see table) can stabilize the crystal structure.

Related literature top

For related literature, see: Burnett et al. (2003); Chen et al. (2007); Himes et al. (1978); Hof et al. (2002); Isaacs & Witt (2002); Kim et al. (2000); Li et al. (1994); Moon et al. (2003); Rowan et al. (1999); Wang et al. (2006); Wu et al. (2002).

Experimental top

The title compound was synthesized according to literature procedure (Burnett et al., 2003) in 52% isolated yield. Crystals appropriate for data collection were obtained by slow evaporation of CH3OH solution at room temperature.

Refinement top

Two ethyl group were found to be disordered over two orientations. The occupancies of the disordered positions C7/ C7' and C8/ C8' refined to 0.60 (4) / 0.40 (4), C11 / C11' and C12 / C12', refined to 0.609 (7) / 0.391 (7). In addition, there is also some disorder in the H atoms of C6 and C10 oweing to disorder of its nearby ethyl group. All other H-atoms bound to carbon were positioned geometrically idealized positions and constrained to ride on their parent atoms, with d(C–H) = 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms, and with d(N–H) = 0.86 Å, Uiso (H) = 1.2Ueq (N).

Structure description top

Glycoluril –C4H6N4O2– skeleton moiety of the title compound (scheme 1) is an important building block for both molecular and supramolecular chemistry. Its derivatives have been used as the basis for molecular capsules (Hof et al., 2002), molecular clips (Rowan et al., 1999), self-complementary facial amphiphiles (Isaacs & Witt, 2002), and the cucurbit[n]uril (CB[n]) family (Kim et al., 2000), and its utilization has been explored as a platform for studies of crystal engineering (Wang et al., 2006; Chen et al., 2007). Despite a variety of crystal structures reported for a number of its derivatives, relatively few crystal structures are known for glycoluril derivatives without N-substituents, which exhibit two different H-bonded types (scheme 2). The mode A have been found for (R = H) (Li et al., 1994), (R = CH3) (Himes et al., 1978), (R = Ph) (Wu et al., 2002), and so on, but the mode B, so far was only observed in the (R = Ph) (Moon et al., 2003). Herein, we report the crystal structure of the title compound with R = –COO–n-C3H7) (Fig. 1), which exhibits the scarce mode B of hydrogen bonding (scheme 2).

In the crystal structure, the two-dimension hydrogen bonding network, shown in Fig. 2, is based on the formation of eight-membered rings and ten-membered rings H-bonding motifs. This is fully according with the scarce mode B of hydrogen bonding (scheme 2). While the mode A, reported in the crystal structure of the (scheme 2, R = H, CH3, Ph), is only made up of eight-membered rings H-bonding motifs. In addition, intermolecular C10–H10B···O3 interactions (see table) can stabilize the crystal structure.

For related literature, see: Burnett et al. (2003); Chen et al. (2007); Himes et al. (1978); Hof et al. (2002); Isaacs & Witt (2002); Kim et al. (2000); Li et al. (1994); Moon et al. (2003); Rowan et al. (1999); Wang et al. (2006); Wu et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Atoms of the minor disorder components are omitted for clarity.
[Figure 2] Fig. 2. The unique hydrogen bonding network in the crystal structure of the title compound. H-bonds drawn as dashed lines. R = –COO–n-C3H7) moities are omitted for simplicity.
[Figure 3] Fig. 3. The two different hydrogen bonding types for glycoluril derivatives without N-substituents.
dipropyl 2,5-dioxoperhydroimidazo[4,5-d]imidazole-3a,6a-dicarboxylate top
Crystal data top
C12H18N4O6F(000) = 1328
Mr = 314.30Dx = 1.356 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5455 reflections
a = 13.3013 (7) Åθ = 2.5–27.1°
b = 11.5852 (6) ŵ = 0.11 mm1
c = 19.9867 (10) ÅT = 300 K
V = 3079.9 (3) Å3Plate, colorless
Z = 80.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2887 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
φ and ω scansh = 1117
20966 measured reflectionsk = 1515
3752 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.04
3752 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.41 e Å3
45 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H18N4O6V = 3079.9 (3) Å3
Mr = 314.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.3013 (7) ŵ = 0.11 mm1
b = 11.5852 (6) ÅT = 300 K
c = 19.9867 (10) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2887 reflections with I > 2σ(I)
20966 measured reflectionsRint = 0.060
3752 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05645 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
3752 reflectionsΔρmin = 0.25 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.75770 (11)0.07104 (12)0.27047 (7)0.0268 (3)
C20.99691 (11)0.11085 (12)0.25548 (8)0.0287 (3)
C30.91169 (11)0.02387 (12)0.31998 (8)0.0251 (3)
C40.84418 (10)0.08686 (12)0.31140 (8)0.0260 (3)
C50.93005 (12)0.06780 (13)0.39124 (8)0.0332 (4)
C60.85324 (15)0.09772 (19)0.49676 (9)0.0519 (5)
H6A0.92050.08840.51480.062*0.60 (4)
H6B0.83900.17980.49470.062*0.60 (4)
H6C0.91990.09140.51610.062*0.40 (4)
H6D0.83220.17790.49750.062*0.40 (4)
C70.7798 (6)0.0418 (10)0.5431 (5)0.051 (2)0.60 (4)
H7A0.71460.03610.52160.061*0.60 (4)
H7B0.80230.03560.55400.061*0.60 (4)
C80.7710 (8)0.1140 (18)0.6072 (3)0.086 (3)0.60 (4)
H8A0.74770.19010.59620.130*0.60 (4)
H8B0.72420.07800.63720.130*0.60 (4)
H8C0.83570.11910.62840.130*0.60 (4)
C7'0.7807 (13)0.0185 (17)0.5315 (9)0.084 (4)0.40 (4)
H7'10.71750.01680.50740.101*0.40 (4)
H7'20.80780.05920.53270.101*0.40 (4)
C8'0.7635 (12)0.063 (2)0.6031 (7)0.085 (4)0.40 (4)
H8'10.72230.13060.60190.127*0.40 (4)
H8'20.73040.00390.62890.127*0.40 (4)
H8'30.82700.08080.62330.127*0.40 (4)
C90.82776 (12)0.16353 (13)0.37327 (9)0.0332 (4)
C100.91527 (18)0.27569 (18)0.45434 (11)0.0592 (6)
H10A0.85150.31630.45500.071*0.609 (7)
H10B0.92270.23550.49660.071*0.609 (7)
H10C0.96660.25770.48720.071*0.391 (7)
H10D0.85030.27680.47630.071*0.391 (7)
C110.9967 (4)0.3581 (3)0.4464 (2)0.0615 (14)0.609 (7)
H11A1.05870.31630.43850.074*0.609 (7)
H11B1.00440.40120.48770.074*0.609 (7)
C120.9801 (6)0.4412 (5)0.3901 (3)0.104 (3)0.609 (7)
H12A0.97780.39970.34850.157*0.609 (7)
H12B1.03420.49600.38890.157*0.609 (7)
H12C0.91760.48110.39670.157*0.609 (7)
C11'0.9364 (6)0.3945 (7)0.4212 (4)0.078 (3)0.391 (7)
H11C0.88670.40920.38680.093*0.391 (7)
H11D0.93110.45500.45460.093*0.391 (7)
C12'1.0388 (8)0.3958 (10)0.3912 (6)0.120 (5)0.391 (7)
H12D1.08810.38630.42580.180*0.391 (7)
H12E1.04960.46810.36880.180*0.391 (7)
H12F1.04470.33390.35950.180*0.391 (7)
N10.75121 (9)0.04142 (11)0.28776 (7)0.0301 (3)
H10.69680.08130.28480.036*
N20.85239 (9)0.10854 (10)0.28403 (7)0.0286 (3)
H20.87470.17530.27250.034*
N31.00441 (9)0.00930 (11)0.28903 (7)0.0313 (3)
H31.05880.03070.29140.038*
N40.90195 (10)0.15112 (10)0.26255 (7)0.0298 (3)
H40.87840.20870.24040.036*
O10.68919 (9)0.12847 (9)0.24606 (6)0.0383 (3)
O21.06484 (9)0.15783 (9)0.22415 (7)0.0411 (3)
O31.00591 (10)0.11525 (15)0.40724 (7)0.0622 (4)
O40.85052 (9)0.05045 (11)0.42944 (6)0.0417 (3)
O50.74722 (10)0.19561 (12)0.39100 (7)0.0535 (4)
O60.91566 (9)0.19233 (11)0.39968 (7)0.0468 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (8)0.0219 (7)0.0322 (8)0.0029 (6)0.0012 (6)0.0022 (6)
C20.0241 (8)0.0195 (7)0.0426 (9)0.0010 (6)0.0011 (7)0.0021 (6)
C30.0197 (7)0.0196 (6)0.0361 (8)0.0011 (5)0.0002 (6)0.0005 (5)
C40.0198 (7)0.0201 (6)0.0380 (8)0.0008 (5)0.0004 (6)0.0031 (6)
C50.0284 (8)0.0320 (8)0.0391 (9)0.0012 (7)0.0036 (7)0.0003 (6)
C60.0544 (12)0.0682 (13)0.0332 (10)0.0090 (10)0.0026 (9)0.0028 (9)
C70.048 (3)0.075 (4)0.030 (3)0.008 (2)0.006 (2)0.011 (2)
C80.103 (5)0.123 (7)0.034 (2)0.011 (5)0.009 (2)0.011 (3)
C7'0.094 (7)0.116 (8)0.043 (5)0.031 (6)0.007 (5)0.004 (5)
C8'0.087 (6)0.110 (9)0.057 (5)0.019 (6)0.000 (4)0.000 (5)
C90.0315 (9)0.0251 (7)0.0430 (9)0.0028 (6)0.0002 (7)0.0062 (6)
C100.0708 (15)0.0514 (12)0.0553 (12)0.0015 (10)0.0096 (11)0.0270 (10)
C110.079 (3)0.0429 (19)0.063 (2)0.0114 (19)0.031 (2)0.0083 (16)
C120.144 (7)0.084 (4)0.085 (4)0.031 (4)0.028 (4)0.036 (3)
C11'0.088 (5)0.067 (4)0.077 (5)0.007 (4)0.025 (4)0.025 (4)
C12'0.139 (8)0.102 (7)0.118 (8)0.038 (6)0.003 (7)0.012 (6)
N10.0187 (6)0.0230 (6)0.0487 (8)0.0023 (5)0.0036 (6)0.0057 (5)
N20.0277 (7)0.0174 (6)0.0408 (7)0.0018 (5)0.0026 (5)0.0035 (5)
N30.0199 (6)0.0240 (6)0.0501 (8)0.0047 (5)0.0040 (6)0.0052 (5)
N40.0253 (7)0.0194 (6)0.0448 (8)0.0035 (5)0.0018 (6)0.0048 (5)
O10.0330 (7)0.0269 (6)0.0550 (7)0.0087 (5)0.0095 (5)0.0014 (5)
O20.0289 (6)0.0265 (6)0.0680 (9)0.0009 (5)0.0115 (6)0.0067 (5)
O30.0410 (8)0.0915 (12)0.0542 (8)0.0207 (8)0.0054 (7)0.0231 (8)
O40.0395 (7)0.0493 (7)0.0363 (7)0.0050 (6)0.0028 (5)0.0045 (5)
O50.0361 (7)0.0624 (9)0.0619 (9)0.0122 (6)0.0054 (6)0.0249 (7)
O60.0367 (7)0.0439 (7)0.0597 (8)0.0001 (6)0.0070 (6)0.0257 (6)
Geometric parameters (Å, º) top
C1—O11.2291 (18)C7'—H7'20.9700
C1—N11.3507 (19)C8'—H8'10.9600
C1—N21.3596 (19)C8'—H8'20.9600
C2—O21.2268 (18)C8'—H8'30.9600
C2—N41.3538 (19)C9—O51.1880 (19)
C2—N31.3577 (19)C9—O61.326 (2)
C3—N31.4323 (19)C10—C111.452 (4)
C3—N21.4494 (18)C10—O61.458 (2)
C3—C51.532 (2)C10—C11'1.552 (9)
C3—C41.5752 (19)C10—H10A0.9700
C4—N11.4247 (18)C10—H10B0.9700
C4—N41.4485 (19)C10—H10C0.9700
C4—C91.538 (2)C10—H10D0.9700
C5—O31.193 (2)C11—C121.498 (5)
C5—O41.320 (2)C11—H11A0.9700
C6—O41.453 (2)C11—H11B0.9700
C6—C71.494 (4)C12—H12A0.9600
C6—C7'1.501 (8)C12—H12B0.9600
C6—H6A0.9700C12—H12C0.9600
C6—H6B0.9700C11'—C12'1.489 (8)
C6—H6C0.9700C11'—H11C0.9700
C6—H6D0.9700C11'—H11D0.9700
C7—C81.535 (7)C12'—H12D0.9600
C7—H7A0.9700C12'—H12E0.9600
C7—H7B0.9700C12'—H12F0.9600
C8—H8A0.9600N1—H10.8600
C8—H8B0.9600N2—H20.8600
C8—H8C0.9600N3—H30.8600
C7'—C8'1.538 (9)N4—H40.8600
C7'—H7'10.9700
O1—C1—N1125.19 (14)O5—C9—O6126.72 (15)
O1—C1—N2126.36 (14)O5—C9—C4123.27 (15)
N1—C1—N2108.44 (12)O6—C9—C4109.88 (13)
O2—C2—N4125.99 (14)C11—C10—O6110.5 (2)
O2—C2—N3125.61 (14)C11—C10—C11'40.2 (3)
N4—C2—N3108.40 (13)O6—C10—C11'105.5 (3)
N3—C3—N2115.85 (12)C11—C10—H10A109.5
N3—C3—C5110.70 (12)O6—C10—H10A109.5
N2—C3—C5108.84 (12)C11'—C10—H10A74.6
N3—C3—C4103.02 (11)C11—C10—H10B109.5
N2—C3—C4100.78 (11)O6—C10—H10B109.5
C5—C3—C4117.55 (12)C11'—C10—H10B141.1
N1—C4—N4115.26 (13)H10A—C10—H10B108.1
N1—C4—C9110.90 (12)C11—C10—H10C72.0
N4—C4—C9108.70 (11)O6—C10—H10C111.2
N1—C4—C3103.30 (11)C11'—C10—H10C110.6
N4—C4—C3100.92 (11)H10A—C10—H10C135.3
C9—C4—C3117.63 (13)H10B—C10—H10C40.1
O3—C5—O4126.36 (16)C11—C10—H10D134.9
O3—C5—C3122.50 (15)O6—C10—H10D110.6
O4—C5—C3111.07 (13)C11'—C10—H10D110.0
O4—C6—C7113.2 (5)H10A—C10—H10D37.6
O4—C6—C7'100.5 (8)H10B—C10—H10D72.7
C7—C6—C7'13.6 (7)H10C—C10—H10D108.9
O4—C6—H6A108.9C10—C11—C12113.3 (4)
C7—C6—H6A108.9C10—C11—H10C38.7
C7'—C6—H6A110.6C12—C11—H10C151.9
O4—C6—H6B108.9C10—C11—H11A108.9
C7—C6—H6B108.9C12—C11—H11A108.9
C7'—C6—H6B119.6H10C—C11—H11A85.8
H6A—C6—H6B107.7C10—C11—H11B108.9
O4—C6—H6C111.3C12—C11—H11B108.9
C7—C6—H6C108.5H10C—C11—H11B88.0
C7'—C6—H6C110.9H11A—C11—H11B107.7
H6A—C6—H6C2.6C12'—C11'—C10110.3 (7)
H6B—C6—H6C105.6C12'—C11'—H11C109.6
O4—C6—H6D111.6C10—C11'—H11C109.6
C7—C6—H6D102.6C12'—C11'—H11D109.6
C7'—C6—H6D113.2C10—C11'—H11D109.6
H6A—C6—H6D111.5H11C—C11'—H11D108.1
H6B—C6—H6D6.4C11'—C12'—H12D109.5
H6C—C6—H6D109.2C11'—C12'—H12E109.5
C6—C7—C8109.3 (5)H12D—C12'—H12E109.5
C6—C7—H7A109.8C11'—C12'—H12F109.5
C8—C7—H7A109.8H12D—C12'—H12F109.5
C6—C7—H7B109.8H12E—C12'—H12F109.5
C8—C7—H7B109.8C1—N1—C4112.70 (12)
H7A—C7—H7B108.3C1—N1—H1123.7
C6—C7'—C8'108.9 (8)C4—N1—H1123.7
C6—C7'—H7'1109.9C1—N2—C3112.75 (12)
C8'—C7'—H7'1109.9C1—N2—H2123.6
C6—C7'—H7'2109.9C3—N2—H2123.6
C8'—C7'—H7'2109.9C2—N3—C3112.49 (12)
H7'1—C7'—H7'2108.3C2—N3—H3123.8
C7'—C8'—H8'1109.5C3—N3—H3123.8
C7'—C8'—H8'2109.5C2—N4—C4112.84 (12)
H8'1—C8'—H8'2109.5C2—N4—H4123.6
C7'—C8'—H8'3109.5C4—N4—H4123.6
H8'1—C8'—H8'3109.5C5—O4—C6117.28 (14)
H8'2—C8'—H8'3109.5C9—O6—C10117.51 (14)
N3—C3—C4—N1133.40 (12)O1—C1—N1—C4176.74 (14)
N2—C3—C4—N113.43 (14)N2—C1—N1—C42.66 (18)
C5—C3—C4—N1104.61 (14)N4—C4—N1—C198.59 (15)
N3—C3—C4—N413.91 (14)C9—C4—N1—C1137.38 (13)
N2—C3—C4—N4106.06 (12)C3—C4—N1—C110.49 (16)
C5—C3—C4—N4135.91 (13)O1—C1—N2—C3173.07 (14)
N3—C3—C4—C9104.09 (14)N1—C1—N2—C37.54 (17)
N2—C3—C4—C9135.94 (13)N3—C3—N2—C1123.43 (14)
C5—C3—C4—C917.90 (19)C5—C3—N2—C1111.10 (14)
N3—C3—C5—O330.6 (2)C4—C3—N2—C113.12 (16)
N2—C3—C5—O397.77 (18)O2—C2—N3—C3179.24 (15)
C4—C3—C5—O3148.60 (16)N4—C2—N3—C30.77 (18)
N3—C3—C5—O4152.17 (13)N2—C3—N3—C299.33 (15)
N2—C3—C5—O479.41 (15)C5—C3—N3—C2136.16 (13)
C4—C3—C5—O434.22 (18)C4—C3—N3—C29.65 (16)
O4—C6—C7—C8167.4 (6)O2—C2—N4—C4170.19 (15)
C7'—C6—C7—C8171 (5)N3—C2—N4—C49.81 (18)
O4—C6—C7'—C8'173.8 (12)N1—C4—N4—C2125.35 (14)
C7—C6—C7'—C8'14 (4)C9—C4—N4—C2109.47 (14)
N1—C4—C9—O512.1 (2)C3—C4—N4—C214.86 (16)
N4—C4—C9—O5115.65 (18)O3—C5—O4—C62.8 (3)
C3—C4—C9—O5130.59 (17)C3—C5—O4—C6174.24 (14)
N1—C4—C9—O6171.75 (13)C7—C6—O4—C5160.1 (5)
N4—C4—C9—O660.55 (16)C7'—C6—O4—C5155.0 (9)
C3—C4—C9—O653.21 (18)O5—C9—O6—C102.8 (3)
O6—C10—C11—C1271.3 (6)C4—C9—O6—C10173.21 (15)
C11'—C10—C11—C1218.6 (5)C11—C10—O6—C9138.0 (2)
C11—C10—C11'—C12'39.3 (7)C11'—C10—O6—C996.0 (3)
O6—C10—C11'—C12'64.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O3i0.972.563.494 (3)163
N4—H4···O1ii0.862.092.8459 (16)146
N3—H3···O1iii0.862.203.0134 (17)157
N2—H2···O2iv0.862.092.9265 (16)163
N1—H1···O2v0.861.982.8320 (17)174
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H18N4O6
Mr314.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)300
a, b, c (Å)13.3013 (7), 11.5852 (6), 19.9867 (10)
V3)3079.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20966, 3752, 2887
Rint0.060
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.04
No. of reflections3752
No. of parameters241
No. of restraints45
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O3i0.972.563.494 (3)162.7
N4—H4···O1ii0.862.092.8459 (16)145.9
N3—H3···O1iii0.862.203.0134 (17)156.9
N2—H2···O2iv0.862.092.9265 (16)162.6
N1—H1···O2v0.861.982.8320 (17)174.1
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x1/2, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds