Download citation
Download citation
link to html
The title compound, {[La2(C7H4NO4)2(C7H3NO4)2(H2O)4]·2H2O}n, was prepared by a hydro­thermal reaction at 433 K. The asymmetric unit contains two LaIII ions. Each LaIII ion is nine-coordinated in a slightly distorted tricapped trigonal–prismatic coordination geometry, formed by two N atoms from 5-carboxy­pyridine-2-carboxyl­ate (Hpydc) and pyridine-2,5-dicarboxyl­ate (pydc) ligands, five O atoms from carboxyl­ate groups of one Hpydc and four pydc ligands, and two water mol­ecules. Adjacent LaIII ions are linked together through single bridging carboxyl­ate O atoms and carboxyl­ate groups in a synanti mode, forming a two-dimensional layered polymeric structure. Extensive O—H...O hydrogen bonding connects adjacent layers into an infinite three-dimensional supra­molecular network structure. The crystal studied was an inversion twin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032059/xu2283sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032059/xu2283Isup2.hkl
Contains datablock I

CCDC reference: 294166

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.020 Å
  • R factor = 0.064
  • wR factor = 0.174
  • Data-to-parameter ratio = 11.4

checkCIF/PLATON results

No syntax errors found



Alert level C STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.500 From the CIF: _refine_ls_abs_structure_Flack_su 0.040 PLAT033_ALERT_2_C Flack Parameter Value Deviates 2 * su from zero. 0.50 PLAT213_ALERT_2_C Atom O8 has ADP max/min Ratio ............. 3.10 prola PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.64 Ratio PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.32 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 20 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C15 - C16 ... 1.55 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H12A .. H21C .. 2.10 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.01 From the CIF: _reflns_number_total 5778 Count of symmetry unique reflns 3026 Completeness (_total/calc) 190.95% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2752 Fraction of Friedel pairs measured 0.909 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for La1 (3) 3.69 PLAT794_ALERT_5_G Check Predicted Bond Valency for La2 (3) 3.44 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

In recent years, studies on the syntheses, structures and properties of coordination complexes containing lanthanum and aromatic carboxylate have intensely attracted much attention, because they possess potential application on catalysis, separation, gas deposition and luminescence (Chae et al., 2004; Seo et al., 2000; Bradshaw et al., 2004; Lu et al., 2006). As a multi-functional ligand, pyridine-2,5-dicarboxylic acid has been widely used in the preparation of 3 d-4f heterometallic coordination polymers (Liang et al., 2000; Liang et al., 2001) and transition metallic supra-molecular compounds (Min et al., 2001; Xu et al., 2001; Gao et al., 2005). However the investigation on the lanthanum complexes is relative limited (Song et al., 2005). We report here the crystal structure of the title LaIII polymeric compound.

A segment of the polymeric structure of the title compound is illustrated in Fig. 1. Each LaIII ion is nine-coordinated by two nitrogen atoms from Hpydc and pydc ligands, five oxygen atoms from carboxylate groups of one Hpydc and four pydc ligands and two water molecules. The pydc2- anion acts as chelating-bridging pentadentate ligand towards four LaIII ions. The pyridine nitrogen atom and the ortho-carboxylic oxygen atom chelate one La ion, and this oxygen atom and other two carboxylic oxygen atoms of the pydc ligand bridge another three different La ions. The Hpydc- anion acts as chelating bidentate ligand towards the La ion with a pyridine nitrogen atom and the ortho carboxylic oxygen atom, which is similar to the coordination mode of Hpydc in [Dy(Hpydc)(pydc)(phen)(H2O).H2O]n [phen=1,10-phenanthroline] (Song et al., 2005) and [Ln(Hpydc)(pydc)] [Ln = Sm, Eu, Gd] (Qin et al., 2005). The La···La separations in the same unit and between adjacent units are 4.339 (9) and 5.619 (9) Å, respectively. The La center is in a slightly distorted tricapped trigonal prism coordination geometry. Adjacent La ions are linked together through single-atom carboxylate oxygen atom and carboxylate group in the syn-anti mode, forming a two-dimensional polymeric layer structure as represented in Fig. 2. Selected geometric parameters are listed in Table 1. The La—O bond lengths fall in range from 2.498 (10) to 2.658 (9) Å.

Extensive N—H···O and O—H···O hydrogen bonding occur in the crystal structure of the title compound, and connect adjacent layers into the infinite three-dimensional supramolecular network structure (Table 2 and Fig. 3).

Related literature top

For general background, see: Chae et al. (2004); Seo et al. (2000); Bradshaw et al. (2004); Lu et al. (2006); Liang et al. (2000, 2001); Min et al. (2001); Xu et al. (2001); Gao et al. (2005). For related structures, see: Song et al. (2005); Qin et al. (2005).

Experimental top

A mixture of La(NO3)3.6H2O (0.060 g, 0.25 mmol), pyridine-2,5-dicarboxylic acid (0.084 g, 0.50 mmol) and H2O (15 ml) was sealed in a 25 ml stainless steel reactor with a Teflon liner and heated at 433 K for 72 h. The mixture was cooled slowly to room temperature at a rate of 10 K.h-1. Straw yellow prism crystals of the title complex were collected by filtration and were obtained in 21% yield. Analysis calculated for C14H13LaN2O11 (%): C 32.08, H 2.50, N 5.34; found: C 32.11, H 2.53, N 5.36

Refinement top

Aromatic H atoms were placed in geometrically idealized positions with C—H = 0.93 Å and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C). Carboxyl H atoms were placed in calculated position with O—H = 0.82 Å and refined in riding mode with Uiso(H) = 1.5Ueq(O). Water H atoms were placed in calculated positions with O—H = 0.85 Å and refined in riding mode with Uiso(H) = 1.2Ueq(O). The highest peak and deepest hole appear at 1.22 Å from H14 and 0.83 Å from H21A, respectively.

Structure description top

In recent years, studies on the syntheses, structures and properties of coordination complexes containing lanthanum and aromatic carboxylate have intensely attracted much attention, because they possess potential application on catalysis, separation, gas deposition and luminescence (Chae et al., 2004; Seo et al., 2000; Bradshaw et al., 2004; Lu et al., 2006). As a multi-functional ligand, pyridine-2,5-dicarboxylic acid has been widely used in the preparation of 3 d-4f heterometallic coordination polymers (Liang et al., 2000; Liang et al., 2001) and transition metallic supra-molecular compounds (Min et al., 2001; Xu et al., 2001; Gao et al., 2005). However the investigation on the lanthanum complexes is relative limited (Song et al., 2005). We report here the crystal structure of the title LaIII polymeric compound.

A segment of the polymeric structure of the title compound is illustrated in Fig. 1. Each LaIII ion is nine-coordinated by two nitrogen atoms from Hpydc and pydc ligands, five oxygen atoms from carboxylate groups of one Hpydc and four pydc ligands and two water molecules. The pydc2- anion acts as chelating-bridging pentadentate ligand towards four LaIII ions. The pyridine nitrogen atom and the ortho-carboxylic oxygen atom chelate one La ion, and this oxygen atom and other two carboxylic oxygen atoms of the pydc ligand bridge another three different La ions. The Hpydc- anion acts as chelating bidentate ligand towards the La ion with a pyridine nitrogen atom and the ortho carboxylic oxygen atom, which is similar to the coordination mode of Hpydc in [Dy(Hpydc)(pydc)(phen)(H2O).H2O]n [phen=1,10-phenanthroline] (Song et al., 2005) and [Ln(Hpydc)(pydc)] [Ln = Sm, Eu, Gd] (Qin et al., 2005). The La···La separations in the same unit and between adjacent units are 4.339 (9) and 5.619 (9) Å, respectively. The La center is in a slightly distorted tricapped trigonal prism coordination geometry. Adjacent La ions are linked together through single-atom carboxylate oxygen atom and carboxylate group in the syn-anti mode, forming a two-dimensional polymeric layer structure as represented in Fig. 2. Selected geometric parameters are listed in Table 1. The La—O bond lengths fall in range from 2.498 (10) to 2.658 (9) Å.

Extensive N—H···O and O—H···O hydrogen bonding occur in the crystal structure of the title compound, and connect adjacent layers into the infinite three-dimensional supramolecular network structure (Table 2 and Fig. 3).

For general background, see: Chae et al. (2004); Seo et al. (2000); Bradshaw et al. (2004); Lu et al. (2006); Liang et al. (2000, 2001); Min et al. (2001); Xu et al. (2001); Gao et al. (2005). For related structures, see: Song et al. (2005); Qin et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the two-dimensional network in the crystal structure of the title compound. H atoms and uncoordinated water molecules have been omitted.
[Figure 3] Fig. 3. View of the packing of the three-dimensional network of the title compound along the b axis (H atoms and uncoordinated water molecules have been omitted for clarity).
Poly[[tetraaquabis(5-carboxypyridine-2-carboxylato-κ2N,O)bis(µ4– pyridine-2,5-dicarboxylato-κ5N,O:O:O':O'')dilanthanum(III)] dihydrate] top
Crystal data top
[La2(C7H4NO4)2(C7H3NO4)2(H2O)4]·2H2OF(000) = 1024
Mr = 1048.35Dx = 2.088 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3211 reflections
a = 9.2203 (18) Åθ = 2.2–20.5°
b = 19.744 (4) ŵ = 2.63 mm1
c = 9.3552 (19) ÅT = 293 K
β = 101.72 (3)°Prism, yellow
V = 1667.5 (6) Å30.35 × 0.34 × 0.27 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5778 independent reflections
Radiation source: fine-focus sealed tube5491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.428, Tmax = 0.490k = 2323
12319 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0958P)2 + 9.9455P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5778 reflectionsΔρmax = 1.82 e Å3
505 parametersΔρmin = 3.93 e Å3
1 restraintAbsolute structure: Flack (1983), 2752 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (4)
Crystal data top
[La2(C7H4NO4)2(C7H3NO4)2(H2O)4]·2H2OV = 1667.5 (6) Å3
Mr = 1048.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2203 (18) ŵ = 2.63 mm1
b = 19.744 (4) ÅT = 293 K
c = 9.3552 (19) Å0.35 × 0.34 × 0.27 mm
β = 101.72 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5778 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5491 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.490Rint = 0.093
12319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.174Δρmax = 1.82 e Å3
S = 1.06Δρmin = 3.93 e Å3
5778 reflectionsAbsolute structure: Flack (1983), 2752 Friedel pairs
505 parametersAbsolute structure parameter: 0.50 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.46937 (8)0.05700 (3)0.39796 (8)0.0112 (2)
La20.28724 (8)0.07667 (3)0.93428 (8)0.0107 (2)
N10.5695 (13)0.0629 (6)0.5397 (14)0.016 (3)
N20.2524 (13)0.0334 (6)0.3592 (13)0.014 (3)
N30.0116 (13)0.1009 (6)0.9728 (13)0.015 (3)
N40.1862 (13)0.1969 (6)0.7924 (13)0.014 (3)
O10.3674 (11)0.0545 (5)0.2910 (11)0.015 (2)
O20.2676 (12)0.1539 (5)0.3372 (12)0.024 (2)
O30.9397 (13)0.0864 (6)0.8710 (13)0.024 (3)
O40.8767 (12)0.1922 (5)0.9100 (13)0.026 (3)
H4B0.93850.18840.98600.038*
O50.2708 (11)0.0173 (5)0.5298 (11)0.014 (2)
O60.1288 (10)0.0513 (5)0.6871 (10)0.0148 (19)
O70.3646 (11)0.0298 (6)0.0010 (12)0.021 (2)
O80.4868 (10)0.0364 (5)0.1292 (10)0.011 (2)
O90.4727 (13)0.2909 (5)1.0127 (13)0.029 (3)
O100.3905 (11)0.1868 (5)1.0408 (11)0.016 (2)
O110.1719 (12)0.2227 (5)0.4463 (12)0.020 (2)
O120.0761 (13)0.3223 (5)0.3902 (13)0.026 (3)
H12A0.14760.32210.32180.040*
O130.2497 (11)0.0993 (5)1.2010 (11)0.015 (2)
O140.1265 (12)0.1662 (6)1.3299 (12)0.023 (2)
O150.3697 (10)0.0818 (5)0.6455 (10)0.0145 (19)
O160.5110 (11)0.1124 (5)0.7993 (11)0.017 (2)
O170.3846 (11)0.0285 (5)0.8125 (11)0.016 (2)
H17A0.46830.03110.87050.019*
H17C0.39850.00530.74000.019*
O180.1967 (11)0.0318 (5)1.0239 (11)0.016 (2)
H18A0.23580.04571.10900.019*
H18C0.11780.05420.99290.019*
O190.3764 (12)0.1608 (5)0.5188 (12)0.018 (2)
H19A0.28620.15730.47560.022*
H19B0.38690.14310.60310.022*
O200.5648 (11)0.1658 (5)0.3042 (12)0.019 (2)
H20A0.55040.15490.21450.022*
H20B0.65620.16060.34140.022*
O210.7230 (12)0.3388 (5)0.1594 (13)0.027 (3)
H21B0.64640.31900.11180.033*
H21C0.70030.37960.17340.033*
O220.1319 (14)0.7993 (6)0.0723 (16)0.040 (3)
H22A0.17750.81470.15400.048*
H22B0.17790.81190.00680.048*
C10.3653 (16)0.1095 (7)0.3636 (16)0.016 (3)
C20.4906 (16)0.1192 (7)0.4931 (16)0.015 (3)
C30.5209 (16)0.1821 (8)0.5549 (17)0.017 (3)
H3A0.46130.21910.52050.021*
C40.6448 (16)0.1899 (7)0.6723 (17)0.018 (3)
H4A0.66990.23180.71560.021*
C50.7253 (16)0.1331 (7)0.7187 (17)0.016 (3)
C60.8590 (16)0.1344 (7)0.8433 (17)0.017 (3)
C70.6853 (16)0.0696 (8)0.6544 (16)0.016 (3)
H7A0.73930.03150.69130.019*
C80.1461 (15)0.0313 (7)0.5627 (16)0.014 (3)
C90.0120 (16)0.0184 (7)0.4480 (16)0.013 (3)
C100.0192 (16)0.0138 (7)0.3160 (16)0.015 (3)
H10A0.10940.03020.30070.018*
C110.1064 (15)0.0214 (7)0.2089 (17)0.014 (3)
H11A0.10010.04310.12210.017*
C120.2384 (16)0.0021 (7)0.2280 (16)0.014 (3)
C130.3733 (15)0.0021 (7)0.1096 (16)0.014 (3)
C140.1313 (15)0.0397 (7)0.4643 (16)0.014 (3)
H140.14100.05900.55260.017*
C150.1360 (16)0.1339 (7)1.2190 (16)0.014 (3)
C160.0017 (16)0.1304 (7)1.0937 (16)0.013 (3)
C170.1335 (16)0.1583 (7)1.1211 (17)0.016 (3)
H17B0.13600.18131.20730.019*
C180.2594 (16)0.1499 (7)1.0130 (16)0.014 (3)
H18B0.35030.16651.02590.017*
C190.2479 (16)0.1164 (7)0.8852 (16)0.014 (3)
C200.3863 (15)0.1042 (7)0.7739 (16)0.013 (3)
C210.1135 (15)0.0917 (7)0.8690 (15)0.014 (3)
H21A0.10750.06790.78460.017*
C220.3880 (16)0.2428 (7)0.9726 (16)0.017 (3)
C230.2723 (16)0.2512 (7)0.8339 (16)0.016 (3)
C240.2569 (17)0.3121 (7)0.7608 (17)0.018 (3)
H24A0.32190.34780.79110.022*
C250.1432 (17)0.3188 (7)0.6423 (17)0.017 (3)
H25A0.12940.35960.59170.021*
C260.0477 (16)0.2643 (7)0.5970 (16)0.015 (3)
C270.0788 (16)0.2672 (7)0.4702 (16)0.015 (3)
C280.0747 (16)0.2054 (7)0.6777 (16)0.015 (3)
H28A0.01090.16910.65030.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0075 (4)0.0194 (4)0.0072 (4)0.0004 (3)0.0030 (3)0.0004 (3)
La20.0075 (4)0.0192 (4)0.0057 (4)0.0007 (3)0.0022 (3)0.0004 (3)
N10.013 (6)0.022 (6)0.012 (7)0.001 (5)0.002 (5)0.000 (5)
N20.010 (6)0.024 (6)0.008 (6)0.002 (5)0.003 (5)0.003 (5)
N30.012 (6)0.024 (6)0.008 (6)0.000 (5)0.002 (5)0.001 (5)
N40.012 (6)0.023 (6)0.008 (6)0.000 (5)0.003 (5)0.001 (5)
O10.013 (5)0.024 (5)0.008 (5)0.001 (4)0.003 (4)0.001 (4)
O20.018 (6)0.032 (6)0.019 (6)0.008 (5)0.005 (5)0.002 (5)
O30.023 (6)0.026 (6)0.020 (6)0.004 (5)0.004 (5)0.001 (5)
O40.022 (6)0.032 (6)0.018 (6)0.003 (5)0.005 (5)0.003 (4)
O50.011 (5)0.025 (5)0.009 (5)0.002 (4)0.005 (4)0.001 (4)
O60.011 (4)0.024 (5)0.010 (5)0.001 (4)0.004 (4)0.001 (4)
O70.012 (5)0.037 (6)0.011 (6)0.004 (5)0.003 (4)0.009 (5)
O80.003 (4)0.023 (5)0.007 (5)0.002 (3)0.001 (4)0.004 (4)
O90.023 (6)0.031 (6)0.028 (7)0.007 (5)0.006 (5)0.002 (5)
O100.014 (5)0.023 (5)0.010 (5)0.001 (4)0.001 (4)0.001 (4)
O110.013 (5)0.029 (6)0.015 (6)0.001 (5)0.002 (4)0.002 (4)
O120.021 (6)0.035 (6)0.017 (6)0.003 (5)0.011 (5)0.009 (4)
O130.016 (5)0.023 (5)0.010 (5)0.002 (4)0.008 (4)0.000 (4)
O140.017 (6)0.035 (6)0.016 (6)0.005 (5)0.001 (5)0.012 (5)
O150.011 (5)0.024 (5)0.008 (5)0.002 (4)0.001 (4)0.002 (4)
O160.011 (5)0.027 (5)0.012 (5)0.000 (4)0.002 (4)0.001 (4)
O170.014 (5)0.025 (5)0.009 (5)0.004 (4)0.004 (4)0.003 (4)
O180.012 (5)0.028 (5)0.010 (5)0.005 (4)0.006 (4)0.003 (4)
O190.014 (5)0.028 (6)0.012 (6)0.003 (4)0.000 (4)0.002 (5)
O200.013 (5)0.030 (6)0.013 (6)0.002 (4)0.001 (4)0.001 (4)
O210.022 (6)0.024 (5)0.030 (7)0.005 (4)0.009 (5)0.006 (5)
O220.034 (8)0.045 (7)0.036 (8)0.000 (6)0.003 (6)0.002 (6)
C10.012 (7)0.023 (7)0.011 (8)0.001 (6)0.003 (6)0.001 (6)
C20.011 (7)0.023 (7)0.011 (8)0.000 (6)0.003 (6)0.001 (6)
C30.014 (8)0.024 (7)0.014 (8)0.000 (6)0.002 (6)0.001 (6)
C40.013 (8)0.026 (7)0.014 (8)0.001 (6)0.001 (6)0.001 (6)
C50.012 (7)0.024 (7)0.011 (7)0.001 (6)0.003 (6)0.001 (6)
C60.014 (8)0.025 (7)0.012 (8)0.003 (6)0.003 (6)0.001 (6)
C70.012 (7)0.024 (7)0.012 (8)0.001 (6)0.003 (6)0.000 (6)
C80.011 (7)0.023 (7)0.009 (7)0.001 (6)0.003 (6)0.000 (6)
C90.008 (7)0.024 (7)0.008 (7)0.000 (6)0.002 (6)0.000 (6)
C100.011 (7)0.024 (7)0.010 (7)0.000 (6)0.004 (6)0.001 (6)
C110.010 (7)0.024 (7)0.008 (8)0.001 (5)0.003 (6)0.002 (6)
C120.012 (7)0.023 (7)0.008 (7)0.001 (6)0.000 (6)0.005 (6)
C130.008 (7)0.023 (7)0.009 (8)0.001 (5)0.002 (6)0.001 (6)
C140.010 (7)0.024 (8)0.008 (7)0.001 (5)0.003 (5)0.002 (5)
C150.011 (7)0.022 (7)0.010 (8)0.001 (5)0.002 (6)0.000 (6)
C160.010 (7)0.023 (7)0.007 (7)0.001 (6)0.005 (6)0.001 (5)
C170.013 (7)0.025 (7)0.011 (7)0.001 (6)0.003 (6)0.001 (6)
C180.011 (7)0.024 (7)0.008 (7)0.001 (6)0.004 (6)0.001 (6)
C190.012 (7)0.023 (7)0.008 (7)0.001 (6)0.004 (6)0.000 (6)
C200.010 (7)0.022 (6)0.008 (7)0.001 (6)0.002 (6)0.003 (6)
C210.011 (7)0.024 (8)0.009 (7)0.001 (5)0.004 (5)0.001 (5)
C220.013 (7)0.024 (7)0.013 (8)0.001 (6)0.002 (6)0.002 (6)
C230.012 (7)0.024 (7)0.012 (8)0.001 (6)0.003 (6)0.001 (6)
C240.015 (8)0.025 (7)0.013 (8)0.002 (6)0.001 (6)0.000 (6)
C250.015 (7)0.023 (7)0.012 (8)0.001 (6)0.000 (6)0.002 (6)
C260.011 (7)0.024 (7)0.010 (7)0.000 (5)0.003 (6)0.001 (6)
C270.012 (7)0.024 (7)0.010 (7)0.000 (6)0.003 (6)0.000 (5)
C280.012 (7)0.024 (7)0.010 (8)0.000 (6)0.003 (6)0.001 (6)
Geometric parameters (Å, º) top
La1—O12.520 (10)O16—La2iv2.551 (10)
La1—O52.531 (10)O17—H17A0.8500
La1—O8i2.658 (9)O17—H17C0.8500
La1—O13ii2.584 (10)O18—H18A0.8500
La1—O15i2.531 (9)O18—H18C0.8500
La1—O192.570 (11)O19—H19A0.8500
La1—O202.543 (10)O19—H19B0.8501
La1—N12.778 (13)O20—H20A0.8500
La1—N2i2.703 (12)O20—H20B0.8500
La2—O62.522 (9)O21—H21B0.8500
La2—O8iii2.599 (9)O21—H21C0.8500
La2—O102.498 (10)O22—H22A0.8500
La2—O132.626 (10)O22—H22B0.8500
La2—O16i2.551 (10)C1—C21.51 (2)
La2—O172.613 (10)C2—C31.38 (2)
La2—O182.505 (10)C3—C41.42 (2)
La2—N32.681 (12)C3—H3A0.9300
La2—N42.786 (12)C4—C51.37 (2)
N1—C21.351 (19)C4—H4A0.9300
N1—C71.357 (19)C5—C71.41 (2)
N2—C141.335 (18)C5—C61.51 (2)
N2—C121.403 (19)C7—H7A0.9300
N2—La1iv2.703 (12)C8—C91.49 (2)
N3—C161.300 (19)C9—C101.40 (2)
N3—C211.361 (18)C9—C141.42 (2)
N4—C281.337 (19)C10—C111.38 (2)
N4—C231.344 (19)C10—H10A0.9300
O1—C11.282 (17)C11—C121.35 (2)
O2—C11.246 (18)C11—H11A0.9300
O3—C61.201 (18)C12—C131.488 (19)
O4—C61.296 (18)C14—H140.9300
O4—H4B0.8200C15—C161.545 (19)
O5—C81.279 (17)C16—C171.40 (2)
O6—C81.270 (17)C17—C181.39 (2)
O7—C131.211 (18)C17—H17B0.9300
O8—C131.290 (17)C18—C191.39 (2)
O8—La2v2.599 (9)C18—H18B0.9300
O8—La1iv2.658 (9)C19—C211.37 (2)
O9—C221.237 (18)C19—C201.494 (19)
O10—C221.276 (18)C21—H21A0.9300
O11—C271.216 (18)C22—C231.512 (19)
O12—C271.323 (18)C23—C241.38 (2)
O12—H12A0.8200C24—C251.37 (2)
O13—C151.291 (17)C24—H24A0.9300
O13—La1vi2.584 (10)C25—C261.40 (2)
O14—C151.237 (18)C25—H25A0.9300
O15—C201.317 (18)C26—C281.38 (2)
O15—La1iv2.531 (9)C26—C271.486 (19)
O16—C201.232 (18)C28—H28A0.9300
O1—La1—O571.0 (3)C15—O13—La2118.8 (9)
O1—La1—O15i129.4 (3)La1vi—O13—La2112.8 (4)
O5—La1—O15i87.8 (3)C20—O15—La1iv138.1 (8)
O1—La1—O20136.7 (3)C20—O16—La2iv149.6 (10)
O5—La1—O20139.9 (3)La2—O17—H17A96.8
O15i—La1—O2088.4 (3)La2—O17—H17C92.3
O1—La1—O19137.8 (3)H17A—O17—H17C106.2
O5—La1—O1972.1 (3)La2—O18—H18A118.8
O15i—La1—O1968.2 (3)La2—O18—H18C130.6
O20—La1—O1969.4 (4)H18A—O18—H18C108.8
O1—La1—O13ii79.9 (3)La1—O19—H19A96.2
O5—La1—O13ii84.7 (3)La1—O19—H19B95.5
O15i—La1—O13ii145.0 (3)H19A—O19—H19B108.9
O20—La1—O13ii76.0 (3)La1—O20—H20A97.6
O19—La1—O13ii76.9 (3)La1—O20—H20B98.1
O1—La1—O8i66.8 (3)H20A—O20—H20B108.5
O5—La1—O8i132.7 (3)H21B—O21—H21C108.2
O15i—La1—O8i136.2 (3)H22A—O22—H22B108.5
O20—La1—O8i70.9 (3)O2—C1—O1125.4 (13)
O19—La1—O8i131.8 (3)O2—C1—C2118.4 (13)
O13ii—La1—O8i67.8 (3)O1—C1—C2116.2 (12)
O1—La1—N2i94.8 (3)N1—C2—C3123.9 (13)
O5—La1—N2i144.3 (3)N1—C2—C1115.4 (12)
O15i—La1—N2i76.1 (3)C3—C2—C1120.7 (13)
O20—La1—N2i72.3 (3)C2—C3—C4118.9 (13)
O19—La1—N2i127.4 (3)C2—C3—H3A120.5
O13ii—La1—N2i126.0 (3)C4—C3—H3A120.5
O8i—La1—N2i61.0 (3)C5—C4—C3117.2 (14)
O1—La1—N160.4 (4)C5—C4—H4A121.4
O5—La1—N173.0 (3)C3—C4—H4A121.4
O15i—La1—N169.6 (3)C4—C5—C7121.1 (14)
O20—La1—N1141.2 (3)C4—C5—C6122.4 (13)
O19—La1—N1125.3 (4)C7—C5—C6116.5 (13)
O13ii—La1—N1138.8 (3)O3—C6—O4125.5 (14)
O8i—La1—N1102.8 (3)O3—C6—C5121.6 (13)
N2i—La1—N171.6 (4)O4—C6—C5112.8 (12)
O10—La2—O18137.5 (3)N1—C7—C5121.4 (14)
O10—La2—O6129.9 (3)N1—C7—H7A119.3
O18—La2—O688.1 (3)C5—C7—H7A119.3
O10—La2—O16i72.5 (3)O6—C8—O5125.1 (13)
O18—La2—O16i136.8 (3)O6—C8—C9118.3 (12)
O6—La2—O16i86.9 (3)O5—C8—C9116.5 (13)
O10—La2—O16i72.5 (3)C10—C9—C14116.1 (13)
O18—La2—O16i136.8 (3)C10—C9—C8122.1 (13)
O6—La2—O16i86.9 (3)C14—C9—C8121.8 (13)
O16i—La2—O16i0.0 (4)C11—C10—C9120.4 (14)
O10—La2—O8iii78.5 (3)C11—C10—H10A119.8
O18—La2—O8iii77.1 (3)C9—C10—H10A119.8
O6—La2—O8iii144.6 (3)C12—C11—C10121.0 (14)
O16i—La2—O8iii82.6 (3)C12—C11—H11A119.5
O16i—La2—O8iii82.6 (3)C10—C11—H11A119.5
O10—La2—O17136.8 (3)C11—C12—N2120.9 (13)
O18—La2—O1768.5 (4)C11—C12—C13122.8 (14)
O6—La2—O1768.2 (3)N2—C12—C13116.1 (12)
O16i—La2—O1769.8 (3)O7—C13—O8125.8 (13)
O16i—La2—O1769.8 (3)O7—C13—C12115.9 (13)
O8iii—La2—O1776.4 (3)O8—C13—C12118.2 (12)
O10—La2—O1365.6 (3)N2—C14—C9123.3 (13)
O18—La2—O1373.1 (3)N2—C14—H14118.4
O6—La2—O13137.9 (3)C9—C14—H14118.4
O16i—La2—O13132.3 (3)O14—C15—O13125.5 (13)
O16i—La2—O13132.3 (3)O14—C15—C16118.2 (13)
O8iii—La2—O1368.1 (3)O13—C15—C16116.2 (12)
O17—La2—O13132.3 (3)N3—C16—C17125.0 (14)
O10—La2—N394.9 (3)N3—C16—C15118.1 (13)
O18—La2—N373.6 (3)C17—C16—C15116.9 (13)
O6—La2—N376.7 (3)C18—C17—C16116.6 (14)
O16i—La2—N3145.4 (3)C18—C17—H17B121.7
O16i—La2—N3145.4 (3)C16—C17—H17B121.7
O8iii—La2—N3127.4 (3)C17—C18—C19119.0 (14)
O17—La2—N3128.3 (3)C17—C18—H18B120.5
O13—La2—N362.0 (3)C19—C18—H18B120.5
O10—La2—N460.8 (4)C21—C19—C18119.6 (14)
O18—La2—N4141.8 (3)C21—C19—C20122.0 (13)
O6—La2—N469.9 (3)C18—C19—C20118.2 (13)
O16i—La2—N474.7 (3)O16—C20—O15120.4 (13)
O16i—La2—N474.7 (3)O16—C20—C19122.9 (13)
O8iii—La2—N4137.6 (3)O15—C20—C19116.7 (12)
O17—La2—N4125.5 (4)N3—C21—C19121.9 (13)
O13—La2—N4102.2 (3)N3—C21—H21A119.0
N3—La2—N471.2 (4)C19—C21—H21A119.0
C2—N1—C7117.4 (13)O9—C22—O10124.5 (14)
C2—N1—La1116.2 (9)O9—C22—C23117.9 (13)
C7—N1—La1126.4 (10)O10—C22—C23117.5 (12)
C14—N2—C12118.3 (12)N4—C23—C24124.0 (14)
C14—N2—La1iv124.0 (9)N4—C23—C22115.7 (13)
C12—N2—La1iv116.8 (8)C24—C23—C22120.4 (13)
C16—N3—C21117.7 (12)C25—C24—C23118.1 (14)
C16—N3—La2117.2 (9)C25—C24—H24A120.9
C21—N3—La2124.7 (9)C23—C24—H24A120.9
C28—N4—C23116.4 (13)C24—C25—C26120.2 (14)
C28—N4—La2128.1 (10)C24—C25—H25A119.9
C23—N4—La2114.9 (9)C26—C25—H25A119.9
C1—O1—La1125.0 (9)C28—C26—C25116.7 (13)
C6—O4—H4B109.5C28—C26—C27119.5 (13)
C8—O5—La1145.6 (9)C25—C26—C27123.7 (13)
C8—O6—La2138.2 (8)O11—C27—O12125.6 (13)
C13—O8—La2v128.2 (8)O11—C27—C26122.0 (13)
C13—O8—La1iv119.9 (8)O12—C27—C26112.4 (12)
La2v—O8—La1iv111.2 (3)N4—C28—C26124.6 (14)
C22—O10—La2126.1 (9)N4—C28—H28A117.7
C27—O12—H12A109.5C26—C28—H28A117.7
C15—O13—La1vi128.2 (9)
O1—La1—N1—C212.5 (9)La1—O1—C1—O2146.7 (12)
O5—La1—N1—C264.9 (10)La1—O1—C1—C231.7 (17)
O15i—La1—N1—C2159.0 (11)C7—N1—C2—C30 (2)
O20—La1—N1—C2141.6 (10)La1—N1—C2—C3177.3 (12)
O19—La1—N1—C2117.4 (10)C7—N1—C2—C1178.7 (13)
O13ii—La1—N1—C24.7 (13)La1—N1—C2—C14.0 (16)
O8i—La1—N1—C266.2 (11)O2—C1—C2—N1162.9 (14)
N2i—La1—N1—C2119.4 (11)O1—C1—C2—N115.6 (19)
O1—La1—N1—C7170.5 (13)O2—C1—C2—C318 (2)
O5—La1—N1—C7112.0 (12)O1—C1—C2—C3163.1 (14)
O15i—La1—N1—C718.0 (11)N1—C2—C3—C42 (2)
O20—La1—N1—C741.5 (14)C1—C2—C3—C4176.8 (13)
O19—La1—N1—C759.6 (13)C2—C3—C4—C51 (2)
O13ii—La1—N1—C7172.3 (10)C3—C4—C5—C71 (2)
O8i—La1—N1—C7116.9 (12)C3—C4—C5—C6179.6 (13)
N2i—La1—N1—C763.6 (11)C4—C5—C6—O3170.4 (15)
O10—La2—N3—C1639.9 (11)C7—C5—C6—O311 (2)
O18—La2—N3—C1698.3 (11)C4—C5—C6—O48 (2)
O6—La2—N3—C16169.8 (11)C7—C5—C6—O4170.9 (14)
O16i—La2—N3—C16105.9 (11)C2—N1—C7—C52 (2)
O16i—La2—N3—C16105.9 (11)La1—N1—C7—C5179.4 (11)
O8iii—La2—N3—C1639.4 (12)C4—C5—C7—N13 (2)
O17—La2—N3—C16142.4 (10)C6—C5—C7—N1178.4 (13)
O13—La2—N3—C1619.0 (10)La2—O6—C8—O50 (2)
N4—La2—N3—C1696.7 (11)La2—O6—C8—C9175.4 (9)
O10—La2—N3—C21132.3 (10)La1—O5—C8—O6104.4 (18)
O18—La2—N3—C2189.5 (10)La1—O5—C8—C979.9 (19)
O6—La2—N3—C212.4 (10)O6—C8—C9—C10169.6 (13)
O16i—La2—N3—C2166.3 (12)O5—C8—C9—C106 (2)
O16i—La2—N3—C2166.3 (12)O6—C8—C9—C1412 (2)
O8iii—La2—N3—C21148.4 (9)O5—C8—C9—C14172.0 (13)
O17—La2—N3—C2145.4 (12)C14—C9—C10—C112 (2)
O13—La2—N3—C21168.8 (11)C8—C9—C10—C11176.3 (13)
N4—La2—N3—C2175.5 (10)C9—C10—C11—C120 (2)
O10—La2—N4—C28172.5 (13)C10—C11—C12—N22 (2)
O18—La2—N4—C2841.6 (15)C10—C11—C12—C13172.9 (14)
O6—La2—N4—C2816.9 (11)C14—N2—C12—C111 (2)
O16i—La2—N4—C28109.2 (12)La1iv—N2—C12—C11169.3 (11)
O16i—La2—N4—C28109.2 (12)C14—N2—C12—C13174.5 (12)
O8iii—La2—N4—C28169.3 (10)La1iv—N2—C12—C1315.7 (15)
O17—La2—N4—C2858.7 (13)La2v—O8—C13—O716 (2)
O13—La2—N4—C28119.8 (12)La1iv—O8—C13—O7153.7 (12)
N3—La2—N4—C2865.4 (12)La2v—O8—C13—C12162.2 (9)
O10—La2—N4—C2316.5 (10)La1iv—O8—C13—C1227.8 (16)
O18—La2—N4—C23147.4 (9)C11—C12—C13—O711 (2)
O6—La2—N4—C23154.0 (11)N2—C12—C13—O7174.1 (13)
O16i—La2—N4—C2361.7 (10)C11—C12—C13—O8167.7 (14)
O16i—La2—N4—C2361.7 (10)N2—C12—C13—O87.3 (19)
O8iii—La2—N4—C231.6 (13)C12—N2—C14—C92 (2)
O17—La2—N4—C23112.3 (10)La1iv—N2—C14—C9171.2 (10)
O13—La2—N4—C2369.2 (11)C10—C9—C14—N24 (2)
N3—La2—N4—C23123.7 (11)C8—C9—C14—N2175.0 (13)
O5—La1—O1—C156.9 (11)La1vi—O13—C15—O1417 (2)
O15i—La1—O1—C113.5 (12)La2—O13—C15—O14155.8 (12)
O20—La1—O1—C1158.6 (10)La1vi—O13—C15—C16158.9 (9)
O19—La1—O1—C187.4 (11)La2—O13—C15—C1628.0 (15)
O13ii—La1—O1—C1144.7 (11)C21—N3—C16—C175 (2)
O8i—La1—O1—C1145.2 (11)La2—N3—C16—C17167.4 (12)
N2i—La1—O1—C189.5 (11)C21—N3—C16—C15173.2 (12)
N1—La1—O1—C123.8 (10)La2—N3—C16—C1514.0 (16)
O1—La1—O5—C8120.5 (16)O14—C15—C16—N3174.7 (14)
O15i—La1—O5—C8106.3 (16)O13—C15—C16—N38.8 (19)
O20—La1—O5—C821.3 (18)O14—C15—C16—C177 (2)
O19—La1—O5—C838.4 (16)O13—C15—C16—C17169.9 (13)
O13ii—La1—O5—C839.5 (16)N3—C16—C17—C184 (2)
O8i—La1—O5—C892.5 (16)C15—C16—C17—C18174.7 (13)
N2i—La1—O5—C8168.6 (15)C16—C17—C18—C191 (2)
N1—La1—O5—C8175.6 (17)C17—C18—C19—C211 (2)
O10—La2—O6—C895.6 (14)C17—C18—C19—C20176.4 (13)
O18—La2—O6—C8105.5 (13)La2iv—O16—C20—O15110.5 (19)
O16i—La2—O6—C831.6 (13)La2iv—O16—C20—C1967 (2)
O16i—La2—O6—C831.6 (13)La1iv—O15—C20—O168 (2)
O8iii—La2—O6—C841.0 (16)La1iv—O15—C20—C19174.1 (9)
O17—La2—O6—C837.9 (13)C21—C19—C20—O16163.5 (14)
O13—La2—O6—C8167.5 (12)C18—C19—C20—O1612 (2)
N3—La2—O6—C8179.1 (14)C21—C19—C20—O1515 (2)
N4—La2—O6—C8106.4 (14)C18—C19—C20—O15170.0 (13)
O18—La2—O10—C22156.8 (11)C16—N3—C21—C194 (2)
O6—La2—O10—C229.0 (13)La2—N3—C21—C19167.7 (10)
O16i—La2—O10—C2261.3 (11)C18—C19—C21—N32 (2)
O16i—La2—O10—C2261.3 (11)C20—C19—C21—N3177.7 (12)
O8iii—La2—O10—C22147.1 (12)La2—O10—C22—O9158.6 (12)
O17—La2—O10—C2291.6 (12)La2—O10—C22—C2322.0 (18)
O13—La2—O10—C22141.9 (12)C28—N4—C23—C244 (2)
N3—La2—O10—C2285.8 (12)La2—N4—C23—C24168.3 (12)
N4—La2—O10—C2220.6 (11)C28—N4—C23—C22174.1 (12)
O10—La2—O13—C1585.7 (10)La2—N4—C23—C2213.8 (16)
O18—La2—O13—C15104.7 (9)O9—C22—C23—N4178.0 (14)
O6—La2—O13—C1537.5 (11)O10—C22—C23—N43 (2)
O16i—La2—O13—C15116.3 (9)O9—C22—C23—C244 (2)
O16i—La2—O13—C15116.3 (9)O10—C22—C23—C24175.3 (14)
O8iii—La2—O13—C15172.6 (10)N4—C23—C24—C253 (2)
O17—La2—O13—C15142.4 (9)C22—C23—C24—C25175.0 (14)
N3—La2—O13—C1524.7 (9)C23—C24—C25—C261 (2)
N4—La2—O13—C1536.0 (10)C24—C25—C26—C280 (2)
O10—La2—O13—La1vi88.4 (4)C24—C25—C26—C27179.6 (14)
O18—La2—O13—La1vi81.1 (4)C28—C26—C27—O1110 (2)
O6—La2—O13—La1vi148.4 (4)C25—C26—C27—O11169.3 (15)
O16i—La2—O13—La1vi57.8 (5)C28—C26—C27—O12169.6 (13)
O16i—La2—O13—La1vi57.8 (5)C25—C26—C27—O1211 (2)
O8iii—La2—O13—La1vi1.5 (4)C23—N4—C28—C263 (2)
O17—La2—O13—La1vi43.5 (6)La2—N4—C28—C26167.7 (11)
N3—La2—O13—La1vi161.2 (5)C25—C26—C28—N41 (2)
N4—La2—O13—La1vi138.1 (4)C27—C26—C28—N4179.2 (13)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x1, y, z; (v) x1, y, z1; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22B···O21vii0.852.032.88 (2)176
O22—H22A···O2viii0.851.852.702 (17)177
O21—H21C···O17ix0.851.992.833 (15)171
O21—H21B···O9ii0.851.772.612 (15)171
O20—H20B···O11i0.852.092.759 (14)136
O20—H20A···O8i0.852.473.020 (14)123
O20—H20A···O10ii0.852.062.687 (14)130
O19—H19B···O16i0.851.982.787 (15)158
O19—H19A···O14ii0.851.802.605 (15)157
O18—H18C···O3iv0.851.912.728 (15)162
O18—H18A···O1vi0.851.892.706 (14)161
O17—H17C···O16i0.852.492.955 (14)115
O17—H17C···O50.852.122.791 (14)135
O17—H17A···O7iii0.851.762.608 (14)174
O12—H12A···O21iv0.821.762.564 (15)166
O4—H4B···O22x0.821.822.534 (14)145
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x1, y, z; (vi) x, y, z+1; (vii) x+1, y+1/2, z; (viii) x, y+1, z; (ix) x+1, y+1/2, z+1; (x) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formula[La2(C7H4NO4)2(C7H3NO4)2(H2O)4]·2H2O
Mr1048.35
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.2203 (18), 19.744 (4), 9.3552 (19)
β (°) 101.72 (3)
V3)1667.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.35 × 0.34 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.428, 0.490
No. of measured, independent and
observed [I > 2σ(I)] reflections
12319, 5778, 5491
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.174, 1.06
No. of reflections5778
No. of parameters505
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.82, 3.93
Absolute structureFlack (1983), 2752 Friedel pairs
Absolute structure parameter0.50 (4)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected bond lengths (Å) top
La1—O12.520 (10)La2—O62.522 (9)
La1—O52.531 (10)La2—O8iii2.599 (9)
La1—O8i2.658 (9)La2—O102.498 (10)
La1—O13ii2.584 (10)La2—O132.626 (10)
La1—O15i2.531 (9)La2—O16i2.551 (10)
La1—O192.570 (11)La2—O172.613 (10)
La1—O202.543 (10)La2—O182.505 (10)
La1—N12.778 (13)La2—N32.681 (12)
La1—N2i2.703 (12)La2—N42.786 (12)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22B···O21iv0.852.032.88 (2)176
O22—H22A···O2v0.851.852.702 (17)177
O21—H21C···O17vi0.851.992.833 (15)171
O21—H21B···O9ii0.851.772.612 (15)171
O20—H20B···O11i0.852.092.759 (14)136
O20—H20A···O8i0.852.473.020 (14)123
O20—H20A···O10ii0.852.062.687 (14)130
O19—H19B···O16i0.851.982.787 (15)158
O19—H19A···O14ii0.851.802.605 (15)157
O18—H18C···O3vii0.851.912.728 (15)162
O18—H18A···O1viii0.851.892.706 (14)161
O17—H17C···O16i0.852.492.955 (14)115
O17—H17C···O50.852.122.791 (14)135
O17—H17A···O7iii0.851.762.608 (14)174
O12—H12A···O21vii0.821.762.564 (15)166
O4—H4B···O22ix0.821.822.534 (14)145
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+1; (vii) x1, y, z; (viii) x, y, z+1; (ix) x+1, y1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds