Download citation
Download citation
link to html
The title compound, C15H19Cl2N3O2S, is an important inter­mediate for the synthesis of biologically active heterocyclic compounds. The thio­semicarbazide group is approximately planar and forms a dihedral angle of 88.03 (5)° with the benzene ring. The structure is stabilized by inter­molecular N—H...O and N—H...S hydrogen-bond inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034022/xu2290sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034022/xu2290Isup2.hkl
Contains datablock I

CCDC reference: 657769

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.107
  • Data-to-parameter ratio = 19.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. O2 .. 3.06 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Thiosemicarbazide is interesting because of the formation of complexes with biological activities (Shen et al., 1998). Some substituted thiourea derivatives have shown interesting biological effects, including anti-HIV properties (Mao et al., 1999), and thiourea derivatives have also been successfully screened for various biological actions (Antholine & Taketa, 1982). As a ligand with potential S– and N-atom donors, thiosemicarbazide is interesting because of the structural chemistry of its multifunctional coordination modes (N-monodentate, S-monodentate or N:S-bidentate). In order to investigate further this kind of ligand, we synthesized the title compound and describe its structure here.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are in normal ranges (Ji et al., 2002). The thiosemicabazide group is approximately planar and forms a dihedral angles of 88.03 (5)° with the benzene ring. The crystal structure is stabilized by intermolecular N—-H···O and N—H··· S hydrogen bonding (Table 1). Dipole–dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.

Related literature top

For general background, see: Antholine & Taketa (1982); Mao et al. (1999); Shen et al. (1998). For the related structure, see Ji et al. (2002).

Experimental top

The title compound was prepared by the reaction of 2-(2,4-dichlorophenoxy) acetohydrazide (4.7 g, 20 mmol) and cyclohexylisothiocyanate (2.82 g, 20 mmol) in an ethanol solution (Fig. 3). Single crystals suitable for X-ray measurements were obtained by recrystallization from a water-ethanol solution at room temperature (yield: 80%).

Refinement top

H atoms were included in calculated positions with C—H = 0.95 (CH), 0.99 (CH2) and N—H = 0.88 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Thiosemicarbazide is interesting because of the formation of complexes with biological activities (Shen et al., 1998). Some substituted thiourea derivatives have shown interesting biological effects, including anti-HIV properties (Mao et al., 1999), and thiourea derivatives have also been successfully screened for various biological actions (Antholine & Taketa, 1982). As a ligand with potential S– and N-atom donors, thiosemicarbazide is interesting because of the structural chemistry of its multifunctional coordination modes (N-monodentate, S-monodentate or N:S-bidentate). In order to investigate further this kind of ligand, we synthesized the title compound and describe its structure here.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are in normal ranges (Ji et al., 2002). The thiosemicabazide group is approximately planar and forms a dihedral angles of 88.03 (5)° with the benzene ring. The crystal structure is stabilized by intermolecular N—-H···O and N—H··· S hydrogen bonding (Table 1). Dipole–dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.

For general background, see: Antholine & Taketa (1982); Mao et al. (1999); Shen et al. (1998). For the related structure, see Ji et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Crystal packing of (I), along b axis.
[Figure 3] Fig. 3. The reaction scheme.
1-[2-(2,4-Dichlorophenoxy)acetyl]-4-cyclohexylthiosemicarbazide top
Crystal data top
C15H19Cl2N3O2SF(000) = 784
Mr = 376.29Dx = 1.476 Mg m3
Dm = 1.429 Mg m3
Dm measured by not measured
Monoclinic, P21/cMelting point: 462(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.4180 (16) ÅCell parameters from 2164 reflections
b = 12.1530 (13) Åθ = 2.1–27.5°
c = 9.285 (1) ŵ = 0.52 mm1
β = 103.299 (2)°T = 100 K
V = 1693.1 (3) Å3Block, colorless
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3957 independent reflections
Radiation source: fine-focus sealed tube2789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1820
Tmin = 0.881, Tmax = 0.926k = 1514
10375 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
3957 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H19Cl2N3O2SV = 1693.1 (3) Å3
Mr = 376.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4180 (16) ŵ = 0.52 mm1
b = 12.1530 (13) ÅT = 100 K
c = 9.285 (1) Å0.25 × 0.20 × 0.15 mm
β = 103.299 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3957 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2789 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.926Rint = 0.048
10375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.96Δρmax = 0.40 e Å3
3957 reflectionsΔρmin = 0.31 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13846 (17)0.6689 (2)0.7485 (3)0.0166 (6)
C20.07493 (17)0.7128 (2)0.6323 (3)0.0181 (6)
H20.03680.66530.56480.022*
C30.06700 (17)0.8258 (2)0.6143 (3)0.0172 (6)
H30.02390.85610.53420.021*
C40.12233 (17)0.8939 (2)0.7139 (3)0.0162 (6)
C50.18637 (17)0.8522 (2)0.8310 (3)0.0159 (6)
H50.22370.90000.89920.019*
C60.19441 (17)0.7396 (2)0.8458 (3)0.0154 (6)
C70.09777 (17)0.4823 (2)0.6805 (3)0.0159 (6)
H7A0.10850.48960.57990.019*
H7B0.03390.49670.67500.019*
C80.12191 (16)0.3672 (2)0.7391 (3)0.0143 (6)
C90.26704 (17)0.1994 (2)0.9505 (3)0.0142 (6)
C100.39401 (16)0.1555 (2)0.8427 (3)0.0153 (6)
H100.41870.11920.94010.018*
C110.36496 (17)0.0664 (2)0.7282 (3)0.0187 (6)
H11A0.33970.10040.63070.022*
H11B0.31800.02100.75560.022*
C120.44379 (17)0.0063 (2)0.7176 (3)0.0209 (6)
H12A0.46600.04470.81300.025*
H12B0.42410.06260.64000.025*
C130.51860 (17)0.0618 (2)0.6807 (3)0.0200 (6)
H13A0.49840.09350.58040.024*
H13B0.57040.01370.68080.024*
C140.54661 (18)0.1542 (2)0.7923 (3)0.0219 (6)
H14A0.59220.20020.76170.026*
H14B0.57370.12230.89040.026*
C150.46748 (17)0.2262 (2)0.8046 (3)0.0209 (6)
H15A0.48700.28240.88250.025*
H15B0.44420.26470.70960.025*
Cl10.11146 (4)1.03696 (5)0.69465 (8)0.01992 (17)
Cl20.27468 (5)0.68394 (6)0.98848 (8)0.02279 (18)
N10.17825 (14)0.36264 (18)0.8738 (2)0.0151 (5)
H10.20460.42330.91340.018*
N20.19546 (14)0.26475 (17)0.9509 (3)0.0161 (5)
H2A0.15780.24341.00350.019*
N30.31812 (14)0.22479 (18)0.8581 (2)0.0153 (5)
H3A0.30630.28490.80430.018*
O10.15121 (12)0.55908 (14)0.7776 (2)0.0207 (5)
O20.08986 (11)0.28700 (14)0.6667 (2)0.0160 (4)
S10.28518 (4)0.09197 (5)1.06962 (8)0.01578 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0196 (14)0.0135 (14)0.0166 (15)0.0021 (11)0.0043 (12)0.0014 (11)
C20.0175 (13)0.0156 (14)0.0192 (16)0.0001 (11)0.0005 (12)0.0002 (12)
C30.0166 (13)0.0164 (14)0.0179 (15)0.0020 (11)0.0027 (11)0.0035 (12)
C40.0204 (14)0.0100 (13)0.0201 (15)0.0015 (11)0.0085 (12)0.0006 (11)
C50.0178 (13)0.0150 (14)0.0157 (14)0.0020 (11)0.0054 (11)0.0013 (11)
C60.0162 (13)0.0175 (14)0.0121 (14)0.0023 (11)0.0024 (11)0.0027 (11)
C70.0192 (14)0.0112 (13)0.0167 (15)0.0001 (10)0.0030 (11)0.0006 (11)
C80.0122 (13)0.0159 (14)0.0166 (15)0.0018 (10)0.0071 (11)0.0011 (12)
C90.0172 (13)0.0128 (13)0.0122 (14)0.0016 (10)0.0025 (11)0.0023 (11)
C100.0146 (13)0.0151 (14)0.0173 (15)0.0035 (10)0.0056 (11)0.0025 (11)
C110.0167 (14)0.0186 (15)0.0218 (16)0.0005 (11)0.0065 (12)0.0014 (12)
C120.0200 (14)0.0165 (14)0.0266 (17)0.0017 (11)0.0063 (13)0.0040 (12)
C130.0177 (14)0.0222 (16)0.0214 (16)0.0036 (11)0.0071 (12)0.0035 (12)
C140.0156 (14)0.0252 (16)0.0260 (17)0.0038 (11)0.0070 (12)0.0037 (13)
C150.0215 (14)0.0170 (15)0.0270 (17)0.0033 (11)0.0112 (13)0.0039 (13)
Cl10.0222 (4)0.0109 (3)0.0265 (4)0.0006 (3)0.0052 (3)0.0030 (3)
Cl20.0248 (4)0.0185 (4)0.0204 (4)0.0000 (3)0.0043 (3)0.0030 (3)
N10.0213 (12)0.0097 (11)0.0154 (12)0.0000 (9)0.0061 (10)0.0012 (9)
N20.0204 (12)0.0133 (12)0.0173 (13)0.0039 (9)0.0094 (10)0.0050 (10)
N30.0193 (12)0.0125 (11)0.0162 (13)0.0026 (9)0.0081 (10)0.0038 (9)
O10.0265 (11)0.0093 (10)0.0212 (11)0.0006 (8)0.0052 (9)0.0000 (8)
O20.0196 (9)0.0125 (10)0.0171 (10)0.0026 (7)0.0069 (8)0.0024 (8)
S10.0204 (3)0.0133 (3)0.0143 (4)0.0018 (3)0.0053 (3)0.0020 (3)
Geometric parameters (Å, º) top
C1—O11.367 (3)C10—C111.511 (4)
C1—C21.387 (4)C10—C151.527 (4)
C1—C61.393 (4)C10—H101.0000
C2—C31.386 (4)C11—C121.524 (4)
C2—H20.9500C11—H11A0.9900
C3—C41.381 (4)C11—H11B0.9900
C3—H30.9500C12—C131.521 (4)
C4—C51.385 (4)C12—H12A0.9900
C4—Cl11.752 (3)C12—H12B0.9900
C5—C61.378 (4)C13—C141.521 (4)
C5—H50.9500C13—H13A0.9900
C6—Cl21.729 (3)C13—H13B0.9900
C7—O11.421 (3)C14—C151.527 (4)
C7—C81.516 (4)C14—H14A0.9900
C7—H7A0.9900C14—H14B0.9900
C7—H7B0.9900C15—H15A0.9900
C8—O21.222 (3)C15—H15B0.9900
C8—N11.350 (3)N1—N21.382 (3)
C9—N31.327 (3)N1—H10.8800
C9—N21.360 (3)N2—H2A0.8800
C9—S11.693 (3)N3—H3A0.8800
C10—N31.475 (3)
O1—C1—C2125.0 (2)C12—C11—H11A109.6
O1—C1—C6115.8 (2)C10—C11—H11B109.6
C2—C1—C6119.2 (2)C12—C11—H11B109.6
C3—C2—C1120.1 (3)H11A—C11—H11B108.1
C3—C2—H2119.9C13—C12—C11110.9 (2)
C1—C2—H2119.9C13—C12—H12A109.5
C4—C3—C2119.3 (3)C11—C12—H12A109.5
C4—C3—H3120.3C13—C12—H12B109.5
C2—C3—H3120.3C11—C12—H12B109.5
C3—C4—C5121.7 (2)H12A—C12—H12B108.1
C3—C4—Cl1119.8 (2)C12—C13—C14111.1 (2)
C5—C4—Cl1118.5 (2)C12—C13—H13A109.4
C6—C5—C4118.2 (3)C14—C13—H13A109.4
C6—C5—H5120.9C12—C13—H13B109.4
C4—C5—H5120.9C14—C13—H13B109.4
C5—C6—C1121.3 (2)H13A—C13—H13B108.0
C5—C6—Cl2119.8 (2)C13—C14—C15111.6 (2)
C1—C6—Cl2118.9 (2)C13—C14—H14A109.3
O1—C7—C8108.7 (2)C15—C14—H14A109.3
O1—C7—H7A110.0C13—C14—H14B109.3
C8—C7—H7A110.0C15—C14—H14B109.3
O1—C7—H7B110.0H14A—C14—H14B108.0
C8—C7—H7B110.0C10—C15—C14110.1 (2)
H7A—C7—H7B108.3C10—C15—H15A109.6
O2—C8—N1124.7 (2)C14—C15—H15A109.6
O2—C8—C7120.2 (2)C10—C15—H15B109.6
N1—C8—C7115.0 (2)C14—C15—H15B109.6
N3—C9—N2118.0 (2)H15A—C15—H15B108.2
N3—C9—S1124.60 (19)C8—N1—N2121.4 (2)
N2—C9—S1117.4 (2)C8—N1—H1119.3
N3—C10—C11111.3 (2)N2—N1—H1119.3
N3—C10—C15110.4 (2)C9—N2—N1124.1 (2)
C11—C10—C15110.9 (2)C9—N2—H2A118.0
N3—C10—H10108.0N1—N2—H2A118.0
C11—C10—H10108.0C9—N3—C10122.2 (2)
C15—C10—H10108.0C9—N3—H3A118.9
C10—C11—C12110.4 (2)C10—N3—H3A118.9
C10—C11—H11A109.6C1—O1—C7118.7 (2)
O1—C1—C2—C3179.1 (2)C11—C12—C13—C1455.5 (3)
C6—C1—C2—C30.5 (4)C12—C13—C14—C1555.0 (3)
C1—C2—C3—C40.6 (4)N3—C10—C15—C14178.7 (2)
C2—C3—C4—C50.6 (4)C11—C10—C15—C1457.4 (3)
C2—C3—C4—Cl1178.7 (2)C13—C14—C15—C1055.6 (3)
C3—C4—C5—C60.5 (4)O2—C8—N1—N28.8 (4)
Cl1—C4—C5—C6179.8 (2)C7—C8—N1—N2170.0 (2)
C4—C5—C6—C11.6 (4)N3—C9—N2—N17.7 (4)
C4—C5—C6—Cl2178.93 (19)S1—C9—N2—N1171.72 (19)
O1—C1—C6—C5178.0 (2)C8—N1—N2—C996.4 (3)
C2—C1—C6—C51.7 (4)N2—C9—N3—C10176.2 (2)
O1—C1—C6—Cl21.4 (3)S1—C9—N3—C104.4 (4)
C2—C1—C6—Cl2178.9 (2)C11—C10—N3—C987.9 (3)
O1—C7—C8—O2173.6 (2)C15—C10—N3—C9148.5 (2)
O1—C7—C8—N17.5 (3)C2—C1—O1—C71.8 (4)
N3—C10—C11—C12178.2 (2)C6—C1—O1—C7178.5 (2)
C15—C10—C11—C1258.5 (3)C8—C7—O1—C1177.9 (2)
C10—C11—C12—C1357.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.882.062.926 (3)166
N3—H3A···S1ii0.882.603.430 (2)157
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H19Cl2N3O2S
Mr376.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.4180 (16), 12.1530 (13), 9.285 (1)
β (°) 103.299 (2)
V3)1693.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.881, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
10375, 3957, 2789
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 0.96
No. of reflections3957
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.882.062.926 (3)166
N3—H3A···S1ii0.882.603.430 (2)157
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds