supplementary materials


Acta Cryst. (2007). E63, m2305-m2306    [ doi:10.1107/S1600536807037282 ]

Bis[chloridobis(triphenylphosphine)copper(I)-[mu]-chlorido]bis(1,2-diaminopropane)copper(II) acetonitrile disolvate

M. H. Habibi, M. Mikhak, R. W. Harrington and W. Clegg

Abstract top

The title complex [systematic name: bis(1,2-diaminopropane-2[kappa]2N,N')di-[mu]-chlorido-1:2[kappa]2Cl,2:3[kappa]2Cl-dichlorido-1[kappa]Cl,3[kappa]Cl-tetrakis(triphenylphosphine)-1[kappa]2P,3[kappa]2P-tricopper(I,II,I) acetonitrile disolvate], [{(Ph3P)2Cl2Cu}2Cu(C3H10N2)2]·2C2H3N, is a centrosymmetric linear trinuclear mixed-valence copper complex in which the central CuII atom is bridged by Cl atoms to the two CuI atoms. The coordination geometry is octahedral for CuII, with Jahn-Teller elongation of the Cu-Cl bonds, and distorted tetrahedral for CuI, with a wide P-Cu-P angle. The diamine ligands are twofold disordered, with occupancy factors of ca 0.6:0.4, and form one N-H...Cl hydrogen bond each with a terminal Cl atom.

Comment top

Trinuclear metal complexes can be classified as linear and non-linear. Trinuclear copper complexes with two, three or four bridges (Prins et al., 1996; Feng et al., 2007; Onan et al., 1984; Choi et al., 2006) have been reported. There are also some reported singly-bridged copper complexes (Arrizabalaga et al., 1983; Bailey et al., 1995). We report here the crystal structure of a new linear trinuclear mixed-valence copper compound, (I) (Fig. 1). It contains two CuI atoms with distorted tetrahedral coordination, the four vertices being occupied by two P atoms of PPh3 ligands and two Cl atoms. The largest deviation from ideal tetrahedral geometry is the wide P—Cu—P angle of 121.92 (4)°. The central CuII atom lies on an inversion centre and has octahedral coordination, with two chelating bidentate diamines and two trans-chloro bridges to the CuI atoms. The diamine ligands are disordered over two orientations, with refined occupancy factors of 0.599:0.401 (10). Each of them forms one N—H···Cl hydrogen bond to a terminal Cl atom. The Cu—Cl bonds for the central CuII atom are elongated as a result of a typical Jahn-Teller distortion, and the bridging Cl atoms make longer bonds to the CuI atoms than do the terminal Cl atoms, as expected. There are no significant intermolecular interactions, and acetonitrile solvent molecules simply occupy what would otherwise be voids in the structure.

Related literature top

For related structures, see: Arrizabalaga et al. (1983); Bailey et al. (1995); Choi et al. (2006); Feng et al. (2007); Onan et al. (1984); Prins et al. (1996).

Experimental top

All chemicals used were of analytical reagent grade and were used directly without further purification. A solution of PPh3 (0.15 mg, 0.6 mmol) in acetonitrile (4 ml) was reacted with CuCl (0.03 mg, 0.3 mmol) in acetonitrile (5 ml). 1,2-Diaminopropane (0.02 mg, 0.3 mmol) in acetonitrile (3 ml) was added to the mixture, which was stirred for 1 h. Slow evaporation at room temperature of the solvent gave blue crystals.

Refinement top

The 1,2-diaminopropane ligand is twofold disordered, with refined occupancy factors of 0.599:0.401 (10); restraints were applied to the displacement parameters of this ligand. All H atoms were positioned geometrically, with N—H = 0.92 and C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(N,C) or 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 2005); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 40% probability displacement ellipsoids. H atoms, solvent molecules, and the minor disorder components have been omitted. [Symmetry code for unlabelled atoms: 1 − x, 1 − y, 1 − z.]
bis(1,2-diaminopropane-2κ2N,N')di-µ-chlorido-1:2κ2Cl,2:3κ2Cl- dichlorido-1κCl,3κCl-tetrakis(triphenylphosphine)-1κ2P,3κ2P- tricopper(I,II,I) acetonitrile disolvate top
Crystal data top
[Cu3Cl4(C3H10N2)2(C18H15P1)4]·2C2H3NF000 = 1670
Mr = 1611.87Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
a = 15.896 (3) ÅCell parameters from 32758 reflections
b = 9.4181 (15) Åθ = 4.1–25.0º
c = 26.533 (4) ŵ = 1.06 mm1
β = 94.957 (12)ºT = 150 (2) K
V = 3957.4 (11) Å3Block, blue
Z = 20.25 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
6923 independent reflections
Radiation source: sealed tube5038 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.074
T = 150(2) Kθmax = 25.0º
φ and ω scansθmin = 4.1º
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 18→18
Tmin = 0.780, Tmax = 0.820k = 11→11
32758 measured reflectionsl = 31→31
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.158  w = 1/[σ2(Fo2) + (0.0745P)2 + 8.3144P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6923 reflectionsΔρmax = 0.78 e Å3
496 parametersΔρmin = 0.81 e Å3
136 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (5)
Crystal data top
[Cu3Cl4(C3H10N2)2(C18H15P1)4]·2C2H3NV = 3957.4 (11) Å3
Mr = 1611.87Z = 2
Monoclinic, P21/cMo Kα
a = 15.896 (3) ŵ = 1.06 mm1
b = 9.4181 (15) ÅT = 150 (2) K
c = 26.533 (4) Å0.25 × 0.20 × 0.20 mm
β = 94.957 (12)º
Data collection top
Nonius KappaCCD
diffractometer
6923 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
5038 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.820Rint = 0.074
32758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054136 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03Δρmax = 0.78 e Å3
6923 reflectionsΔρmin = 0.81 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28031 (3)0.32452 (6)0.389429 (19)0.02994 (19)
Cl10.34277 (7)0.11509 (13)0.42371 (4)0.0381 (3)
Cl20.39546 (7)0.49353 (13)0.40612 (5)0.0395 (3)
P10.16988 (7)0.39615 (12)0.43263 (4)0.0267 (3)
P20.26663 (7)0.29168 (13)0.30384 (4)0.0273 (3)
C10.1891 (3)0.3852 (5)0.50241 (15)0.0291 (10)
C20.1611 (3)0.4882 (5)0.53478 (17)0.0365 (11)
H20.13270.57050.52130.044*
C30.1750 (3)0.4699 (7)0.58722 (19)0.0505 (14)
H30.15740.54100.60940.061*
C40.2143 (3)0.3488 (7)0.60679 (18)0.0531 (15)
H40.22250.33560.64240.064*
C50.2418 (4)0.2472 (7)0.5747 (2)0.0585 (16)
H50.26930.16450.58840.070*
C60.2298 (3)0.2639 (6)0.52255 (17)0.0421 (12)
H60.24910.19330.50070.050*
C70.1373 (3)0.5817 (5)0.42317 (15)0.0308 (10)
C80.2008 (3)0.6845 (5)0.42215 (18)0.0387 (12)
H80.25830.65570.42400.046*
C90.1808 (4)0.8288 (5)0.41839 (19)0.0436 (12)
H90.22470.89740.41870.052*
C100.0973 (3)0.8719 (5)0.41417 (17)0.0407 (12)
H100.08390.97010.41160.049*
C110.0332 (3)0.7719 (5)0.41377 (17)0.0394 (12)
H110.02410.80150.41000.047*
C120.0529 (3)0.6268 (5)0.41891 (16)0.0351 (11)
H120.00880.55890.41950.042*
C130.0702 (3)0.2987 (5)0.42097 (16)0.0285 (10)
C140.0274 (3)0.2347 (5)0.45891 (17)0.0344 (11)
H140.04960.24280.49320.041*
C150.0471 (3)0.1590 (6)0.4472 (2)0.0447 (13)
H150.07490.11540.47340.054*
C160.0808 (3)0.1471 (6)0.3976 (2)0.0455 (13)
H160.13140.09510.38980.055*
C170.0399 (3)0.2120 (6)0.35907 (19)0.0439 (13)
H170.06330.20590.32500.053*
C180.0353 (3)0.2857 (5)0.37077 (17)0.0363 (11)
H180.06330.32780.34430.044*
C190.3537 (3)0.1937 (5)0.27892 (17)0.0332 (11)
C200.4345 (3)0.2202 (6)0.3011 (2)0.0438 (12)
H200.44210.28120.32970.053*
C210.5043 (4)0.1580 (7)0.2818 (3)0.0645 (18)
H210.55940.17690.29720.077*
C220.4941 (4)0.0694 (7)0.2405 (3)0.0646 (18)
H220.54220.02870.22720.078*
C230.4144 (4)0.0390 (6)0.2182 (2)0.0527 (15)
H230.40740.02210.18970.063*
C240.3441 (3)0.0994 (5)0.23824 (17)0.0407 (12)
H240.28900.07590.22390.049*
C250.2624 (3)0.4519 (5)0.26432 (17)0.0317 (10)
C260.2333 (3)0.5768 (6)0.2848 (2)0.0460 (13)
H260.21680.57760.31840.055*
C270.2282 (4)0.7010 (6)0.2559 (3)0.0637 (17)
H270.20930.78640.27030.076*
C280.2503 (4)0.7013 (6)0.2066 (2)0.0577 (16)
H280.24510.78550.18690.069*
C290.2798 (3)0.5784 (6)0.1865 (2)0.0467 (13)
H290.29540.57810.15280.056*
C300.2870 (3)0.4546 (6)0.21499 (17)0.0399 (12)
H300.30890.37110.20080.048*
C310.1742 (3)0.1909 (5)0.27813 (15)0.0278 (10)
C320.1217 (3)0.2291 (5)0.23523 (16)0.0349 (11)
H320.13310.31290.21710.042*
C330.0521 (3)0.1441 (6)0.21885 (19)0.0479 (14)
H330.01720.17000.18940.057*
C340.0340 (3)0.0232 (6)0.24513 (19)0.0453 (13)
H340.01350.03340.23400.054*
C350.0852 (3)0.0154 (6)0.28761 (19)0.0445 (13)
H350.07300.09910.30560.053*
C360.1539 (3)0.0669 (5)0.30402 (18)0.0384 (11)
H360.18830.03930.33340.046*
Cu20.50000.50000.50000.0436 (3)
N10.5266 (6)0.7108 (10)0.4930 (4)0.044 (2)0.599 (10)
H1A0.57070.73640.51600.053*0.599 (10)
H1B0.54160.73000.46100.053*0.599 (10)
N20.3990 (6)0.5691 (12)0.5324 (4)0.051 (2)0.599 (10)
H2A0.35110.55580.51090.061*0.599 (10)
H2B0.39310.51890.56160.061*0.599 (10)
C370.4493 (8)0.7906 (14)0.5028 (5)0.063 (3)0.599 (10)
H37A0.46390.89030.51150.076*0.599 (10)
H37B0.40930.79060.47210.076*0.599 (10)
C380.4101 (14)0.724 (2)0.5445 (6)0.061 (4)0.599 (10)
H380.44930.73360.57580.073*0.599 (10)
C390.3253 (7)0.7951 (13)0.5539 (5)0.081 (4)0.599 (10)
H39A0.30090.74730.58200.121*0.599 (10)
H39B0.28630.78760.52330.121*0.599 (10)
H39C0.33490.89540.56230.121*0.599 (10)
N1X0.3985 (9)0.4925 (18)0.5435 (6)0.053 (4)0.401 (10)
H1X10.35050.46500.52410.064*0.401 (10)
H1X20.40860.42810.56940.064*0.401 (10)
N2X0.4906 (10)0.7100 (19)0.5076 (6)0.049 (3)0.401 (10)
H2X10.53190.74250.53120.059*0.401 (10)
H2X20.49730.75400.47730.059*0.401 (10)
C37X0.3874 (12)0.634 (2)0.5640 (9)0.078 (5)0.401 (10)
H37C0.42730.64860.59430.094*0.401 (10)
H37D0.32920.64440.57420.094*0.401 (10)
C38X0.403 (2)0.743 (3)0.5247 (10)0.064 (5)0.401 (10)
H38X0.35950.73340.49530.077*0.401 (10)
C39X0.3998 (12)0.8929 (17)0.5458 (6)0.072 (5)0.401 (10)
H39D0.41070.96130.51930.108*0.401 (10)
H39E0.44280.90310.57430.108*0.401 (10)
H39F0.34380.91060.55730.108*0.401 (10)
N30.4423 (5)0.3375 (13)0.1140 (3)0.156 (4)
C400.5077 (5)0.3358 (9)0.1341 (3)0.078 (2)
C410.5903 (4)0.3360 (6)0.1589 (2)0.0524 (14)
H41A0.62410.40970.14420.079*
H41B0.61660.24310.15470.079*
H41C0.58730.35520.19500.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0258 (3)0.0369 (4)0.0267 (3)0.0007 (2)0.0002 (2)0.0018 (2)
Cl10.0391 (6)0.0331 (7)0.0417 (6)0.0027 (5)0.0009 (5)0.0013 (5)
Cl20.0340 (6)0.0369 (7)0.0455 (7)0.0061 (5)0.0079 (5)0.0000 (5)
P10.0257 (6)0.0294 (7)0.0248 (6)0.0016 (5)0.0008 (4)0.0004 (5)
P20.0255 (6)0.0317 (7)0.0244 (6)0.0028 (5)0.0000 (4)0.0001 (5)
C10.025 (2)0.039 (3)0.023 (2)0.001 (2)0.0002 (17)0.0017 (19)
C20.031 (2)0.043 (3)0.035 (3)0.005 (2)0.000 (2)0.006 (2)
C30.046 (3)0.071 (4)0.035 (3)0.002 (3)0.003 (2)0.017 (3)
C40.048 (3)0.086 (5)0.024 (2)0.007 (3)0.006 (2)0.001 (3)
C50.062 (4)0.073 (4)0.039 (3)0.026 (3)0.002 (3)0.014 (3)
C60.046 (3)0.051 (3)0.029 (2)0.014 (3)0.001 (2)0.002 (2)
C70.031 (2)0.037 (3)0.025 (2)0.001 (2)0.0013 (18)0.0037 (19)
C80.036 (3)0.037 (3)0.043 (3)0.003 (2)0.001 (2)0.000 (2)
C90.056 (3)0.028 (3)0.048 (3)0.003 (2)0.009 (2)0.003 (2)
C100.059 (3)0.028 (3)0.035 (3)0.009 (2)0.008 (2)0.001 (2)
C110.044 (3)0.040 (3)0.035 (3)0.013 (2)0.006 (2)0.002 (2)
C120.035 (3)0.037 (3)0.034 (2)0.002 (2)0.0015 (19)0.001 (2)
C130.026 (2)0.025 (3)0.035 (2)0.0035 (18)0.0023 (18)0.0012 (18)
C140.036 (3)0.038 (3)0.029 (2)0.000 (2)0.0010 (19)0.002 (2)
C150.034 (3)0.048 (3)0.053 (3)0.005 (2)0.009 (2)0.002 (2)
C160.027 (2)0.052 (3)0.057 (3)0.004 (2)0.002 (2)0.011 (3)
C170.036 (3)0.056 (3)0.038 (3)0.007 (2)0.005 (2)0.010 (2)
C180.029 (2)0.048 (3)0.032 (2)0.005 (2)0.0004 (19)0.002 (2)
C190.035 (3)0.034 (3)0.032 (2)0.008 (2)0.0057 (19)0.009 (2)
C200.030 (3)0.041 (3)0.061 (3)0.001 (2)0.005 (2)0.001 (3)
C210.029 (3)0.050 (4)0.116 (6)0.004 (3)0.017 (3)0.002 (4)
C220.045 (4)0.055 (4)0.099 (5)0.017 (3)0.038 (3)0.007 (4)
C230.060 (4)0.048 (4)0.052 (3)0.021 (3)0.016 (3)0.001 (3)
C240.042 (3)0.047 (3)0.032 (2)0.016 (2)0.000 (2)0.001 (2)
C250.030 (2)0.028 (3)0.036 (2)0.002 (2)0.0036 (19)0.001 (2)
C260.045 (3)0.044 (3)0.048 (3)0.006 (2)0.001 (2)0.003 (2)
C270.064 (4)0.035 (4)0.089 (5)0.010 (3)0.007 (3)0.001 (3)
C280.051 (3)0.046 (4)0.071 (4)0.007 (3)0.021 (3)0.023 (3)
C290.046 (3)0.048 (4)0.045 (3)0.010 (3)0.006 (2)0.011 (3)
C300.040 (3)0.044 (3)0.034 (3)0.003 (2)0.003 (2)0.004 (2)
C310.026 (2)0.032 (3)0.026 (2)0.0050 (19)0.0030 (17)0.0022 (18)
C320.033 (3)0.040 (3)0.030 (2)0.002 (2)0.0031 (19)0.002 (2)
C330.044 (3)0.066 (4)0.033 (3)0.002 (3)0.007 (2)0.010 (3)
C340.041 (3)0.050 (3)0.045 (3)0.013 (2)0.002 (2)0.013 (3)
C350.050 (3)0.039 (3)0.044 (3)0.009 (2)0.004 (2)0.006 (2)
C360.041 (3)0.037 (3)0.037 (3)0.001 (2)0.002 (2)0.000 (2)
Cu20.0374 (5)0.0428 (6)0.0508 (5)0.0041 (4)0.0044 (4)0.0060 (4)
N10.033 (5)0.055 (5)0.042 (5)0.003 (4)0.003 (4)0.005 (4)
N20.050 (5)0.049 (6)0.055 (6)0.020 (5)0.016 (4)0.011 (5)
C370.054 (7)0.053 (7)0.084 (8)0.002 (5)0.012 (5)0.005 (6)
C380.069 (7)0.056 (8)0.060 (9)0.006 (6)0.019 (7)0.010 (7)
C390.071 (7)0.080 (8)0.095 (9)0.001 (6)0.026 (6)0.036 (7)
N1X0.042 (7)0.061 (8)0.057 (8)0.023 (8)0.008 (6)0.008 (7)
N2X0.035 (8)0.061 (9)0.051 (8)0.009 (7)0.004 (6)0.003 (6)
C37X0.070 (10)0.065 (8)0.106 (13)0.001 (9)0.040 (9)0.006 (9)
C38X0.067 (10)0.054 (8)0.076 (14)0.007 (9)0.030 (12)0.005 (9)
C39X0.098 (14)0.059 (8)0.057 (9)0.018 (9)0.001 (8)0.001 (7)
N30.065 (5)0.265 (13)0.133 (7)0.008 (6)0.014 (5)0.021 (7)
C400.057 (4)0.117 (6)0.059 (4)0.009 (4)0.001 (3)0.007 (4)
C410.056 (3)0.048 (4)0.053 (3)0.006 (3)0.001 (3)0.005 (3)
Geometric parameters (Å, °) top
Cu1—Cl12.3553 (13)C28—H280.950
Cu1—Cl22.4372 (13)C28—C291.374 (8)
Cu1—P12.2800 (13)C29—H290.950
Cu1—P22.2835 (12)C29—C301.388 (7)
P1—C11.853 (4)C30—H300.950
P1—C71.834 (5)C31—C321.400 (6)
P1—C131.834 (4)C31—C361.406 (7)
P2—C191.834 (5)C32—H320.950
P2—C251.836 (5)C32—C331.403 (7)
P2—C311.830 (4)C33—H330.950
C1—C21.394 (6)C33—C341.378 (8)
C1—C61.396 (7)C34—H340.950
C2—H20.950C34—C351.381 (7)
C2—C31.401 (7)C35—H350.950
C3—H30.950C35—C361.379 (7)
C3—C41.380 (8)C36—H360.950
C4—H40.950Cu2—Cl22.8731 (12)
C4—C51.377 (8)Cu2—Cl2i2.8731 (12)
C5—H50.950Cu2—N12.042 (10)
C5—C61.388 (7)Cu2—N1i2.042 (10)
C6—H60.950Cu2—N21.995 (10)
C7—C81.400 (7)Cu2—N2i1.995 (10)
C7—C121.402 (6)Cu2—N1X2.065 (14)
C8—H80.950Cu2—N1Xi2.065 (14)
C8—C91.397 (7)Cu2—N2X1.995 (18)
C9—H90.950Cu2—N2Xi1.995 (18)
C9—C101.383 (7)N1—H1A0.920
C10—H100.950N1—H1B0.920
C10—C111.388 (7)N1—C371.482 (15)
C11—H110.950N2—H2A0.920
C11—C121.406 (7)N2—H2B0.920
C12—H120.950N2—C381.50 (2)
C13—C141.399 (6)C37—H37A0.990
C13—C181.404 (6)C37—H37B0.990
C14—H140.950C37—C381.46 (2)
C14—C151.395 (7)C38—H381.000
C15—H150.950C38—C391.54 (2)
C15—C161.380 (7)C39—H39A0.980
C16—H160.950C39—H39B0.980
C16—C171.400 (7)C39—H39C0.980
C17—H170.950N1X—H1X10.920
C17—C181.393 (7)N1X—H1X20.920
C18—H180.950N1X—C37X1.46 (2)
C19—C201.388 (7)N2X—H2X10.920
C19—C241.396 (7)N2X—H2X20.920
C20—H200.950N2X—C38X1.54 (3)
C20—C211.392 (7)C37X—H37C0.990
C21—H210.950C37X—H37D0.990
C21—C221.376 (9)C37X—C38X1.50 (3)
C22—H220.950C38X—H38X1.000
C22—C231.381 (9)C38X—C39X1.52 (3)
C23—H230.950C39X—H39D0.980
C23—C241.399 (7)C39X—H39E0.980
C24—H240.950C39X—H39F0.980
C25—C261.392 (7)N3—C401.127 (9)
C25—C301.398 (7)C40—C411.417 (9)
C26—H260.950C41—H41A0.980
C26—C271.397 (8)C41—H41B0.980
C27—H270.950C41—H41C0.980
C27—C281.382 (9)
Cl1—Cu1—Cl2101.06 (5)C31—C32—H32119.9
Cl1—Cu1—P1111.76 (5)C31—C32—C33120.3 (5)
Cl1—Cu1—P2105.75 (5)H32—C32—C33119.9
Cl2—Cu1—P1108.31 (5)C32—C33—H33119.7
Cl2—Cu1—P2105.94 (5)C32—C33—C34120.5 (5)
P1—Cu1—P2121.92 (4)H33—C33—C34119.7
Cu1—Cl2—Cu2122.71 (5)C33—C34—H34120.1
Cu1—P1—C1114.74 (14)C33—C34—C35119.8 (5)
Cu1—P1—C7115.70 (15)H34—C34—C35120.1
Cu1—P1—C13117.30 (14)C34—C35—H35119.9
C1—P1—C7102.1 (2)C34—C35—C36120.3 (5)
C1—P1—C13101.9 (2)H35—C35—C36119.9
C7—P1—C13102.9 (2)C31—C36—C35121.4 (4)
Cu1—P2—C19114.63 (15)C31—C36—H36119.3
Cu1—P2—C25116.89 (15)C35—C36—H36119.3
Cu1—P2—C31116.44 (14)Cl2—Cu2—Cl2i180.0
C19—P2—C25101.5 (2)Cl2—Cu2—N192.9 (3)
C19—P2—C31102.2 (2)Cl2i—Cu2—N1i92.9 (3)
C25—P2—C31103.0 (2)Cl2i—Cu2—N187.1 (3)
P1—C1—C2122.9 (3)Cl2—Cu2—N1i87.1 (3)
P1—C1—C6117.3 (3)Cl2—Cu2—N287.4 (3)
C2—C1—C6119.7 (4)Cl2i—Cu2—N2i87.4 (3)
C1—C2—H2120.2Cl2i—Cu2—N292.6 (3)
C1—C2—C3119.6 (5)Cl2—Cu2—N2i92.6 (3)
H2—C2—C3120.2Cl2—Cu2—N1X93.6 (4)
C2—C3—H3119.9Cl2i—Cu2—N1Xi93.6 (4)
C2—C3—C4120.2 (5)Cl2i—Cu2—N1X86.4 (4)
H3—C3—C4119.9Cl2—Cu2—N1Xi86.4 (4)
C3—C4—H4120.0Cl2—Cu2—N2X93.8 (5)
C3—C4—C5119.9 (5)Cl2i—Cu2—N2Xi93.8 (5)
H4—C4—C5120.0Cl2i—Cu2—N2X86.2 (5)
C4—C5—H5119.5Cl2—Cu2—N2Xi86.2 (5)
C4—C5—C6121.0 (5)N1—Cu2—N1i180.0
H5—C5—C6119.5N1—Cu2—N284.4 (4)
C1—C6—C5119.5 (5)N1i—Cu2—N2i84.4 (4)
C1—C6—H6120.2N1i—Cu2—N295.6 (4)
C5—C6—H6120.2N1—Cu2—N2i95.6 (4)
P1—C7—C8117.8 (3)N2—Cu2—N2i180.0
P1—C7—C12123.8 (4)N1X—Cu2—N1Xi180.0
C8—C7—C12118.4 (4)N1X—Cu2—N2X84.7 (6)
C7—C8—H8119.5N1Xi—Cu2—N2Xi84.7 (6)
C7—C8—C9120.9 (5)N1Xi—Cu2—N2X95.3 (6)
H8—C8—C9119.5N1X—Cu2—N2Xi95.3 (6)
C8—C9—H9120.0N2X—Cu2—N2Xi180.0
C8—C9—C10120.1 (5)Cu2—N1—H1A110.3
H9—C9—C10120.0Cu2—N1—H1B110.3
C9—C10—H10120.0Cu2—N1—C37107.2 (7)
C9—C10—C11120.0 (5)H1A—N1—H1B108.5
H10—C10—C11120.0H1A—N1—C37110.3
C10—C11—H11119.9H1B—N1—C37110.3
C10—C11—C12120.1 (5)Cu2—N2—H2A109.9
H11—C11—C12119.9Cu2—N2—H2B109.9
C7—C12—C11120.4 (5)Cu2—N2—C38108.9 (10)
C7—C12—H12119.8H2A—N2—H2B108.3
C11—C12—H12119.8H2A—N2—C38109.9
P1—C13—C14124.1 (3)H2B—N2—C38109.9
P1—C13—C18118.0 (3)N1—C37—H37A109.8
C14—C13—C18117.9 (4)N1—C37—H37B109.8
C13—C14—H14119.5N1—C37—C38109.3 (12)
C13—C14—C15121.1 (4)H37A—C37—H37B108.3
H14—C14—C15119.5H37A—C37—C38109.8
C14—C15—H15119.8H37B—C37—C38109.8
C14—C15—C16120.4 (5)N2—C38—C37107.9 (13)
H15—C15—C16119.8N2—C38—H38108.5
C15—C16—H16120.2N2—C38—C39111.5 (15)
C15—C16—C17119.6 (5)C37—C38—H38108.5
H16—C16—C17120.2C37—C38—C39111.9 (14)
C16—C17—H17120.1H38—C38—C39108.5
C16—C17—C18119.9 (4)C38—C39—H39A109.5
H17—C17—C18120.1C38—C39—H39B109.5
C13—C18—C17121.1 (4)C38—C39—H39C109.5
C13—C18—H18119.4H39A—C39—H39B109.5
C17—C18—H18119.4H39A—C39—H39C109.5
P2—C19—C20117.1 (4)H39B—C39—H39C109.5
P2—C19—C24124.3 (4)Cu2—N1X—H1X1110.2
C20—C19—C24118.6 (4)Cu2—N1X—H1X2110.2
C19—C20—H20119.8Cu2—N1X—C37X107.6 (11)
C19—C20—C21120.4 (5)H1X1—N1X—H1X2108.5
H20—C20—C21119.8H1X1—N1X—C37X110.2
C20—C21—H21119.8H1X2—N1X—C37X110.2
C20—C21—C22120.3 (6)Cu2—N2X—H2X1110.1
H21—C21—C22119.8Cu2—N2X—H2X2110.1
C21—C22—H22119.7Cu2—N2X—C38X108.1 (14)
C21—C22—C23120.5 (5)H2X1—N2X—H2X2108.4
H22—C22—C23119.7H2X1—N2X—C38X110.1
C22—C23—H23120.4H2X2—N2X—C38X110.1
C22—C23—C24119.2 (5)N1X—C37X—H37C109.7
H23—C23—C24120.4N1X—C37X—H37D109.7
C19—C24—C23120.9 (5)N1X—C37X—C38X110 (2)
C19—C24—H24119.5H37C—C37X—H37D108.2
C23—C24—H24119.5H37C—C37X—C38X109.7
P2—C25—C26117.9 (4)H37D—C37X—C38X109.7
P2—C25—C30123.4 (4)N2X—C38X—C37X106 (2)
C26—C25—C30118.7 (5)N2X—C38X—H38X109.4
C25—C26—H26120.1N2X—C38X—C39X111 (2)
C25—C26—C27119.9 (5)C37X—C38X—H38X109.4
H26—C26—C27120.1C37X—C38X—C39X112 (2)
C26—C27—H27119.6H38X—C38X—C39X109.4
C26—C27—C28120.9 (6)C38X—C39X—H39D109.5
H27—C27—C28119.6C38X—C39X—H39E109.5
C27—C28—H28120.4C38X—C39X—H39F109.5
C27—C28—C29119.2 (5)H39D—C39X—H39E109.5
H28—C28—C29120.4H39D—C39X—H39F109.5
C28—C29—H29119.6H39E—C39X—H39F109.5
C28—C29—C30120.7 (5)N3—C40—C41179.0 (11)
H29—C29—C30119.6C40—C41—H41A109.5
C25—C30—C29120.5 (5)C40—C41—H41B109.5
C25—C30—H30119.7C40—C41—H41C109.5
C29—C30—H30119.7H41A—C41—H41B109.5
P2—C31—C32125.0 (4)H41A—C41—H41C109.5
P2—C31—C36117.3 (3)H41B—C41—H41C109.5
C32—C31—C36117.7 (4)
Cl1—Cu1—Cl2—Cu242.00 (6)C24—C19—C20—C212.4 (8)
P1—Cu1—Cl2—Cu275.56 (6)C19—C20—C21—C220.1 (9)
P2—Cu1—Cl2—Cu2152.08 (5)C20—C21—C22—C231.1 (10)
Cl1—Cu1—P1—C143.17 (17)C21—C22—C23—C240.1 (9)
Cl1—Cu1—P1—C7161.75 (15)P2—C19—C24—C23173.8 (4)
Cl1—Cu1—P1—C1376.36 (16)C20—C19—C24—C233.7 (7)
Cl2—Cu1—P1—C167.31 (17)C22—C23—C24—C192.5 (8)
Cl2—Cu1—P1—C751.28 (16)Cu1—P2—C25—C2626.0 (4)
Cl2—Cu1—P1—C13173.17 (16)Cu1—P2—C25—C30154.0 (3)
P2—Cu1—P1—C1169.53 (17)C19—P2—C25—C26151.4 (4)
P2—Cu1—P1—C771.88 (16)C19—P2—C25—C3028.6 (4)
P2—Cu1—P1—C1350.00 (17)C31—P2—C25—C26103.1 (4)
Cl1—Cu1—P2—C1936.71 (18)C31—P2—C25—C3077.0 (4)
Cl1—Cu1—P2—C25155.27 (17)P2—C25—C26—C27179.3 (4)
Cl1—Cu1—P2—C3182.45 (16)C30—C25—C26—C270.7 (7)
Cl2—Cu1—P2—C1970.02 (18)C25—C26—C27—C281.2 (9)
Cl2—Cu1—P2—C2548.54 (17)C26—C27—C28—C291.8 (9)
Cl2—Cu1—P2—C31170.83 (16)C27—C28—C29—C300.4 (8)
P1—Cu1—P2—C19165.73 (17)C28—C29—C30—C251.6 (8)
P1—Cu1—P2—C2575.71 (17)P2—C25—C30—C29178.0 (4)
P1—Cu1—P2—C3146.57 (17)C26—C25—C30—C292.1 (7)
Cu1—P1—C1—C2140.6 (3)Cu1—P2—C31—C32134.9 (3)
Cu1—P1—C1—C642.7 (4)Cu1—P2—C31—C3644.1 (4)
C7—P1—C1—C214.6 (4)C19—P2—C31—C3299.4 (4)
C7—P1—C1—C6168.7 (4)C19—P2—C31—C3681.6 (4)
C13—P1—C1—C291.6 (4)C25—P2—C31—C325.6 (4)
C13—P1—C1—C685.1 (4)C25—P2—C31—C36173.4 (3)
P1—C1—C2—C3177.5 (4)P2—C31—C32—C33179.8 (4)
C6—C1—C2—C30.8 (7)C36—C31—C32—C330.9 (7)
C1—C2—C3—C41.6 (8)C31—C32—C33—C340.9 (8)
C2—C3—C4—C51.5 (9)C32—C33—C34—C350.7 (8)
C3—C4—C5—C60.6 (9)C33—C34—C35—C360.4 (8)
C4—C5—C6—C10.2 (9)C34—C35—C36—C310.4 (8)
P1—C1—C6—C5176.7 (4)P2—C31—C36—C35179.7 (4)
C2—C1—C6—C50.1 (7)C32—C31—C36—C350.6 (7)
Cu1—P1—C7—C841.7 (4)Cu1—Cl2—Cu2—N1153.1 (3)
Cu1—P1—C7—C12140.8 (3)Cu1—Cl2—Cu2—N1i26.9 (3)
C1—P1—C7—C883.6 (4)Cu1—Cl2—Cu2—N268.8 (3)
C1—P1—C7—C1293.8 (4)Cu1—Cl2—Cu2—N2i111.2 (3)
C13—P1—C7—C8171.0 (3)Cu1—Cl2—Cu2—N1X47.7 (5)
C13—P1—C7—C1211.6 (4)Cu1—Cl2—Cu2—N1Xi132.3 (5)
P1—C7—C8—C9175.8 (4)Cu1—Cl2—Cu2—N2X132.6 (5)
C12—C7—C8—C91.8 (7)Cu1—Cl2—Cu2—N2Xi47.4 (5)
C7—C8—C9—C101.8 (7)Cl2—Cu2—N1—C3773.0 (7)
C8—C9—C10—C110.1 (7)Cl2i—Cu2—N1—C37107.0 (7)
C9—C10—C11—C121.6 (7)N2—Cu2—N1—C3714.1 (7)
P1—C7—C12—C11177.4 (3)N2i—Cu2—N1—C37165.9 (7)
C8—C7—C12—C110.0 (6)Cl2—Cu2—N2—C38106.5 (9)
C10—C11—C12—C71.6 (7)Cl2i—Cu2—N2—C3873.5 (9)
Cu1—P1—C13—C14124.8 (4)N1—Cu2—N2—C3813.3 (9)
Cu1—P1—C13—C1854.2 (4)N1i—Cu2—N2—C38166.7 (9)
C1—P1—C13—C141.3 (4)Cu2—N1—C37—C3840.1 (12)
C1—P1—C13—C18179.7 (4)N1—C37—C38—N252.5 (16)
C7—P1—C13—C14106.9 (4)N1—C37—C38—C39175.5 (11)
C7—P1—C13—C1874.1 (4)Cu2—N2—C38—C3739.0 (15)
P1—C13—C14—C15178.3 (4)Cu2—N2—C38—C39162.3 (9)
C18—C13—C14—C150.6 (7)Cl2—Cu2—N1X—C37X104.8 (12)
C13—C14—C15—C160.7 (8)Cl2i—Cu2—N1X—C37X75.2 (12)
C14—C15—C16—C170.3 (8)N2X—Cu2—N1X—C37X11.3 (13)
C15—C16—C17—C181.3 (8)N2Xi—Cu2—N1X—C37X168.7 (13)
C16—C17—C18—C131.4 (7)Cl2—Cu2—N2X—C38X75.9 (14)
P1—C13—C18—C17179.4 (4)Cl2i—Cu2—N2X—C38X104.1 (14)
C14—C13—C18—C170.4 (7)N1X—Cu2—N2X—C38X17.4 (14)
Cu1—P2—C19—C2037.6 (4)N1Xi—Cu2—N2X—C38X162.6 (14)
Cu1—P2—C19—C24145.0 (4)Cu2—N1X—C37X—C38X39 (2)
C25—P2—C19—C2089.4 (4)N1X—C37X—C38X—N2X54 (3)
C25—P2—C19—C2488.1 (4)N1X—C37X—C38X—C39X174.9 (19)
C31—P2—C19—C20164.5 (4)Cu2—N2X—C38X—C37X42 (2)
C31—P2—C19—C2418.1 (4)Cu2—N2X—C38X—C39X163.5 (14)
P2—C19—C20—C21175.2 (4)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.922.453.330 (9)159
N2X—H2X1···Cl1i0.922.603.495 (15)163
Symmetry codes: (i) −x+1, −y+1, −z+1.
Table 1
Selected geometric parameters (Å, °)
top
Cu1—Cl12.3553 (13)Cu2—N12.042 (10)
Cu1—Cl22.4372 (13)Cu2—N21.995 (10)
Cu1—P12.2800 (13)Cu2—N1X2.065 (14)
Cu1—P22.2835 (12)Cu2—N2X1.995 (18)
Cu2—Cl22.8731 (12)
Cl1—Cu1—Cl2101.06 (5)Cl2—Cu2—N192.9 (3)
Cl1—Cu1—P1111.76 (5)Cl2—Cu2—N287.4 (3)
Cl1—Cu1—P2105.75 (5)Cl2—Cu2—N1X93.6 (4)
Cl2—Cu1—P1108.31 (5)Cl2—Cu2—N2X93.8 (5)
Cl2—Cu1—P2105.94 (5)N1—Cu2—N284.4 (4)
P1—Cu1—P2121.92 (4)N1X—Cu2—N2X84.7 (6)
Cu1—Cl2—Cu2122.71 (5)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.922.453.330 (9)159
N2X—H2X1···Cl1i0.922.603.495 (15)163
Symmetry codes: (i) −x+1, −y+1, −z+1.
Acknowledgements top

We thank the EPSRC (UK) and Isfahan University Center of Excellence (Catalysis and Fuel Cells) for financial support.

references
References top

Arrizabalaga, P., Castan, P. & Dahan, F. (1983). Inorg. Chem. 22, 2245–2252.

Bailey, N. A., Fenton, D. E., He, Q. Y., Terry, N., Haase, W. & Werner, R. (1995). Inorg. Chim. Acta, 235, 273–279.

Choi, K.-Y., Lee, K.-C., Lee, H.-H., Ko, J. & Han, W.-S. (2006). Acta Cryst. E62, m690–m692.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Feng, Y.-F., Wu, H.-Y., Zhu, B.-L., Wang, S.-R. & Huang, W.-P. (2007). Acta Cryst. E63, m1107–m1108.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Onan, K. D., Veidis, M., Davies, G., El-Sayed, M. A. & El-Toukhy, A. (1984). Inorg. Chim. Acta, 81, 7–13.

Prins, R., Biagini-Cingi, M., Drillon, M., Graaff, R. A. G., Haasnoot, J. G., Manotti-Lanfredi, A. M., Rabu, P., Reedijk, J. & Uggozzoli, F. (1996). Inorg. Chim. Acta, 248, 35–44.

Sheldrick, G. M. (2005). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.