Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cu2I2(C10H13N3O)2]·CH3CN, the Schiff base chelates the CuI atom, which is linked to two I atoms in a tetra­hedral geometry; the covalent Cu—I bond is only marginally shorter than the dative Cu—I bond. The dinuclear mol­ecule lies about a centre of inversion and the solvent mol­ecule on a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039670/bt2476sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039670/bt2476Isup2.hkl
Contains datablock I

CCDC reference: 660135

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.030
  • wR factor = 0.080
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found




Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I1 - Cu1 .. 28.80 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I1 - Cu1_a .. 32.41 su
Alert level C PLAT142_ALERT_4_C su on b - Axis Small or Missing (x 100000) ..... 10 Ang. PLAT143_ALERT_4_C su on c - Axis Small or Missing (x 100000) ..... 10 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C11 PLAT410_ALERT_2_C Short Intra H...H Contact H6 .. H7B .. 1.97 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C2 H3 N
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 0.94
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Copper(I) iodide forms a large number of adducts with Schiff bases. However, there are no structural studies on the morpholine-2-pyridyl-methanimine. In the title compound, the Schiff base chelates to the copper(I) atom, which is linked to two iodine atoms in a tetrahedral geometry; the covalent Cu–I bond is only marginally shorter than the dative Cu–I bond (Table 1) in the crystal structure of (C10H13N3O)2(CuI)2.CH3CN. The dinuclear molecule lies about a center-of-inversion whereas the solvent molecule lies on a twofold rotation axis.

Related literature top

For the synthesis of the Schiff base ligand, see Wiley et al. (1959). There are only two reports of metal adducts (not crystallographic studies): see Nasser-Eddine et al. (2004) for the copper(I) bromide adduct, and Nikolcheva et al. (2003) for the platinum(II) dichloride adduct.

Experimental top

Copper(I) iodide (1 mmol) and morpholine-2-pyridylmethanimine (1 mmol) were dissolved in acetonitrile under a nitrogen atmosphere. The solvent was partially removed and diethyl ether vapor diffused into the concentrated solution. Orange crystals were obtained in 90% yield. Calc. for C20H26Cu2I2N6O2:C 31.47, H 3.43, N 11.01%. Found: C 31.45, H 3.40, N 11.06%.

Refinement top

The carbon-bound hydrogen atoms were placed at calculated positions (C–H 0.93 – 0.99 Å), and were included in the refinement in the riding model approximation, with U(H) set to 1.2 – 1.5 Ueq(C). The methyl group of the acetonitrile molecule is disordered over two equally occupied sites. The final difference Fourier map had a large peak/hole in the vicinity of the iodine atom.

Structure description top

Copper(I) iodide forms a large number of adducts with Schiff bases. However, there are no structural studies on the morpholine-2-pyridyl-methanimine. In the title compound, the Schiff base chelates to the copper(I) atom, which is linked to two iodine atoms in a tetrahedral geometry; the covalent Cu–I bond is only marginally shorter than the dative Cu–I bond (Table 1) in the crystal structure of (C10H13N3O)2(CuI)2.CH3CN. The dinuclear molecule lies about a center-of-inversion whereas the solvent molecule lies on a twofold rotation axis.

For the synthesis of the Schiff base ligand, see Wiley et al. (1959). There are only two reports of metal adducts (not crystallographic studies): see Nasser-Eddine et al. (2004) for the copper(I) bromide adduct, and Nikolcheva et al. (2003) for the platinum(II) dichloride adduct.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of (C10H13N3O)2(CuI)2.CH3CN drawn at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius. Symmetry code (i): 1 – x, 1 – y, 1 – z.
Di-µ-iodido-bis[(N-morpholino-2-pyridylmethanimine-κ2N,N')copper(I)] acetonitrile solvate top
Crystal data top
[Cu2I2(C10H13N3O)2]·C2H3NF(000) = 1560
Mr = 804.40Dx = 1.893 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8192 reflections
a = 16.0206 (2) Åθ = 2.4–27.5°
b = 10.2820 (1) ŵ = 3.73 mm1
c = 17.2086 (1) ÅT = 200 K
β = 95.329 (1)°Polyhedron, orange
V = 2822.41 (5) Å30.24 × 0.18 × 0.05 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
3247 independent reflections
Radiation source: fine-focus sealed tube2897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.468, Tmax = 0.836k = 1313
13511 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0356P)2 + 6.1582P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Cu2I2(C10H13N3O)2]·C2H3NV = 2822.41 (5) Å3
Mr = 804.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.0206 (2) ŵ = 3.73 mm1
b = 10.2820 (1) ÅT = 200 K
c = 17.2086 (1) Å0.24 × 0.18 × 0.05 mm
β = 95.329 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
3247 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2897 reflections with I > 2σ(I)
Tmin = 0.468, Tmax = 0.836Rint = 0.050
13511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.04Δρmax = 1.01 e Å3
3247 reflectionsΔρmin = 1.03 e Å3
161 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.55574 (2)0.41824 (4)0.48182 (2)0.03299 (11)
I10.600440 (12)0.60525 (2)0.576912 (13)0.03845 (9)
O10.69807 (18)0.6939 (3)0.24161 (16)0.0525 (7)
N10.59867 (15)0.2310 (2)0.50200 (15)0.0302 (5)
N20.64685 (15)0.4059 (2)0.39882 (14)0.0274 (5)
N30.67489 (16)0.5071 (2)0.35742 (15)0.0309 (5)
N40.50000.9807 (8)0.25000.135 (4)
C10.5713 (2)0.1401 (3)0.5497 (2)0.0395 (7)
H10.53060.16430.58380.047*
C20.5995 (2)0.0129 (3)0.5513 (2)0.0433 (8)
H20.57780.04890.58530.052*
C30.6595 (2)0.0229 (3)0.5030 (2)0.0421 (8)
H30.68030.10940.50340.051*
C40.6886 (2)0.0692 (3)0.45417 (19)0.0348 (7)
H40.73030.04700.42070.042*
C50.65638 (17)0.1957 (3)0.45415 (16)0.0271 (6)
C60.68527 (18)0.2951 (3)0.40212 (17)0.0278 (6)
H60.73070.27890.37170.033*
C70.7327 (2)0.4817 (3)0.29850 (18)0.0342 (6)
H7A0.70360.43320.25420.041*
H7B0.78030.42840.32110.041*
C80.7643 (2)0.6107 (3)0.2703 (2)0.0456 (8)
H8A0.79790.65440.31390.055*
H8B0.80140.59460.22840.055*
C90.6470 (3)0.7216 (4)0.3030 (3)0.0560 (10)
H9A0.60200.78280.28390.067*
H9B0.68140.76390.34660.067*
C100.6084 (2)0.5989 (3)0.3320 (2)0.0453 (9)
H10A0.57520.61970.37610.054*
H10B0.57040.55970.28970.054*
C110.50001.0891 (7)0.25000.0634 (17)
C120.50001.2277 (6)0.25000.0564 (14)
H12A0.44211.25950.24740.085*0.50
H12B0.52671.25950.20470.085*0.50
H12C0.53111.25950.29800.085*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0308 (2)0.02673 (19)0.0425 (2)0.00814 (14)0.00937 (16)0.00119 (15)
I10.03060 (13)0.03548 (13)0.04833 (15)0.00547 (8)0.00136 (9)0.01112 (8)
O10.0623 (16)0.0444 (14)0.0523 (15)0.0009 (12)0.0136 (13)0.0198 (12)
N10.0269 (12)0.0278 (12)0.0356 (13)0.0044 (9)0.0018 (10)0.0041 (10)
N20.0281 (12)0.0240 (11)0.0303 (12)0.0011 (9)0.0040 (10)0.0011 (9)
N30.0345 (13)0.0273 (12)0.0317 (12)0.0028 (10)0.0077 (10)0.0042 (10)
N40.110 (6)0.059 (5)0.239 (12)0.0000.024 (7)0.000
C10.0387 (17)0.0377 (17)0.0425 (18)0.0016 (14)0.0058 (14)0.0101 (14)
C20.0465 (19)0.0343 (17)0.0476 (19)0.0028 (14)0.0036 (15)0.0134 (15)
C30.0484 (19)0.0254 (15)0.0499 (19)0.0067 (14)0.0098 (15)0.0039 (13)
C40.0342 (16)0.0285 (14)0.0403 (17)0.0102 (12)0.0027 (13)0.0026 (12)
C50.0261 (13)0.0239 (13)0.0300 (14)0.0041 (10)0.0039 (11)0.0025 (10)
C60.0278 (13)0.0258 (13)0.0299 (14)0.0032 (11)0.0036 (11)0.0049 (11)
C70.0384 (16)0.0348 (16)0.0306 (15)0.0002 (13)0.0103 (12)0.0009 (12)
C80.049 (2)0.046 (2)0.0441 (19)0.0056 (15)0.0149 (16)0.0072 (15)
C90.064 (2)0.0336 (18)0.073 (3)0.0077 (17)0.020 (2)0.0157 (18)
C100.0424 (19)0.0364 (18)0.059 (2)0.0099 (14)0.0142 (17)0.0162 (15)
C110.044 (3)0.056 (4)0.091 (5)0.0000.015 (3)0.000
C120.064 (4)0.055 (3)0.052 (3)0.0000.013 (3)0.000
Geometric parameters (Å, º) top
Cu1—N12.063 (2)C3—H30.9500
Cu1—N22.139 (2)C4—C51.399 (4)
Cu1—Cu1i2.5719 (7)C4—H40.9500
Cu1—I12.5827 (4)C5—C61.462 (4)
Cu1—I1i2.6211 (4)C6—H60.9500
I1—Cu1i2.6211 (4)C7—C81.516 (4)
O1—C81.415 (5)C7—H7A0.9900
O1—C91.423 (5)C7—H7B0.9900
N1—C51.344 (4)C8—H8A0.9900
N1—C11.345 (4)C8—H8B0.9900
N2—C61.293 (4)C9—C101.510 (5)
N2—N31.361 (3)C9—H9A0.9900
N3—C71.459 (4)C9—H9B0.9900
N3—C101.459 (4)C10—H10A0.9900
N4—C111.114 (9)C10—H10B0.9900
C1—C21.383 (5)C11—C121.425 (9)
C1—H10.9500C12—H12A0.9800
C2—C31.378 (5)C12—H12B0.9800
C2—H20.9500C12—H12C0.9800
C3—C41.376 (5)
N1—Cu1—N279.59 (9)C4—C5—C6120.8 (3)
N1—Cu1—Cu1i142.87 (8)N2—C6—C5117.8 (3)
N2—Cu1—Cu1i137.20 (7)N2—C6—H6121.1
N1—Cu1—I1121.31 (7)C5—C6—H6121.1
N2—Cu1—I1107.53 (7)N3—C7—C8108.6 (3)
Cu1i—Cu1—I161.128 (16)N3—C7—H7A110.0
N1—Cu1—I1i105.69 (7)C8—C7—H7A110.0
N2—Cu1—I1i115.04 (7)N3—C7—H7B110.0
Cu1i—Cu1—I1i59.638 (16)C8—C7—H7B110.0
I1—Cu1—I1i120.766 (14)H7A—C7—H7B108.4
Cu1—I1—Cu1i59.234 (14)O1—C8—C7112.2 (3)
C8—O1—C9109.0 (3)O1—C8—H8A109.2
C5—N1—C1117.9 (3)C7—C8—H8A109.2
C5—N1—Cu1112.77 (19)O1—C8—H8B109.2
C1—N1—Cu1129.0 (2)C7—C8—H8B109.2
C6—N2—N3121.2 (3)H8A—C8—H8B107.9
C6—N2—Cu1112.01 (19)O1—C9—C10111.1 (3)
N3—N2—Cu1125.65 (18)O1—C9—H9A109.4
N2—N3—C7119.2 (2)C10—C9—H9A109.4
N2—N3—C10112.6 (2)O1—C9—H9B109.4
C7—N3—C10113.6 (3)C10—C9—H9B109.4
N1—C1—C2123.1 (3)H9A—C9—H9B108.0
N1—C1—H1118.5N3—C10—C9109.2 (3)
C2—C1—H1118.5N3—C10—H10A109.8
C3—C2—C1119.0 (3)C9—C10—H10A109.8
C3—C2—H2120.5N3—C10—H10B109.8
C1—C2—H2120.5C9—C10—H10B109.8
C4—C3—C2118.7 (3)H10A—C10—H10B108.3
C4—C3—H3120.7N4—C11—C12180.000 (3)
C2—C3—H3120.7C11—C12—H12A109.5
C3—C4—C5119.6 (3)C11—C12—H12B109.5
C3—C4—H4120.2H12A—C12—H12B109.5
C5—C4—H4120.2C11—C12—H12C109.5
N1—C5—C4121.7 (3)H12A—C12—H12C109.5
N1—C5—C6117.4 (2)H12B—C12—H12C109.5
N1—Cu1—I1—Cu1i136.91 (9)C5—N1—C1—C20.2 (5)
N2—Cu1—I1—Cu1i134.79 (7)Cu1—N1—C1—C2172.5 (3)
I1i—Cu1—I1—Cu1i0.0N1—C1—C2—C31.1 (5)
N2—Cu1—N1—C52.1 (2)C1—C2—C3—C40.7 (5)
Cu1i—Cu1—N1—C5171.24 (14)C2—C3—C4—C50.5 (5)
I1—Cu1—N1—C5106.40 (19)C1—N1—C5—C41.1 (4)
I1i—Cu1—N1—C5111.17 (19)Cu1—N1—C5—C4174.9 (2)
N2—Cu1—N1—C1175.1 (3)C1—N1—C5—C6179.5 (3)
Cu1i—Cu1—N1—C11.8 (4)Cu1—N1—C5—C65.7 (3)
I1—Cu1—N1—C180.6 (3)C3—C4—C5—N11.5 (5)
I1i—Cu1—N1—C161.8 (3)C3—C4—C5—C6179.2 (3)
N1—Cu1—N2—C62.0 (2)N3—N2—C6—C5173.9 (2)
Cu1i—Cu1—N2—C6176.06 (16)Cu1—N2—C6—C55.5 (3)
I1—Cu1—N2—C6117.78 (19)N1—C5—C6—N27.8 (4)
I1i—Cu1—N2—C6104.5 (2)C4—C5—C6—N2172.8 (3)
N1—Cu1—N2—N3169.6 (2)N2—N3—C7—C8171.4 (3)
Cu1i—Cu1—N2—N316.3 (3)C10—N3—C7—C852.2 (4)
I1—Cu1—N2—N349.9 (2)C9—O1—C8—C761.5 (4)
I1i—Cu1—N2—N387.8 (2)N3—C7—C8—O156.1 (4)
C6—N2—N3—C718.0 (4)C8—O1—C9—C1061.5 (4)
Cu1—N2—N3—C7175.4 (2)N2—N3—C10—C9167.4 (3)
C6—N2—N3—C10154.8 (3)C7—N3—C10—C953.2 (4)
Cu1—N2—N3—C1038.6 (4)O1—C9—C10—N357.0 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2I2(C10H13N3O)2]·C2H3N
Mr804.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)16.0206 (2), 10.2820 (1), 17.2086 (1)
β (°) 95.329 (1)
V3)2822.41 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.73
Crystal size (mm)0.24 × 0.18 × 0.05
Data collection
DiffractometerBruker SMART area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.468, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
13511, 3247, 2897
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections3247
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.03

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds