Download citation
Download citation
link to html
The structure of the title compound, C13H8Cl2O2, is similar to those of phenyl benzoate, 3,4-dichloro­phenyl benzoate and other aryl benzoates, with somewhat different bond parameters. The dihedral angle between the two aromatic rings is 75.75 (10)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041062/bt2486sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041062/bt2486Isup2.hkl
Contains datablock I

CCDC reference: 660339

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.049
  • wR factor = 0.151
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT230_ALERT_2_C Hirshfeld Test Diff for C5 - C6 .. 6.19 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the present work, as part of a study of the substituent effects on the structures of chemically and industrially significant compounds (Gowda et al., 2007a, b; Gowda et al., 2007), the structure of 2,6-dichlorophenyl benzoate (26DCPBA) has been determined. The structure of 26DCPBA (Fig. 1) resembles those of phenyl benzoate (PBA) (Adams & Morsi, 1976), 3,4-dichlorophenyl benzoate (34DCPBA) (Gowda et al., 2007b) and other aryl benzoates (Gowda et al., 2007a; Gowda et al., 2007). The bond parameters in 26DCPBA are similar to those in PBA, 34DCPBA and other aryl benzoates. The molecules in 26DCPBA are packed into column like structure with the benzoyl ring in the direction of b axis, while the dichlorophenyl ring being nearly orthogonal to the former(Fig. 2).

Related literature top

For related literature, see: Adams & Morsi (1976); Gowda et al. (2007, 2007a,b); Nayak & Gowda (2007).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2007). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93 Å) with Uiso = 1.2 Ueq of the parent atom.

Structure description top

In the present work, as part of a study of the substituent effects on the structures of chemically and industrially significant compounds (Gowda et al., 2007a, b; Gowda et al., 2007), the structure of 2,6-dichlorophenyl benzoate (26DCPBA) has been determined. The structure of 26DCPBA (Fig. 1) resembles those of phenyl benzoate (PBA) (Adams & Morsi, 1976), 3,4-dichlorophenyl benzoate (34DCPBA) (Gowda et al., 2007b) and other aryl benzoates (Gowda et al., 2007a; Gowda et al., 2007). The bond parameters in 26DCPBA are similar to those in PBA, 34DCPBA and other aryl benzoates. The molecules in 26DCPBA are packed into column like structure with the benzoyl ring in the direction of b axis, while the dichlorophenyl ring being nearly orthogonal to the former(Fig. 2).

For related literature, see: Adams & Morsi (1976); Gowda et al. (2007, 2007a,b); Nayak & Gowda (2007).

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing in the title compound.
2,6-Dichlorophenyl benzoate top
Crystal data top
C13H8Cl2O2F(000) = 544
Mr = 267.09Dx = 1.445 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.500 (2) Åθ = 8.0–19.6°
b = 7.9800 (9) ŵ = 4.65 mm1
c = 15.007 (2) ÅT = 299 K
β = 102.55 (1)°Prism, colourless
V = 1227.4 (3) Å30.55 × 0.35 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1553 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 67.0°, θmin = 4.3°
ω/2θ scansh = 121
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.200, Tmax = 0.406l = 1717
2541 measured reflections3 standard reflections every 120 min
2185 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.1792P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2185 reflectionsΔρmax = 0.29 e Å3
155 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0197 (15)
Crystal data top
C13H8Cl2O2V = 1227.4 (3) Å3
Mr = 267.09Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.500 (2) ŵ = 4.65 mm1
b = 7.9800 (9) ÅT = 299 K
c = 15.007 (2) Å0.55 × 0.35 × 0.20 mm
β = 102.55 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1553 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.200, Tmax = 0.4063 standard reflections every 120 min
2541 measured reflections intensity decay: 1.5%
2185 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
2185 reflectionsΔρmin = 0.40 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1122 (3)0.4256 (3)0.36182 (17)0.0603 (7)
C20.0090 (3)0.3476 (3)0.38834 (18)0.0630 (7)
C30.0996 (3)0.4377 (4)0.3971 (2)0.0719 (8)
H30.16800.38460.41590.086*
C40.1064 (4)0.6032 (5)0.3782 (2)0.0788 (9)
H40.18040.66310.38340.095*
C50.0059 (4)0.6843 (4)0.3513 (2)0.0814 (10)
H50.01170.79850.33850.098*
C60.1044 (3)0.5955 (4)0.34339 (18)0.0659 (7)
C70.3223 (3)0.3196 (3)0.42049 (19)0.0615 (7)
C80.4239 (3)0.2098 (3)0.3977 (2)0.0620 (7)
C90.5440 (3)0.2070 (4)0.4583 (3)0.0821 (9)
H90.55920.27410.51010.098*
C100.6410 (4)0.1028 (6)0.4405 (4)0.1016 (13)
H100.72170.09890.48100.122*
C110.6184 (4)0.0059 (6)0.3637 (4)0.1099 (15)
H110.68430.06280.35190.132*
C120.4996 (5)0.0090 (5)0.3041 (3)0.1052 (13)
H120.48490.05770.25200.126*
C130.4015 (4)0.1111 (4)0.3212 (2)0.0805 (9)
H130.32050.11280.28090.097*
O10.21813 (19)0.3328 (3)0.34784 (13)0.0707 (6)
O20.3255 (2)0.3910 (3)0.49034 (15)0.0826 (7)
Cl10.01973 (10)0.13767 (9)0.41347 (6)0.0910 (4)
Cl20.23311 (11)0.69468 (14)0.31154 (7)0.1058 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0727 (17)0.0557 (15)0.0483 (13)0.0110 (13)0.0036 (12)0.0060 (11)
C20.0748 (18)0.0537 (15)0.0561 (14)0.0037 (13)0.0049 (13)0.0045 (12)
C30.0705 (18)0.0787 (19)0.0643 (16)0.0103 (16)0.0096 (14)0.0024 (15)
C40.087 (2)0.081 (2)0.0630 (17)0.0311 (18)0.0043 (16)0.0047 (15)
C50.122 (3)0.0526 (16)0.0604 (17)0.0200 (18)0.0015 (18)0.0003 (13)
C60.0821 (19)0.0575 (16)0.0537 (15)0.0021 (14)0.0053 (13)0.0015 (12)
C70.0679 (17)0.0553 (14)0.0600 (16)0.0013 (12)0.0109 (13)0.0013 (12)
C80.0642 (16)0.0517 (14)0.0720 (17)0.0043 (12)0.0187 (14)0.0128 (12)
C90.071 (2)0.076 (2)0.097 (2)0.0011 (16)0.0145 (17)0.0142 (18)
C100.069 (2)0.094 (3)0.146 (4)0.016 (2)0.031 (2)0.035 (3)
C110.093 (3)0.093 (3)0.159 (4)0.032 (2)0.061 (3)0.030 (3)
C120.119 (3)0.088 (3)0.120 (3)0.027 (2)0.051 (3)0.006 (2)
C130.085 (2)0.0741 (19)0.086 (2)0.0123 (17)0.0276 (18)0.0015 (17)
O10.0699 (12)0.0779 (13)0.0614 (11)0.0193 (10)0.0079 (9)0.0109 (9)
O20.0791 (14)0.0949 (16)0.0688 (12)0.0136 (12)0.0053 (10)0.0163 (12)
Cl10.1106 (7)0.0539 (4)0.1032 (7)0.0007 (4)0.0117 (5)0.0051 (4)
Cl20.1166 (8)0.1045 (8)0.0927 (7)0.0266 (6)0.0150 (5)0.0248 (5)
Geometric parameters (Å, º) top
C1—C21.380 (4)C7—O11.370 (3)
C1—C61.382 (4)C7—C81.478 (4)
C1—O11.390 (3)C8—C131.370 (4)
C2—C31.378 (4)C8—C91.385 (5)
C2—Cl11.715 (3)C9—C101.384 (5)
C3—C41.349 (5)C9—H90.9300
C3—H30.9300C10—C111.365 (6)
C4—C51.371 (5)C10—H100.9300
C4—H40.9300C11—C121.369 (7)
C5—C61.384 (5)C11—H110.9300
C5—H50.9300C12—C131.380 (5)
C6—Cl21.721 (3)C12—H120.9300
C7—O21.187 (3)C13—H130.9300
C2—C1—C6118.9 (3)O1—C7—C8110.7 (2)
C2—C1—O1120.5 (3)C13—C8—C9120.5 (3)
C6—C1—O1120.5 (3)C13—C8—C7122.3 (3)
C3—C2—C1120.6 (3)C9—C8—C7117.2 (3)
C3—C2—Cl1120.3 (3)C10—C9—C8119.1 (4)
C1—C2—Cl1119.1 (2)C10—C9—H9120.5
C4—C3—C2119.9 (3)C8—C9—H9120.5
C4—C3—H3120.1C11—C10—C9120.2 (4)
C2—C3—H3120.1C11—C10—H10119.9
C3—C4—C5120.9 (3)C9—C10—H10119.9
C3—C4—H4119.5C10—C11—C12120.5 (4)
C5—C4—H4119.5C10—C11—H11119.7
C4—C5—C6119.7 (3)C12—C11—H11119.7
C4—C5—H5120.2C11—C12—C13120.0 (4)
C6—C5—H5120.2C11—C12—H12120.0
C1—C6—C5120.0 (3)C13—C12—H12120.0
C1—C6—Cl2119.4 (3)C8—C13—C12119.7 (4)
C5—C6—Cl2120.7 (3)C8—C13—H13120.1
O2—C7—O1122.1 (3)C12—C13—H13120.1
O2—C7—C8127.3 (3)C7—O1—C1116.6 (2)
C6—C1—C2—C30.5 (4)O1—C7—C8—C1312.2 (4)
O1—C1—C2—C3176.2 (2)O2—C7—C8—C910.0 (4)
C6—C1—C2—Cl1178.7 (2)O1—C7—C8—C9169.3 (3)
O1—C1—C2—Cl15.7 (3)C13—C8—C9—C100.1 (5)
C1—C2—C3—C41.1 (4)C7—C8—C9—C10178.5 (3)
Cl1—C2—C3—C4179.2 (2)C8—C9—C10—C110.7 (5)
C2—C3—C4—C50.8 (5)C9—C10—C11—C120.7 (6)
C3—C4—C5—C60.0 (5)C10—C11—C12—C130.2 (7)
C2—C1—C6—C50.2 (4)C9—C8—C13—C120.5 (5)
O1—C1—C6—C5175.4 (2)C7—C8—C13—C12179.0 (3)
C2—C1—C6—Cl2179.26 (19)C11—C12—C13—C80.4 (6)
O1—C1—C6—Cl25.1 (3)O2—C7—O1—C14.0 (4)
C4—C5—C6—C10.5 (4)C8—C7—O1—C1176.6 (2)
C4—C5—C6—Cl2179.0 (2)C2—C1—O1—C793.7 (3)
O2—C7—C8—C13168.5 (3)C6—C1—O1—C790.7 (3)

Experimental details

Crystal data
Chemical formulaC13H8Cl2O2
Mr267.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)10.500 (2), 7.9800 (9), 15.007 (2)
β (°) 102.55 (1)
V3)1227.4 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.65
Crystal size (mm)0.55 × 0.35 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.200, 0.406
No. of measured, independent and
observed [I > 2σ(I)] reflections
2541, 2185, 1553
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.05
No. of reflections2185
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.40

Computer programs: CAD-4-PC Software (Enraf–Nonius, 1996), CAD-4-PC Software, REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds