Download citation
Download citation
link to html
The asymmetric unit of the title compound, C17H21N5O7·H2O, consists of two organic mol­ecules (A and B) and two mol­ecules of water. Both mol­ecules show R configurations for all their chiral centres, and the furan­ose and dioxolane rings have envelope and twist conformations, respectively. The conformation of the nucleoside group is anti. The purine groups of the two mol­ecules are almost parallel, with a dihedral angle between their mean planes of 4.90 (2)°. The mol­ecules are stacked in the [010] direction, with alternating A and B mol­ecules. Hydrogen bonds involving water mol­ecules form an infinite one-dimensional chain, also along the crystallographic b axis. Hydrogen bonding between water mol­ecules connects these chains, generating a double-sheet polymeric structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038330/cf2128sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038330/cf2128Isup2.hkl
Contains datablock I

CCDC reference: 660245

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.148
  • Data-to-parameter ratio = 10.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95 PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.50 Ratio PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C152 PLAT417_ALERT_2_B Short Inter D-H..H-D H2WB .. H121 .. 1.90 Ang. PLAT420_ALERT_2_B D-H Without Acceptor O1W - H1WB ... ?
Alert level C PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 100 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 1000 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 6 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.95 Ratio PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.05 Ratio PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.25 Ratio PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.44 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O13 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C30 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C52 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C130 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C23 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 H2 O
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 30.37 From the CIF: _reflns_number_total 5699 Count of symmetry unique reflns 5969 Completeness (_total/calc) 95.48% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C1' = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2' = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3' = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C4' = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C11' = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C12' = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13' = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14' = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 5 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 12 ALERT level G = General alerts; check 12 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Nucleosides and synthetically modified analogues participate in a variety of physiological processes (De Clercq & Field, 2006; Santaniello et al., 2005) and are known to self-associate via hydrogen bonding and base stacking (Shi et al., 2001). In particular, 2',3'-O-isopropylideneguanosine and derivatives are notable for their propensity to aggregate (Shi et al., 2003; Mande et al., 1988; Mande et al., 1989). However, the crystal structures of N2-acetylated guanosines have not been reported so far. In continuation of our research on the chemistry of nucleosides (Sá et al., 2002; Leitão et al., 2004), we recently developed a simple and inexpensive method for the synthesis of 2',3'-O-isopropylidene-2-N-5'-O-diacetylguanosine (I) in good yield and high purity (Sá & Meier, 2006). We now report the crystal structure of this compound.

The asymmetric unit consists of two independent molecules of (I) (Fig. 1) and two molecules of water. Distinct intermolecular interactions (Table 2) and different conformational parameters (Table 1) between the independent molecules of (I) lead the asymmetric unit to be greater than expected. A similar feature was also observed in the crystal structure of 2',3'-O-isopropylideneguanosine (II) reported by Mande et al. (1989).

Bond lengths and angles are within the expected ranges (Allen et al., 1987). Both molecules of (I) show R configuration for their chiral centers C1', C2', C3' and C4' in molecule A and C11', C12', C13' and C14' in molecule B. In molecule A the furanose ring adopts envelope conformation on C3' (pucker C3'-exo), where this atom is 0.421 (5) Å out of the least-squares plane defined by the remaining four atoms, with pseudorotation parameters P and τm of 20.6 (5)° and 27.6 (2)°. The dioxolane ring is twisted on O2—C2' bond and exhibits C30-exo–O2-endo type pucker with P = 112.7 (4)° and τm = 35.6 (2)°. Molecule B also shows the furanose ring as an envelope on C14' (pucker C14'-exo) with P = 233.3 (4)° and τm = 30.6 (2)°, where C14' is displaced of 0.431 (5) Å from the mean plane formed by the four other atoms. The dioxolane ring is twisted on C13'—O13 and exhibits C130-exo–O13-endo pucker type with pseudorotation parameters P = 355.8 (5)° and τm = 26.3 (2)°. In the N-acetylated groups, the conformation about the C4'—C5' bond is gauche–gauche with ΦOC = 50.2 (5)° and ΦOO = -69.7 (4)° for molecule A and about the C14'—C15' bond it is gauche-anti with ΦOC = -75.4 (4)° and ΦOO = 168.7 (3)° for molecule B. Similar conformations for these groups found in molecule A were reported for the crystal structure of compound (II) crystallized from Me2SO by Mande et al. (1988), but they are significantly different from those determined for (II) crystallized from water/acetone (Mande et al., 1989), where in both molecules the furanose rings are C1'-endo, the conformation around C4'—C5' bonds is anti–gauche and the dioxolane ring in molecule A (II) is C9-endo–O3'-exo.

The purine groups are essentially planar, but the deviation from planarity is slightly different in each independent molecule of (I). The r.m.s. deviations of 10 fitted atoms are 0.005 and 0.020 for molecules A and B, respectively. Despite the N—H···O intramolecular hydrogen bond (Table 2), the torsion angles N3—C2—N21—C22 of -179.0 (3)° and N13—C12—N121—C122 of 175.0 (3)° demonstrate that the terminal amide arms deviate distinctly from the correspondent purine mean plane, while the exocyclic O6 and O16 atoms are retained in their respective planes. The conformation of the nucleoside group is anti with torsion angles O1—C1'—N9—C4 of -140.1 (3)° [A] and O11—C11'—N19—C14 of -178.9 (3)° [B]. These values are significantly different from those found in compound (II), with torsion angles of -94.1° (Mande et al., 1988) and 74.1° and 77.5° (Mande et al., 1989).

The purine groups of molecules A and B are almost parallel, with a dihedral angles between their mean planes of 4.90 (2)°. The molecules are stacked in the [010] direction, with intercalated A and B molecules. In addition, a very interesting packing take place through intermolecular interactions (Fig. 2). The water molecule O1W links A molecules and the water molecule O2W links B molecules, forming an infinite chain, also along the crystallographic b axis. The O2W—H2WB···O1W hydrogen bond between water molecules connects the two chains, thus building a double-sheet polymeric structure.

Related literature top

For related literature, see: Allen et al. (1987); De Clercq & Field (2006); Mande et al. (1988, 1989); Sá & Meier (2006); Sá et al. (2002); Santaniello et al. (2005); Shi et al. (2001, 2003); Leitão et al. (2004).

Experimental top

Selective acetylation of 2',3'-O-isopropylideneguanosine employing a combination of acetic anhydride and recyclable 13X molecular sieves under heterogeneous conditions gave (I) in high purity (81% yield) according to the reported method (Sá & Meier, 2006). Slow crystallization from CH2Cl2/AcOEt/MeOH/hexane (1:18:2:1) furnished single crystals (mp 397–398 K), allowing structural elucidation by X-ray crystallographic technique. The absolute configuration for (I) was previously assigned based on 1H– and 13C-NMR shifts for the starting 2',3'-O-isopropylideneguanosine and on the homogeneity of the reaction product; in the absence of significant anomalous scattering, Friedel pairs were merged.

Refinement top

H atoms attached to carbon atoms were positioned geometrically, with C—H = 0.96 (CH3), 0.97 (CH2) or 0.93 Å (CHAr), and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups. H atoms attached to N atoms were found in a difference Fourier map and refined freely. H atoms of the water molecules were also found in the difference map and treated as riding, with Uiso(H) = 1.2Ueq(O).

Structure description top

Nucleosides and synthetically modified analogues participate in a variety of physiological processes (De Clercq & Field, 2006; Santaniello et al., 2005) and are known to self-associate via hydrogen bonding and base stacking (Shi et al., 2001). In particular, 2',3'-O-isopropylideneguanosine and derivatives are notable for their propensity to aggregate (Shi et al., 2003; Mande et al., 1988; Mande et al., 1989). However, the crystal structures of N2-acetylated guanosines have not been reported so far. In continuation of our research on the chemistry of nucleosides (Sá et al., 2002; Leitão et al., 2004), we recently developed a simple and inexpensive method for the synthesis of 2',3'-O-isopropylidene-2-N-5'-O-diacetylguanosine (I) in good yield and high purity (Sá & Meier, 2006). We now report the crystal structure of this compound.

The asymmetric unit consists of two independent molecules of (I) (Fig. 1) and two molecules of water. Distinct intermolecular interactions (Table 2) and different conformational parameters (Table 1) between the independent molecules of (I) lead the asymmetric unit to be greater than expected. A similar feature was also observed in the crystal structure of 2',3'-O-isopropylideneguanosine (II) reported by Mande et al. (1989).

Bond lengths and angles are within the expected ranges (Allen et al., 1987). Both molecules of (I) show R configuration for their chiral centers C1', C2', C3' and C4' in molecule A and C11', C12', C13' and C14' in molecule B. In molecule A the furanose ring adopts envelope conformation on C3' (pucker C3'-exo), where this atom is 0.421 (5) Å out of the least-squares plane defined by the remaining four atoms, with pseudorotation parameters P and τm of 20.6 (5)° and 27.6 (2)°. The dioxolane ring is twisted on O2—C2' bond and exhibits C30-exo–O2-endo type pucker with P = 112.7 (4)° and τm = 35.6 (2)°. Molecule B also shows the furanose ring as an envelope on C14' (pucker C14'-exo) with P = 233.3 (4)° and τm = 30.6 (2)°, where C14' is displaced of 0.431 (5) Å from the mean plane formed by the four other atoms. The dioxolane ring is twisted on C13'—O13 and exhibits C130-exo–O13-endo pucker type with pseudorotation parameters P = 355.8 (5)° and τm = 26.3 (2)°. In the N-acetylated groups, the conformation about the C4'—C5' bond is gauche–gauche with ΦOC = 50.2 (5)° and ΦOO = -69.7 (4)° for molecule A and about the C14'—C15' bond it is gauche-anti with ΦOC = -75.4 (4)° and ΦOO = 168.7 (3)° for molecule B. Similar conformations for these groups found in molecule A were reported for the crystal structure of compound (II) crystallized from Me2SO by Mande et al. (1988), but they are significantly different from those determined for (II) crystallized from water/acetone (Mande et al., 1989), where in both molecules the furanose rings are C1'-endo, the conformation around C4'—C5' bonds is anti–gauche and the dioxolane ring in molecule A (II) is C9-endo–O3'-exo.

The purine groups are essentially planar, but the deviation from planarity is slightly different in each independent molecule of (I). The r.m.s. deviations of 10 fitted atoms are 0.005 and 0.020 for molecules A and B, respectively. Despite the N—H···O intramolecular hydrogen bond (Table 2), the torsion angles N3—C2—N21—C22 of -179.0 (3)° and N13—C12—N121—C122 of 175.0 (3)° demonstrate that the terminal amide arms deviate distinctly from the correspondent purine mean plane, while the exocyclic O6 and O16 atoms are retained in their respective planes. The conformation of the nucleoside group is anti with torsion angles O1—C1'—N9—C4 of -140.1 (3)° [A] and O11—C11'—N19—C14 of -178.9 (3)° [B]. These values are significantly different from those found in compound (II), with torsion angles of -94.1° (Mande et al., 1988) and 74.1° and 77.5° (Mande et al., 1989).

The purine groups of molecules A and B are almost parallel, with a dihedral angles between their mean planes of 4.90 (2)°. The molecules are stacked in the [010] direction, with intercalated A and B molecules. In addition, a very interesting packing take place through intermolecular interactions (Fig. 2). The water molecule O1W links A molecules and the water molecule O2W links B molecules, forming an infinite chain, also along the crystallographic b axis. The O2W—H2WB···O1W hydrogen bond between water molecules connects the two chains, thus building a double-sheet polymeric structure.

For related literature, see: Allen et al. (1987); De Clercq & Field (2006); Mande et al. (1988, 1989); Sá & Meier (2006); Sá et al. (2002); Santaniello et al. (2005); Shi et al. (2001, 2003); Leitão et al. (2004).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of one of the two indpendent molecules of (I) with the labeling scheme. Displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. The structure of one of the two indpendent molecules of (I) with the labeling scheme. Displacement ellipsoids are shown at the 40% probability level.
[Figure 3] Fig. 3. Packing of (I) showing the molecules connected through hydrogen bonds (dashed lines) and stacked along the b axis.
2-N,5'-O-Diacetyl-2',3'-O-isopropylideneguanosine monohydrate top
Crystal data top
C17H21N5O7·H2OZ = 2
Mr = 425.40F(000) = 448
Triclinic, P1Dx = 1.429 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.595 (1) ÅCell parameters from 25 reflections
b = 9.688 (1) Åθ = 5.1–18.8°
c = 16.301 (1) ŵ = 0.12 mm1
α = 72.72 (1)°T = 293 K
β = 89.68 (1)°Prismatic, colourless
γ = 83.82 (1)°0.50 × 0.23 × 0.16 mm
V = 988.34 (19) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 30.4°, θmin = 1.3°
Graphite monochromatorh = 99
ω/2θ scansk = 1313
6620 measured reflectionsl = 2214
5699 independent reflections3 standard reflections every 200 reflections
4093 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
5699 reflections(Δ/σ)max < 0.001
557 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H21N5O7·H2Oγ = 83.82 (1)°
Mr = 425.40V = 988.34 (19) Å3
Triclinic, P1Z = 2
a = 6.595 (1) ÅMo Kα radiation
b = 9.688 (1) ŵ = 0.12 mm1
c = 16.301 (1) ÅT = 293 K
α = 72.72 (1)°0.50 × 0.23 × 0.16 mm
β = 89.68 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
6620 measured reflections3 standard reflections every 200 reflections
5699 independent reflections intensity decay: <1%
4093 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
5699 reflectionsΔρmin = 0.24 e Å3
557 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5489 (4)0.9264 (3)0.7783 (2)0.0340 (6)
C20.5637 (5)0.9965 (3)0.8396 (2)0.0330 (6)
N30.5925 (4)0.9319 (3)0.92166 (18)0.0333 (5)
C40.6092 (5)0.7851 (3)0.9397 (2)0.0308 (6)
C50.5969 (5)0.7023 (3)0.8842 (2)0.0315 (6)
C60.5635 (4)0.7744 (3)0.7943 (2)0.0326 (6)
O60.5481 (4)0.7239 (3)0.73424 (16)0.0429 (6)
N70.6223 (4)0.5549 (3)0.9301 (2)0.0379 (6)
C80.6499 (6)0.5519 (4)1.0101 (2)0.0396 (7)
H80.67180.46631.05540.048*
N90.6430 (4)0.6879 (3)1.02033 (18)0.0356 (6)
C1'0.6706 (5)0.7256 (3)1.0993 (2)0.0378 (7)
H1'0.71050.82431.08570.045*
C2'0.4813 (6)0.7141 (3)1.1521 (2)0.0390 (7)
H2'0.35630.72051.11830.047*
C3'0.5225 (6)0.5712 (4)1.2242 (2)0.0440 (8)
H3'0.46810.49081.20980.053*
O10.8251 (4)0.6254 (3)1.14928 (18)0.0489 (6)
O20.4720 (5)0.8171 (3)1.19937 (16)0.0483 (6)
O30.4292 (5)0.5984 (3)1.29675 (19)0.0618 (8)
C4'0.7534 (6)0.5496 (4)1.2324 (2)0.0451 (8)
H4'0.79510.59731.27390.054*
C5'0.8544 (7)0.3959 (4)1.2589 (3)0.0569 (10)
H5'11.00080.39491.25270.068*
H5'20.82730.34791.31860.068*
N210.5468 (5)1.1468 (3)0.8130 (2)0.0399 (6)
C220.5137 (6)1.2358 (4)0.7312 (3)0.0465 (8)
O220.4858 (6)1.1924 (3)0.6696 (2)0.0707 (10)
C230.5148 (8)1.3962 (4)0.7225 (3)0.0566 (10)
H23A0.53881.40770.77800.085*
H23B0.38531.44770.69920.085*
H23C0.62091.43450.68470.085*
C300.3801 (7)0.7531 (4)1.2793 (3)0.0522 (9)
C310.1567 (9)0.7868 (7)1.2703 (4)0.0769 (14)
H31A0.12110.88961.25870.115*
H31B0.09540.73611.32260.115*
H31C0.10790.75641.22370.115*
C320.4768 (12)0.8041 (8)1.3469 (4)0.0900 (19)
H32A0.44310.90721.33450.135*
H32B0.62220.78191.34710.135*
H32C0.42670.75561.40220.135*
O510.7718 (5)0.3217 (3)1.20395 (19)0.0544 (7)
C520.8204 (8)0.1780 (5)1.2249 (3)0.0665 (12)
O520.9266 (10)0.1129 (5)1.2856 (4)0.132 (2)
C530.7288 (11)0.1140 (6)1.1641 (4)0.0841 (17)
H53A0.65390.18981.11940.126*
H53B0.63810.04601.19410.126*
H53C0.83480.06461.13920.126*
N110.1225 (4)0.6227 (3)0.9599 (2)0.0398 (6)
C120.1310 (5)0.5385 (4)0.9062 (2)0.0363 (7)
N130.1113 (4)0.5873 (3)0.82256 (18)0.0355 (6)
C140.0864 (5)0.7348 (3)0.7941 (2)0.0320 (6)
C150.0782 (5)0.8324 (4)0.8417 (2)0.0351 (7)
C160.0982 (5)0.7765 (4)0.9338 (2)0.0390 (7)
O160.1000 (4)0.8424 (3)0.98721 (18)0.0520 (7)
N170.0603 (4)0.9738 (3)0.7872 (2)0.0406 (6)
C180.0581 (5)0.9593 (4)0.7106 (3)0.0414 (8)
H180.04971.03780.66080.050*
N190.0694 (4)0.8164 (3)0.70972 (18)0.0354 (6)
C11'0.0976 (5)0.7588 (4)0.6352 (2)0.0372 (7)
H11'0.23610.70930.63800.045*
C12'0.0567 (5)0.6523 (4)0.6323 (2)0.0377 (7)
H12'0.15150.64110.67970.045*
O110.0717 (4)0.8759 (3)0.55897 (17)0.0497 (6)
O120.0358 (5)0.5154 (3)0.62789 (18)0.0500 (6)
O130.0623 (6)0.6514 (4)0.4896 (2)0.0706 (10)
C13'0.1672 (6)0.7242 (4)0.5448 (2)0.0471 (8)
H13'0.31360.71440.54680.057*
C14'0.1235 (6)0.8797 (4)0.5190 (2)0.0465 (8)
H14'0.11480.91660.45640.056*
C15'0.2766 (7)0.9774 (5)0.5506 (3)0.0571 (10)
H15A0.30370.93100.61040.069*
H15B0.22151.06790.54650.069*
N1210.1636 (5)0.3876 (3)0.9412 (2)0.0449 (7)
C1220.2035 (6)0.3085 (5)1.0258 (3)0.0527 (9)
O1220.2148 (6)0.3671 (4)1.0822 (2)0.0726 (9)
C1230.2362 (9)0.1468 (5)1.0408 (4)0.0713 (14)
H12A0.22120.12610.98730.107*
H12B0.13740.10101.08020.107*
H12C0.37100.11011.06470.107*
C1300.0215 (7)0.5106 (4)0.5404 (3)0.0501 (9)
C1310.1049 (13)0.3942 (8)0.5376 (4)0.095 (2)
H13A0.04140.30210.57320.142*
H13B0.11690.39130.47950.142*
H13C0.23810.41380.55840.142*
C1320.2314 (10)0.4863 (8)0.5091 (4)0.0876 (19)
H13D0.29430.39190.54150.131*
H13E0.31110.55940.51630.131*
H13F0.22400.49210.44930.131*
O1510.4605 (5)1.0066 (4)0.5013 (3)0.0728 (10)
C1520.4991 (9)1.1363 (6)0.4447 (4)0.0708 (13)
O1520.3852 (10)1.2225 (6)0.4326 (4)0.137 (2)
C1530.7059 (10)1.1552 (8)0.4044 (5)0.103 (2)
H15C0.76991.06780.42720.155*
H15D0.69451.17520.34330.155*
H15E0.78691.23490.41650.155*
O1W0.6997 (5)0.2679 (3)0.9295 (2)0.0657 (9)
H1WA0.66710.35560.93290.079*
H1WB0.73690.21050.97970.079*
O2W0.0482 (5)1.2583 (4)0.8105 (2)0.0660 (9)
H2WA0.06981.16240.81360.079*
H2WB0.05481.27230.84140.079*
H10.530 (8)0.980 (6)0.733 (4)0.064 (15)*
H110.138 (7)0.576 (5)1.016 (3)0.055 (13)*
H210.580 (6)1.182 (4)0.855 (3)0.030 (9)*
H1210.143 (7)0.339 (5)0.900 (3)0.048 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0362 (14)0.0316 (13)0.0335 (14)0.0039 (10)0.0007 (11)0.0084 (11)
C20.0310 (15)0.0286 (14)0.0392 (17)0.0024 (11)0.0035 (12)0.0104 (12)
N30.0397 (14)0.0246 (12)0.0364 (14)0.0035 (10)0.0030 (11)0.0101 (10)
C40.0308 (14)0.0284 (14)0.0322 (15)0.0041 (11)0.0031 (11)0.0073 (12)
C50.0302 (14)0.0261 (13)0.0400 (17)0.0039 (11)0.0040 (12)0.0124 (12)
C60.0251 (14)0.0344 (15)0.0431 (17)0.0075 (11)0.0077 (12)0.0174 (13)
O60.0470 (14)0.0453 (14)0.0432 (13)0.0093 (11)0.0034 (11)0.0221 (11)
N70.0407 (15)0.0271 (13)0.0470 (16)0.0048 (11)0.0042 (12)0.0125 (11)
C80.0500 (19)0.0263 (14)0.0424 (18)0.0051 (13)0.0020 (14)0.0097 (13)
N90.0416 (15)0.0255 (12)0.0392 (14)0.0040 (10)0.0011 (11)0.0089 (11)
C1'0.0502 (19)0.0277 (14)0.0358 (16)0.0042 (13)0.0027 (14)0.0098 (12)
C2'0.0484 (19)0.0326 (16)0.0369 (16)0.0014 (13)0.0012 (14)0.0129 (13)
C3'0.057 (2)0.0300 (15)0.0421 (18)0.0052 (14)0.0023 (15)0.0058 (13)
O10.0426 (14)0.0517 (15)0.0448 (14)0.0016 (11)0.0063 (11)0.0041 (12)
O20.0747 (18)0.0322 (12)0.0386 (13)0.0031 (11)0.0055 (12)0.0127 (10)
O30.085 (2)0.0449 (15)0.0465 (16)0.0003 (14)0.0218 (15)0.0028 (12)
C4'0.058 (2)0.0336 (17)0.0380 (18)0.0025 (15)0.0061 (15)0.0031 (14)
C5'0.068 (3)0.0399 (19)0.057 (2)0.0066 (18)0.020 (2)0.0088 (18)
N210.0509 (17)0.0262 (13)0.0405 (16)0.0023 (11)0.0030 (13)0.0075 (11)
C220.059 (2)0.0296 (16)0.046 (2)0.0009 (15)0.0001 (16)0.0057 (14)
O220.116 (3)0.0435 (16)0.0472 (17)0.0018 (17)0.0089 (17)0.0079 (13)
C230.076 (3)0.0267 (17)0.059 (2)0.0025 (17)0.000 (2)0.0010 (16)
C300.076 (3)0.0427 (19)0.0384 (19)0.0026 (18)0.0052 (18)0.0136 (15)
C310.073 (3)0.077 (3)0.074 (3)0.010 (3)0.010 (3)0.018 (3)
C320.124 (5)0.109 (5)0.053 (3)0.026 (4)0.006 (3)0.042 (3)
O510.0637 (17)0.0370 (13)0.0571 (17)0.0050 (12)0.0174 (13)0.0090 (12)
C520.080 (3)0.042 (2)0.072 (3)0.009 (2)0.016 (2)0.012 (2)
O520.190 (5)0.053 (2)0.140 (4)0.045 (3)0.102 (4)0.030 (2)
C530.105 (4)0.051 (3)0.096 (4)0.009 (3)0.027 (3)0.020 (3)
N110.0390 (15)0.0443 (16)0.0367 (16)0.0083 (12)0.0010 (12)0.0116 (13)
C120.0315 (16)0.0342 (16)0.0421 (17)0.0051 (12)0.0006 (13)0.0093 (13)
N130.0404 (14)0.0310 (13)0.0368 (14)0.0057 (11)0.0001 (11)0.0121 (11)
C140.0284 (14)0.0332 (15)0.0356 (16)0.0027 (11)0.0016 (12)0.0124 (12)
C150.0287 (15)0.0352 (16)0.0442 (18)0.0055 (12)0.0005 (13)0.0157 (13)
C160.0292 (15)0.0450 (19)0.0477 (19)0.0066 (13)0.0014 (13)0.0206 (15)
O160.0605 (17)0.0562 (16)0.0483 (15)0.0084 (13)0.0015 (13)0.0286 (13)
N170.0382 (15)0.0339 (14)0.0525 (18)0.0047 (11)0.0045 (13)0.0169 (13)
C180.0431 (18)0.0304 (16)0.049 (2)0.0032 (13)0.0052 (15)0.0090 (14)
N190.0372 (14)0.0308 (13)0.0381 (14)0.0028 (10)0.0033 (11)0.0103 (11)
C11'0.0388 (17)0.0360 (16)0.0355 (16)0.0008 (13)0.0008 (13)0.0099 (13)
C12'0.0409 (17)0.0377 (16)0.0393 (17)0.0041 (13)0.0014 (13)0.0188 (14)
O110.0519 (15)0.0558 (16)0.0373 (13)0.0144 (12)0.0004 (11)0.0048 (11)
O120.0701 (18)0.0383 (13)0.0432 (14)0.0071 (12)0.0075 (12)0.0191 (11)
O130.106 (3)0.0621 (19)0.0417 (15)0.0282 (18)0.0193 (16)0.0249 (14)
C13'0.049 (2)0.050 (2)0.0450 (19)0.0072 (15)0.0116 (16)0.0230 (17)
C14'0.053 (2)0.049 (2)0.0337 (17)0.0011 (16)0.0068 (15)0.0089 (15)
C15'0.067 (3)0.048 (2)0.054 (2)0.0102 (19)0.016 (2)0.0175 (18)
N1210.0481 (17)0.0351 (15)0.0480 (17)0.0066 (12)0.0029 (13)0.0065 (13)
C1220.053 (2)0.047 (2)0.049 (2)0.0040 (17)0.0011 (17)0.0008 (18)
O1220.096 (3)0.063 (2)0.0476 (18)0.0009 (18)0.0051 (16)0.0019 (15)
C1230.075 (3)0.048 (2)0.074 (3)0.001 (2)0.008 (2)0.005 (2)
C1300.072 (3)0.0396 (18)0.0404 (19)0.0042 (17)0.0028 (17)0.0183 (15)
C1310.139 (6)0.091 (4)0.072 (4)0.048 (4)0.008 (4)0.039 (3)
C1320.088 (4)0.105 (5)0.055 (3)0.016 (3)0.017 (3)0.011 (3)
O1510.0605 (19)0.0502 (18)0.107 (3)0.0030 (14)0.0225 (19)0.0259 (18)
C1520.075 (3)0.060 (3)0.072 (3)0.006 (2)0.017 (3)0.016 (2)
O1520.134 (5)0.103 (4)0.130 (5)0.037 (4)0.036 (4)0.043 (3)
C1530.086 (4)0.105 (5)0.119 (6)0.038 (4)0.052 (4)0.048 (4)
O1W0.092 (2)0.0366 (14)0.074 (2)0.0037 (14)0.0163 (17)0.0247 (14)
O2W0.071 (2)0.0555 (18)0.085 (2)0.0057 (15)0.0044 (17)0.0409 (17)
Geometric parameters (Å, º) top
N1—C21.373 (4)N11—H110.89 (5)
N1—C61.410 (4)C12—N131.306 (5)
N1—H10.77 (6)C12—N1211.396 (4)
C2—N31.303 (4)N13—C141.357 (4)
C2—N211.383 (4)C14—N191.366 (4)
N3—C41.356 (4)C14—C151.387 (4)
C4—N91.374 (4)C15—N171.387 (5)
C4—C51.383 (4)C15—C161.437 (5)
C5—N71.393 (4)C16—O161.224 (4)
C5—C61.431 (5)N17—C181.299 (5)
C6—O61.227 (4)C18—N191.383 (4)
N7—C81.310 (5)C18—H180.930
C8—N91.373 (4)N19—C11'1.483 (4)
C8—H80.930C11'—O111.408 (4)
N9—C1'1.455 (4)C11'—C12'1.536 (5)
C1'—O11.404 (4)C11'—H11'0.980
C1'—C2'1.508 (5)C12'—O121.420 (4)
C1'—H1'0.980C12'—C13'1.536 (5)
C2'—O21.427 (4)C12'—H12'0.980
C2'—C3'1.526 (5)O11—C14'1.438 (5)
C2'—H2'0.980O12—C1301.445 (5)
C3'—O31.410 (5)O13—C1301.423 (5)
C3'—C4'1.516 (6)O13—C13'1.432 (5)
C3'—H3'0.980C13'—C14'1.498 (6)
O1—C4'1.440 (5)C13'—H13'0.980
O2—C301.429 (5)C14'—C15'1.503 (6)
O3—C301.441 (5)C14'—H14'0.980
C4'—C5'1.502 (5)C15'—O1511.413 (5)
C4'—H4'0.980C15'—H15A0.970
C5'—O511.445 (5)C15'—H15B0.970
C5'—H5'10.970N121—C1221.375 (5)
C5'—H5'20.970N121—H1210.95 (5)
N21—C221.360 (5)C122—O1221.221 (6)
N21—H210.89 (4)C122—C1231.503 (7)
C22—O221.220 (5)C123—H12A0.960
C22—C231.518 (5)C123—H12B0.960
C23—H23A0.960C123—H12C0.960
C23—H23B0.960C130—C1311.483 (7)
C23—H23C0.960C130—C1321.492 (7)
C30—C311.473 (7)C131—H13A0.960
C30—C321.504 (7)C131—H13B0.960
C31—H31A0.960C131—H13C0.960
C31—H31B0.960C132—H13D0.960
C31—H31C0.960C132—H13E0.960
C32—H32A0.960C132—H13F0.960
C32—H32B0.960O151—C1521.319 (6)
C32—H32C0.960C152—O1521.156 (8)
O51—C521.334 (5)C152—C1531.487 (8)
C52—O521.188 (6)C153—H15C0.960
C52—C531.478 (8)C153—H15D0.960
C53—H53A0.960C153—H15E0.960
C53—H53B0.960O1W—H1WA0.8719
C53—H53C0.960O1W—H1WB0.8614
N11—C121.359 (5)O2W—H2WA0.9113
N11—C161.415 (5)O2W—H2WB0.8654
C2—N1—C6125.4 (3)C12—N11—H11117 (3)
C2—N1—H1113 (4)C16—N11—H11118 (3)
C6—N1—H1122 (4)N13—C12—N11125.1 (3)
N3—C2—N1124.9 (3)N13—C12—N121115.9 (3)
N3—C2—N21117.0 (3)N11—C12—N121118.9 (3)
N1—C2—N21118.1 (3)C12—N13—C14111.8 (3)
C2—N3—C4111.5 (3)N13—C14—N19125.0 (3)
N3—C4—N9125.0 (3)N13—C14—C15128.6 (3)
N3—C4—C5129.0 (3)N19—C14—C15106.4 (3)
N9—C4—C5106.0 (3)N17—C15—C14110.0 (3)
C4—C5—N7110.0 (3)N17—C15—C16131.2 (3)
C4—C5—C6119.0 (3)C14—C15—C16118.7 (3)
N7—C5—C6131.0 (3)O16—C16—N11120.3 (3)
O6—C6—N1119.7 (3)O16—C16—C15129.4 (3)
O6—C6—C5130.1 (3)N11—C16—C15110.3 (3)
N1—C6—C5110.2 (3)C18—N17—C15104.4 (3)
C8—N7—C5104.6 (3)N17—C18—N19113.9 (3)
N7—C8—N9113.1 (3)N17—C18—H18123.1
N7—C8—H8123.5N19—C18—H18123.1
N9—C8—H8123.5C14—N19—C18105.3 (3)
C8—N9—C4106.2 (3)C14—N19—C11'125.4 (3)
C8—N9—C1'128.1 (3)C18—N19—C11'128.3 (3)
C4—N9—C1'125.6 (3)O11—C11'—N19108.8 (3)
O1—C1'—N9107.8 (3)O11—C11'—C12'108.1 (3)
O1—C1'—C2'107.0 (3)N19—C11'—C12'112.5 (3)
N9—C1'—C2'112.3 (3)O11—C11'—H11'109.1
O1—C1'—H1'109.9N19—C11'—H11'109.1
N9—C1'—H1'109.9C12'—C11'—H11'109.1
C2'—C1'—H1'109.9O12—C12'—C13'105.3 (3)
O2—C2'—C1'109.5 (3)O12—C12'—C11'113.5 (3)
O2—C2'—C3'101.1 (3)C13'—C12'—C11'103.0 (3)
C1'—C2'—C3'105.4 (3)O12—C12'—H12'111.5
O2—C2'—H2'113.3C13'—C12'—H12'111.5
C1'—C2'—H2'113.3C11'—C12'—H12'111.5
C3'—C2'—H2'113.3C11'—O11—C14'109.9 (3)
O3—C3'—C4'112.9 (3)C12'—O12—C130109.2 (3)
O3—C3'—C2'105.1 (3)C130—O13—C13'108.6 (3)
C4'—C3'—C2'102.7 (3)O13—C13'—C14'109.4 (4)
O3—C3'—H3'111.9O13—C13'—C12'103.2 (3)
C4'—C3'—H3'111.9C14'—C13'—C12'105.6 (3)
C2'—C3'—H3'111.9O13—C13'—H13'112.7
C1'—O1—C4'111.5 (3)C14'—C13'—H13'112.7
C2'—O2—C30107.3 (3)C12'—C13'—H13'112.7
C3'—O3—C30108.8 (3)O11—C14'—C13'104.6 (3)
O1—C4'—C5'108.8 (3)O11—C14'—C15'108.5 (3)
O1—C4'—C3'105.9 (3)C13'—C14'—C15'113.5 (4)
C5'—C4'—C3'117.2 (3)O11—C14'—H14'110.0
O1—C4'—H4'108.2C13'—C14'—H14'110.0
C5'—C4'—H4'108.2C15'—C14'—H14'110.0
C3'—C4'—H4'108.2O151—C15'—C14'110.5 (3)
O51—C5'—C4'107.6 (3)O151—C15'—H15A109.6
O51—C5'—H5'1110.2C14'—C15'—H15A109.6
C4'—C5'—H5'1110.2O151—C15'—H15B109.6
O51—C5'—H5'2110.2C14'—C15'—H15B109.6
C4'—C5'—H5'2110.2H15A—C15'—H15B108.1
H5'1—C5'—H5'2108.5C122—N121—C12127.9 (4)
C22—N21—C2126.9 (3)C122—N121—H121120 (3)
C22—N21—H21121 (2)C12—N121—H121112 (3)
C2—N21—H21112 (2)O122—C122—N121121.9 (4)
O22—C22—N21123.7 (3)O122—C122—C123124.2 (4)
O22—C22—C23122.3 (4)N121—C122—C123113.9 (4)
N21—C22—C23114.0 (3)C122—C123—H12A109.5
C22—C23—H23A109.5C122—C123—H12B109.5
C22—C23—H23B109.5H12A—C123—H12B109.5
H23A—C23—H23B109.5C122—C123—H12C109.5
C22—C23—H23C109.5H12A—C123—H12C109.5
H23A—C23—H23C109.5H12B—C123—H12C109.5
H23B—C23—H23C109.5O13—C130—O12106.8 (3)
O2—C30—O3105.4 (3)O13—C130—C131113.2 (5)
O2—C30—C31110.0 (4)O12—C130—C131109.0 (4)
O3—C30—C31108.3 (4)O13—C130—C132106.4 (4)
O2—C30—C32107.9 (4)O12—C130—C132108.9 (4)
O3—C30—C32110.3 (4)C131—C130—C132112.2 (5)
C31—C30—C32114.6 (5)C130—C131—H13A109.5
C30—C31—H31A109.5C130—C131—H13B109.5
C30—C31—H31B109.5H13A—C131—H13B109.5
H31A—C31—H31B109.5C130—C131—H13C109.5
C30—C31—H31C109.5H13A—C131—H13C109.5
H31A—C31—H31C109.5H13B—C131—H13C109.5
H31B—C31—H31C109.5C130—C132—H13D109.5
C30—C32—H32A109.5C130—C132—H13E109.5
C30—C32—H32B109.5H13D—C132—H13E109.5
H32A—C32—H32B109.5C130—C132—H13F109.5
C30—C32—H32C109.5H13D—C132—H13F109.5
H32A—C32—H32C109.5H13E—C132—H13F109.5
H32B—C32—H32C109.5C152—O151—C15'117.6 (4)
C52—O51—C5'116.9 (3)O152—C152—O151122.2 (5)
O52—C52—O51122.1 (5)O152—C152—C153126.6 (6)
O52—C52—C53125.7 (5)O151—C152—C153111.1 (6)
O51—C52—C53112.2 (4)C152—C153—H15C109.5
C52—C53—H53A109.5C152—C153—H15D109.5
C52—C53—H53B109.5H15C—C153—H15D109.5
H53A—C53—H53B109.5C152—C153—H15E109.5
C52—C53—H53C109.5H15C—C153—H15E109.5
H53A—C53—H53C109.5H15D—C153—H15E109.5
H53B—C53—H53C109.5H1WA—O1W—H1WB109.3
C12—N11—C16125.4 (3)H2WA—O2W—H2WB109.5
C6—N1—C2—N30.4 (5)C16—N11—C12—N132.4 (5)
C6—N1—C2—N21179.7 (3)C16—N11—C12—N121177.5 (3)
N1—C2—N3—C40.8 (4)N11—C12—N13—C141.8 (5)
N21—C2—N3—C4179.2 (3)N121—C12—N13—C14178.1 (3)
C2—N3—C4—N9179.0 (3)C12—N13—C14—N19177.5 (3)
C2—N3—C4—C50.9 (5)C12—N13—C14—C150.7 (5)
N3—C4—C5—N7179.9 (3)N13—C14—C15—N17177.3 (3)
N9—C4—C5—N70.2 (3)N19—C14—C15—N171.2 (4)
N3—C4—C5—C60.5 (5)N13—C14—C15—C160.2 (5)
N9—C4—C5—C6179.5 (3)N19—C14—C15—C16178.3 (3)
C2—N1—C6—O6179.9 (3)C12—N11—C16—O16177.3 (3)
C2—N1—C6—C50.1 (4)C12—N11—C16—C151.5 (4)
C4—C5—C6—O6179.8 (3)N17—C15—C16—O161.7 (6)
N7—C5—C6—O60.2 (6)C14—C15—C16—O16178.1 (3)
C4—C5—C6—N10.1 (4)N17—C15—C16—N11176.9 (3)
N7—C5—C6—N1179.5 (3)C14—C15—C16—N110.5 (4)
C4—C5—N7—C80.3 (4)C14—C15—N17—C180.0 (4)
C6—C5—N7—C8179.3 (3)C16—C15—N17—C18176.7 (3)
C5—N7—C8—N90.4 (4)C15—N17—C18—N191.2 (4)
N7—C8—N9—C40.3 (4)N13—C14—N19—C18176.8 (3)
N7—C8—N9—C1'178.9 (3)C15—C14—N19—C181.8 (3)
N3—C4—N9—C8179.9 (3)N13—C14—N19—C11'7.1 (5)
C5—C4—N9—C80.0 (3)C15—C14—N19—C11'171.5 (3)
N3—C4—N9—C1'1.3 (5)N17—C18—N19—C142.0 (4)
C5—C4—N9—C1'178.7 (3)N17—C18—N19—C11'171.3 (3)
C8—N9—C1'—O138.3 (5)C14—N19—C11'—O11178.9 (3)
C4—N9—C1'—O1140.0 (3)C18—N19—C11'—O1111.6 (4)
C8—N9—C1'—C2'79.4 (4)C14—N19—C11'—C12'61.3 (4)
C4—N9—C1'—C2'102.3 (4)C18—N19—C11'—C12'131.4 (3)
O1—C1'—C2'—O292.1 (3)O11—C11'—C12'—O12114.1 (3)
N9—C1'—C2'—O2149.7 (3)N19—C11'—C12'—O12125.7 (3)
O1—C1'—C2'—C3'15.9 (4)O11—C11'—C12'—C13'0.8 (3)
N9—C1'—C2'—C3'102.2 (3)N19—C11'—C12'—C13'121.0 (3)
O2—C2'—C3'—O329.8 (4)N19—C11'—O11—C14'104.6 (3)
C1'—C2'—C3'—O3143.9 (3)C12'—C11'—O11—C14'17.9 (4)
O2—C2'—C3'—C4'88.5 (3)C13'—C12'—O12—C13010.4 (4)
C1'—C2'—C3'—C4'25.6 (4)C11'—C12'—O12—C130101.5 (4)
N9—C1'—O1—C4'122.1 (3)C130—O13—C13'—C14'138.7 (4)
C2'—C1'—O1—C4'1.1 (4)C130—O13—C13'—C12'26.6 (5)
C1'—C2'—O2—C30146.2 (3)O12—C12'—C13'—O1322.4 (4)
C3'—C2'—O2—C3035.3 (4)C11'—C12'—C13'—O1396.8 (3)
C4'—C3'—O3—C3097.3 (4)O12—C12'—C13'—C14'137.2 (3)
C2'—C3'—O3—C3013.9 (4)C11'—C12'—C13'—C14'18.0 (4)
C1'—O1—C4'—C5'144.7 (3)C11'—O11—C14'—C13'29.4 (4)
C1'—O1—C4'—C3'17.8 (4)C11'—O11—C14'—C15'92.1 (4)
O3—C3'—C4'—O1139.0 (3)O13—C13'—C14'—O1181.7 (4)
C2'—C3'—C4'—O126.4 (4)C12'—C13'—C14'—O1128.8 (4)
O3—C3'—C4'—C5'99.4 (4)O13—C13'—C14'—C15'160.1 (3)
C2'—C3'—C4'—C5'147.9 (3)C12'—C13'—C14'—C15'89.3 (4)
O1—C4'—C5'—O5169.8 (4)O11—C14'—C15'—O151168.8 (4)
C3'—C4'—C5'—O5150.2 (5)C13'—C14'—C15'—O15175.3 (4)
N3—C2—N21—C22179.0 (3)N13—C12—N121—C122175.0 (4)
N1—C2—N21—C220.9 (5)N11—C12—N121—C1224.9 (5)
C2—N21—C22—O223.1 (7)C12—N121—C122—O1220.1 (7)
C2—N21—C22—C23176.7 (4)C12—N121—C122—C123178.5 (4)
C2'—O2—C30—O328.0 (4)C13'—O13—C130—O1221.0 (5)
C2'—O2—C30—C3188.6 (4)C13'—O13—C130—C13198.9 (5)
C2'—O2—C30—C32145.8 (4)C13'—O13—C130—C132137.3 (4)
C3'—O3—C30—O27.7 (5)C12'—O12—C130—O135.8 (5)
C3'—O3—C30—C31110.0 (4)C12'—O12—C130—C131116.9 (5)
C3'—O3—C30—C32123.8 (4)C12'—O12—C130—C132120.4 (4)
C4'—C5'—O51—C52170.8 (4)C14'—C15'—O151—C152105.0 (5)
C5'—O51—C52—O520.0 (9)C15'—O151—C152—O1522.8 (9)
C5'—O51—C52—C53179.7 (5)C15'—O151—C152—C153174.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O220.77 (6)2.00 (6)2.649 (4)142 (5)
N11—H11···O1220.89 (5)2.01 (5)2.690 (5)133 (4)
N21—H21···O1Wi0.89 (4)1.88 (4)2.757 (4)168 (4)
N121—H121···O2Wii0.95 (5)1.98 (5)2.915 (5)169 (4)
O2W—H2WA···N170.912.002.885 (4)162
O1W—H1WA···N70.871.912.775 (4)173
O2W—H2WB···O1Wiii0.872.153.011 (5)170
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H21N5O7·H2O
Mr425.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.595 (1), 9.688 (1), 16.301 (1)
α, β, γ (°)72.72 (1), 89.68 (1), 83.82 (1)
V3)988.34 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.23 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6620, 5699, 4093
Rint0.017
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.03
No. of reflections5699
No. of parameters557
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), SET4 in CAD-4 EXPRESS, HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O220.77 (6)2.00 (6)2.649 (4)142 (5)
N11—H11···O1220.89 (5)2.01 (5)2.690 (5)133 (4)
N21—H21···O1Wi0.89 (4)1.88 (4)2.757 (4)168 (4)
N121—H121···O2Wii0.95 (5)1.98 (5)2.915 (5)169 (4)
O2W—H2WA···N170.912.002.885 (4)161.9
O1W—H1WA···N70.871.912.775 (4)172.7
O2W—H2WB···O1Wiii0.872.153.011 (5)170.2
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds