Download citation
Download citation
link to html
The mol­ecular conformation of the title compound, C32H29N3O4, is influenced by an intra­molecular N—H...N hydrogen bond. Mol­ecules are linked by N—H...O and C—H...O hydrogen bonds, generating sheets parallel to (001). In addition, a π–π stacking inter­action (centroid–centroid distance = 4.038 Å) between the phenyl rings attached to the oxadiazole ring in adjacent mol­ecules, and a C—H...π inter­action involving the oxadiazole ring are also found to stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038093/cf2131sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038093/cf2131Isup2.hkl
Contains datablock I

CCDC reference: 660244

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.054
  • wR factor = 0.178
  • Data-to-parameter ratio = 26.5

checkCIF/PLATON results

No syntax errors found



Alert level A DIFF020_ALERT_1_A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards.
Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.600 Test value = 0.600 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C4 = ... R
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I) (Fig. 1), belongs to an important class of organic molecules that have been found to display photoluminiscent properties (Yang et al., 2007). Precise X-ray crystallographic investigations on such compounds are expected to provide insights for modelling and fabrication of organic light-emitting diodes.

An analysis of the puckering amplitudes (Cremer & Pople, 1975) indicates that the pyran ring adopts a boat conformation [Q = 0.164 (1) Å, θ = 103.8 (5)° and φ = 357.9 (5)°] and the six-membered ring fused to it adopts an envelope conformation [Q = 0.444 (2) Å, θ = 129.3 (2)° and φ = 56.0 (3)°], but deviations from planarity in this fused ring system are small.

The title molecule may be thought of as made up of four ring systems: the 5,6,7,8-tetrahydro-4H-chromen-2-ψlamine (A), 3-phenyl-1,2,4-oxadiazol-5-yl) (B), (4-methoxyphenyl)methylidene (C), and 4-(4-methoxyphenyl) (D). B, C and D make dihedral angles of 19.5 (1)°, 44.2 (1)° and 88.0 (1)°, respectively, with the mean plane of ring system A.

The conformation of the molecule is influenced by an intramolecular N—H···N hydrogen bond. Molecules are linked by N—H···O and C—H···O hydrogen bonds, generating sheets parallel to (001) (Fig.2). In addition, a π-π stacking interaction (centroid-centroid distance 4.038 Å) between phenyl rings attached to the oxadiazole ring in adjacent molecules, and a C—H···π interaction involving the oxadiazole ring are also found to stabilize the crystal structure.

Related literature top

For related literature, see: Yang et al. (2007); Cremer & Pople (1975).

Experimental top

A mixture of 2-amino-4-(4-methoxyphenyl)-8-[(E)-(4-methoxyphenyl)methylidene]-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (0.2 g, 5 mmol) and N-hydroxybenzenecarboximidoyl chloride (0.080 g, 5 mmol) was dissolved in benzene (15 ml). A solution of triethylamine (0.05 g, 5 mmol) in benzene (2 ml) was added dropwise to the above mixture, which was refluxed until the reaction was complete (about 5 h). Triethylamine hydrochloride was filtered off, the solvent removed in vacuo and the residue purified by column chromatography with silica gel, using petroleum ether:ethyl acetate (90:10 v/v) as eluant, to obtain the pure product as a pale-yellow solid (yield 52%). The compound was recrystallized from ethyl acetate to obtain suitable crystals for X-ray crystallographic study.

Refinement top

H atoms bonded to N were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

The title compound, (I) (Fig. 1), belongs to an important class of organic molecules that have been found to display photoluminiscent properties (Yang et al., 2007). Precise X-ray crystallographic investigations on such compounds are expected to provide insights for modelling and fabrication of organic light-emitting diodes.

An analysis of the puckering amplitudes (Cremer & Pople, 1975) indicates that the pyran ring adopts a boat conformation [Q = 0.164 (1) Å, θ = 103.8 (5)° and φ = 357.9 (5)°] and the six-membered ring fused to it adopts an envelope conformation [Q = 0.444 (2) Å, θ = 129.3 (2)° and φ = 56.0 (3)°], but deviations from planarity in this fused ring system are small.

The title molecule may be thought of as made up of four ring systems: the 5,6,7,8-tetrahydro-4H-chromen-2-ψlamine (A), 3-phenyl-1,2,4-oxadiazol-5-yl) (B), (4-methoxyphenyl)methylidene (C), and 4-(4-methoxyphenyl) (D). B, C and D make dihedral angles of 19.5 (1)°, 44.2 (1)° and 88.0 (1)°, respectively, with the mean plane of ring system A.

The conformation of the molecule is influenced by an intramolecular N—H···N hydrogen bond. Molecules are linked by N—H···O and C—H···O hydrogen bonds, generating sheets parallel to (001) (Fig.2). In addition, a π-π stacking interaction (centroid-centroid distance 4.038 Å) between phenyl rings attached to the oxadiazole ring in adjacent molecules, and a C—H···π interaction involving the oxadiazole ring are also found to stabilize the crystal structure.

For related literature, see: Yang et al. (2007); Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004a); cell refinement: SAINT (Bruker, 2004b); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
8-[(E)-4-Methoxybenzylidene]-4-(4-Methoxyphenyl)-3- (3-phenyl-1,2,4-oxadiazol-5-yl)-5,6,7,8-tetrahydro-4H-chromen-2-amine top
Crystal data top
C32H29N3O4Z = 2
Mr = 519.58F(000) = 548
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5014 (3) ÅCell parameters from 4468 reflections
b = 11.3187 (4) Åθ = 3–29°
c = 11.6458 (4) ŵ = 0.09 mm1
α = 91.07 (2)°T = 298 K
β = 98.45 (2)°Block, colourless
γ = 104.10 (3)°0.30 × 0.20 × 0.15 mm
V = 1325.8 (2) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
9546 independent reflections
Radiation source: fine-focus sealed tube6512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 32.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.98, Tmax = 0.99k = 1717
36723 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.088P)2 + 0.2805P]
where P = (Fo2 + 2Fc2)/3
9546 reflections(Δ/σ)max < 0.001
360 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C32H29N3O4γ = 104.10 (3)°
Mr = 519.58V = 1325.8 (2) Å3
Triclinic, P1Z = 2
a = 10.5014 (3) ÅMo Kα radiation
b = 11.3187 (4) ŵ = 0.09 mm1
c = 11.6458 (4) ÅT = 298 K
α = 91.07 (2)°0.30 × 0.20 × 0.15 mm
β = 98.45 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
9546 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
6512 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.025
36723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.60 e Å3
9546 reflectionsΔρmin = 0.32 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44750 (9)0.06770 (9)0.74873 (8)0.0453 (2)
O310.77429 (10)0.29001 (9)0.69489 (8)0.0445 (2)
O80.03663 (13)0.70140 (10)1.00681 (11)0.0603 (3)
O41.11417 (11)0.09930 (11)0.60871 (11)0.0586 (3)
N210.39565 (13)0.05173 (14)0.61084 (12)0.0553 (4)
N320.78419 (13)0.39013 (11)0.62222 (11)0.0476 (3)
N340.59051 (11)0.25039 (10)0.56538 (9)0.0386 (2)
C20.49210 (13)0.03321 (12)0.69183 (11)0.0389 (3)
C30.61886 (12)0.10433 (11)0.71726 (10)0.0357 (2)
C40.72111 (12)0.06893 (11)0.80595 (10)0.0336 (2)
H40.76680.14090.85750.040*
C50.65386 (12)0.02897 (11)0.87854 (10)0.0352 (2)
C60.52803 (12)0.09250 (11)0.84756 (10)0.0359 (2)
C70.45949 (13)0.19525 (12)0.90757 (11)0.0379 (3)
C80.33702 (13)0.26063 (12)0.86451 (11)0.0402 (3)
H80.29570.23240.79820.048*
C810.25958 (13)0.37157 (12)0.90901 (11)0.0392 (3)
C820.25819 (14)0.39269 (13)1.02612 (12)0.0432 (3)
H820.30730.33231.08160.052*
C830.18564 (14)0.50118 (13)1.06275 (12)0.0444 (3)
H830.18720.51321.14170.053*
C840.11123 (14)0.59097 (12)0.98113 (13)0.0443 (3)
C850.10668 (17)0.57044 (14)0.86384 (13)0.0519 (3)
H850.05430.62960.80860.062*
C860.17943 (15)0.46289 (13)0.82911 (12)0.0479 (3)
H860.17520.45050.75010.058*
C870.0408 (2)0.72963 (17)1.12512 (17)0.0662 (5)
H87A0.01560.80941.13040.099*
H87B0.01040.67041.16670.099*
H87C0.13040.72821.15850.099*
C330.67314 (13)0.36061 (11)0.54936 (11)0.0380 (3)
C350.65582 (12)0.21169 (11)0.65603 (10)0.0354 (2)
C3310.64071 (14)0.43903 (12)0.45653 (11)0.0415 (3)
C3320.53368 (18)0.39616 (16)0.37008 (14)0.0571 (4)
H3320.48210.31660.36970.068*
C3330.5029 (2)0.4720 (2)0.28346 (16)0.0708 (5)
H3330.43100.44280.22480.085*
C3340.5776 (2)0.58886 (19)0.28403 (16)0.0721 (6)
H3340.55590.63960.22650.087*
C3350.6838 (3)0.63113 (17)0.36871 (17)0.0753 (6)
H3350.73500.71070.36830.090*
C3360.7166 (2)0.55744 (14)0.45519 (15)0.0607 (4)
H3360.78970.58720.51260.073*
C410.82502 (11)0.02492 (10)0.74932 (9)0.0320 (2)
C420.96020 (12)0.07784 (12)0.78085 (12)0.0401 (3)
H420.98830.14280.83630.048*
C431.05339 (13)0.03552 (13)0.73117 (13)0.0444 (3)
H431.14330.07290.75250.053*
C441.01362 (13)0.06205 (12)0.65001 (11)0.0397 (3)
C450.87972 (13)0.11618 (13)0.61681 (12)0.0428 (3)
H450.85200.18140.56160.051*
C460.78722 (12)0.07194 (12)0.66695 (11)0.0399 (3)
H460.69720.10850.64450.048*
C471.0822 (2)0.2066 (2)0.5367 (2)0.0774 (6)
H47A1.16190.22090.51440.116*
H47B1.02250.19800.46840.116*
H47C1.04040.27420.57800.116*
C90.54074 (16)0.22266 (16)1.01766 (13)0.0523 (4)
H9A0.52360.17791.08310.063*
H9B0.51240.30901.03010.063*
C100.68687 (16)0.18972 (15)1.01387 (15)0.0548 (4)
H10A0.70590.24260.95570.066*
H10B0.73400.20311.08860.066*
C110.73658 (14)0.05845 (13)0.98560 (11)0.0449 (3)
H11A0.73340.00521.05080.054*
H11B0.82840.04390.97330.054*
H21A0.3161 (19)0.0034 (17)0.6047 (16)0.052 (5)*
H21B0.4161 (19)0.1154 (18)0.5695 (17)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0373 (5)0.0480 (5)0.0464 (5)0.0050 (4)0.0002 (4)0.0211 (4)
O310.0475 (5)0.0386 (5)0.0433 (5)0.0055 (4)0.0015 (4)0.0116 (4)
O80.0689 (7)0.0408 (6)0.0675 (7)0.0025 (5)0.0165 (6)0.0148 (5)
O40.0440 (6)0.0663 (7)0.0713 (7)0.0176 (5)0.0213 (5)0.0014 (6)
N210.0359 (6)0.0623 (8)0.0633 (8)0.0075 (6)0.0017 (5)0.0321 (7)
N320.0554 (7)0.0369 (6)0.0473 (6)0.0061 (5)0.0052 (5)0.0129 (5)
N340.0392 (5)0.0367 (5)0.0426 (5)0.0127 (4)0.0084 (4)0.0121 (4)
C20.0370 (6)0.0418 (6)0.0407 (6)0.0136 (5)0.0074 (5)0.0150 (5)
C30.0362 (6)0.0361 (6)0.0376 (5)0.0128 (5)0.0081 (4)0.0105 (4)
C40.0340 (5)0.0325 (5)0.0345 (5)0.0087 (4)0.0043 (4)0.0055 (4)
C50.0364 (6)0.0373 (6)0.0336 (5)0.0114 (5)0.0065 (4)0.0086 (4)
C60.0357 (6)0.0392 (6)0.0348 (5)0.0123 (5)0.0060 (4)0.0110 (4)
C70.0388 (6)0.0394 (6)0.0385 (5)0.0122 (5)0.0102 (5)0.0129 (5)
C80.0410 (6)0.0411 (6)0.0400 (6)0.0107 (5)0.0086 (5)0.0117 (5)
C810.0380 (6)0.0387 (6)0.0436 (6)0.0112 (5)0.0111 (5)0.0089 (5)
C820.0454 (7)0.0424 (7)0.0417 (6)0.0079 (5)0.0118 (5)0.0036 (5)
C830.0462 (7)0.0469 (7)0.0432 (6)0.0121 (6)0.0152 (5)0.0107 (5)
C840.0442 (7)0.0372 (6)0.0549 (7)0.0124 (5)0.0140 (6)0.0118 (5)
C850.0598 (9)0.0421 (7)0.0488 (7)0.0047 (6)0.0062 (6)0.0024 (6)
C860.0530 (8)0.0470 (8)0.0417 (6)0.0081 (6)0.0073 (6)0.0073 (5)
C870.0737 (11)0.0546 (9)0.0768 (11)0.0158 (8)0.0301 (9)0.0286 (8)
C330.0454 (7)0.0339 (6)0.0386 (5)0.0135 (5)0.0121 (5)0.0073 (4)
C350.0379 (6)0.0349 (6)0.0371 (5)0.0128 (5)0.0102 (4)0.0068 (4)
C3310.0538 (8)0.0373 (6)0.0392 (6)0.0178 (6)0.0138 (5)0.0104 (5)
C3320.0573 (9)0.0574 (9)0.0564 (8)0.0152 (7)0.0049 (7)0.0186 (7)
C3330.0736 (12)0.0860 (14)0.0563 (9)0.0305 (10)0.0006 (8)0.0231 (9)
C3340.1074 (16)0.0712 (12)0.0546 (9)0.0462 (12)0.0230 (10)0.0308 (8)
C3350.1195 (18)0.0459 (9)0.0628 (10)0.0222 (10)0.0159 (11)0.0226 (8)
C3360.0854 (12)0.0396 (8)0.0526 (8)0.0092 (8)0.0062 (8)0.0120 (6)
C410.0304 (5)0.0316 (5)0.0330 (5)0.0067 (4)0.0032 (4)0.0068 (4)
C420.0340 (6)0.0356 (6)0.0456 (6)0.0016 (5)0.0019 (5)0.0024 (5)
C430.0285 (6)0.0460 (7)0.0537 (7)0.0013 (5)0.0041 (5)0.0018 (6)
C440.0355 (6)0.0438 (7)0.0421 (6)0.0115 (5)0.0100 (5)0.0075 (5)
C450.0395 (6)0.0431 (7)0.0435 (6)0.0079 (5)0.0046 (5)0.0066 (5)
C460.0289 (5)0.0435 (7)0.0429 (6)0.0035 (5)0.0014 (4)0.0028 (5)
C470.0719 (12)0.0823 (14)0.0883 (14)0.0314 (10)0.0278 (11)0.0169 (11)
C90.0508 (8)0.0572 (9)0.0478 (7)0.0111 (7)0.0053 (6)0.0230 (6)
C100.0484 (8)0.0567 (9)0.0569 (8)0.0132 (7)0.0020 (6)0.0207 (7)
C110.0419 (7)0.0503 (8)0.0391 (6)0.0081 (6)0.0003 (5)0.0131 (5)
Geometric parameters (Å, º) top
O1—C21.3499 (15)C87—H87A0.960
O1—C61.4001 (14)C87—H87B0.960
O31—C351.3493 (16)C87—H87C0.960
O31—N321.4198 (14)C33—C3311.4655 (17)
O8—C841.3680 (17)C331—C3321.377 (2)
O8—C871.417 (2)C331—C3361.384 (2)
O4—C441.3721 (16)C332—C3331.389 (2)
O4—C471.404 (2)C332—H3320.930
N21—C21.3377 (17)C333—C3341.363 (3)
N21—H21A0.872 (19)C333—H3330.930
N21—H21B0.88 (2)C334—C3351.358 (3)
N32—C331.3038 (18)C334—H3340.930
N34—C351.3144 (16)C335—C3361.378 (2)
N34—C331.3686 (17)C335—H3350.930
C2—C31.3641 (18)C336—H3360.930
C3—C351.4213 (17)C41—C461.3843 (17)
C3—C41.5097 (16)C41—C421.3903 (16)
C4—C51.5070 (16)C42—C431.3807 (19)
C4—C411.5290 (16)C42—H420.930
C4—H40.980C43—C441.3812 (19)
C5—C61.3344 (17)C43—H430.930
C5—C111.5029 (17)C44—C451.3834 (18)
C6—C71.4593 (16)C45—C461.3885 (18)
C7—C81.3364 (19)C45—H450.930
C7—C91.5134 (18)C46—H460.930
C8—C811.4688 (18)C47—H47A0.960
C8—H80.930C47—H47B0.960
C81—C821.3907 (18)C47—H47C0.960
C81—C861.3972 (19)C9—C101.496 (2)
C82—C831.3892 (19)C9—H9A0.970
C82—H820.930C9—H9B0.970
C83—C841.380 (2)C10—C111.510 (2)
C83—H830.930C10—H10A0.970
C84—C851.386 (2)C10—H10B0.970
C85—C861.373 (2)C11—H11A0.970
C85—H850.930C11—H11B0.970
C86—H860.930
C2—O1—C6118.98 (10)O31—C35—C3117.70 (11)
C35—O31—N32106.29 (10)C332—C331—C336119.16 (14)
C84—O8—C87118.35 (14)C332—C331—C33120.40 (13)
C44—O4—C47118.78 (13)C336—C331—C33120.43 (14)
C2—N21—H21A119.3 (12)C331—C332—C333119.83 (17)
C2—N21—H21B116.8 (13)C331—C332—H332120.1
H21A—N21—H21B123.8 (18)C333—C332—H332120.1
C33—N32—O31103.40 (10)C334—C333—C332120.35 (19)
C35—N34—C33103.05 (11)C334—C333—H333119.8
N21—C2—O1110.65 (12)C332—C333—H333119.8
N21—C2—C3126.55 (12)C335—C334—C333119.95 (16)
O1—C2—C3122.79 (11)C335—C334—H334120.0
C2—C3—C35119.00 (11)C333—C334—H334120.0
C2—C3—C4121.30 (10)C334—C335—C336120.72 (18)
C35—C3—C4119.66 (11)C334—C335—H335119.6
C5—C4—C3110.09 (10)C336—C335—H335119.6
C5—C4—C41109.71 (9)C335—C336—C331119.98 (18)
C3—C4—C41112.14 (9)C335—C336—H336120.0
C5—C4—H4108.3C331—C336—H336120.0
C3—C4—H4108.3C46—C41—C42117.73 (11)
C41—C4—H4108.3C46—C41—C4120.73 (10)
C6—C5—C11120.25 (11)C42—C41—C4121.51 (10)
C6—C5—C4122.33 (10)C43—C42—C41121.06 (12)
C11—C5—C4117.34 (11)C43—C42—H42119.5
C5—C6—O1122.04 (11)C41—C42—H42119.5
C5—C6—C7125.61 (11)C42—C43—C44120.28 (12)
O1—C6—C7112.33 (10)C42—C43—H43119.9
C8—C7—C6121.52 (11)C44—C43—H43119.9
C8—C7—C9124.10 (12)O4—C44—C43115.64 (12)
C6—C7—C9114.34 (11)O4—C44—C45124.51 (12)
C7—C8—C81128.01 (12)C43—C44—C45119.84 (12)
C7—C8—H8116.0C44—C45—C46119.15 (12)
C81—C8—H8116.0C44—C45—H45120.4
C82—C81—C86116.71 (12)C46—C45—H45120.4
C82—C81—C8124.79 (12)C41—C46—C45121.92 (11)
C86—C81—C8118.49 (12)C41—C46—H46119.0
C83—C82—C81122.04 (13)C45—C46—H46119.0
C83—C82—H82119.0O4—C47—H47A109.5
C81—C82—H82119.0O4—C47—H47B109.5
C84—C83—C82119.50 (13)H47A—C47—H47B109.5
C84—C83—H83120.2O4—C47—H47C109.5
C82—C83—H83120.2H47A—C47—H47C109.5
O8—C84—C83124.69 (13)H47B—C47—H47C109.5
O8—C84—C85115.64 (14)C10—C9—C7112.95 (12)
C83—C84—C85119.65 (13)C10—C9—H9A109.0
C86—C85—C84120.07 (14)C7—C9—H9A109.0
C86—C85—H85120.0C10—C9—H9B109.0
C84—C85—H85120.0C7—C9—H9B109.0
C85—C86—C81121.94 (13)H9A—C9—H9B107.8
C85—C86—H86119.0C9—C10—C11112.05 (13)
C81—C86—H86119.0C9—C10—H10A109.2
O8—C87—H87A109.5C11—C10—H10A109.2
O8—C87—H87B109.5C9—C10—H10B109.2
H87A—C87—H87B109.5C11—C10—H10B109.2
O8—C87—H87C109.5H10A—C10—H10B107.9
H87A—C87—H87C109.5C5—C11—C10111.05 (11)
H87B—C87—H87C109.5C5—C11—H11A109.4
N32—C33—N34114.88 (11)C10—C11—H11A109.4
N32—C33—C331122.32 (12)C5—C11—H11B109.4
N34—C33—C331122.79 (12)C10—C11—H11B109.4
N34—C35—O31112.37 (11)H11A—C11—H11B108.0
N34—C35—C3129.92 (12)
C35—O31—N32—C330.30 (14)C35—N34—C33—C331179.71 (11)
C6—O1—C2—N21170.98 (12)C33—N34—C35—O311.31 (14)
C6—O1—C2—C38.5 (2)C33—N34—C35—C3177.36 (12)
N21—C2—C3—C351.9 (2)N32—O31—C35—N341.06 (14)
O1—C2—C3—C35177.52 (12)N32—O31—C35—C3177.79 (10)
N21—C2—C3—C4176.10 (14)C2—C3—C35—N348.7 (2)
O1—C2—C3—C44.5 (2)C4—C3—C35—N34169.25 (12)
C2—C3—C4—C515.19 (16)C2—C3—C35—O31169.87 (11)
C35—C3—C4—C5166.86 (11)C4—C3—C35—O3112.13 (17)
C2—C3—C4—C41107.26 (13)N32—C33—C331—C332169.18 (14)
C35—C3—C4—C4170.69 (14)N34—C33—C331—C3329.9 (2)
C3—C4—C5—C614.83 (16)N32—C33—C331—C33611.4 (2)
C41—C4—C5—C6109.04 (13)N34—C33—C331—C336169.55 (14)
C3—C4—C5—C11168.57 (11)C336—C331—C332—C3330.3 (3)
C41—C4—C5—C1167.56 (14)C33—C331—C332—C333179.13 (15)
C11—C5—C6—O1179.78 (12)C331—C332—C333—C3340.4 (3)
C4—C5—C6—O13.72 (19)C332—C333—C334—C3350.9 (3)
C11—C5—C6—C72.0 (2)C333—C334—C335—C3360.6 (3)
C4—C5—C6—C7174.50 (11)C334—C335—C336—C3310.2 (3)
C2—O1—C6—C58.98 (19)C332—C331—C336—C3350.6 (3)
C2—O1—C6—C7172.59 (11)C33—C331—C336—C335178.82 (16)
C5—C6—C7—C8173.88 (13)C5—C4—C41—C4665.67 (14)
O1—C6—C7—C84.48 (18)C3—C4—C41—C4656.99 (15)
C5—C6—C7—C93.84 (19)C5—C4—C41—C42112.39 (12)
O1—C6—C7—C9177.80 (12)C3—C4—C41—C42124.95 (12)
C6—C7—C8—C81174.63 (12)C46—C41—C42—C430.33 (19)
C9—C7—C8—C812.9 (2)C4—C41—C42—C43178.45 (12)
C7—C8—C81—C8238.2 (2)C41—C42—C43—C441.0 (2)
C7—C8—C81—C86142.75 (15)C47—O4—C44—C43172.53 (16)
C86—C81—C82—C832.8 (2)C47—O4—C44—C456.7 (2)
C8—C81—C82—C83178.13 (13)C42—C43—C44—O4178.05 (13)
C81—C82—C83—C840.7 (2)C42—C43—C44—C451.2 (2)
C87—O8—C84—C833.7 (2)O4—C44—C45—C46178.47 (13)
C87—O8—C84—C85177.81 (15)C43—C44—C45—C460.7 (2)
C82—C83—C84—O8179.65 (13)C42—C41—C46—C450.16 (19)
C82—C83—C84—C851.9 (2)C4—C41—C46—C45177.97 (12)
O8—C84—C85—C86179.22 (14)C44—C45—C46—C410.0 (2)
C83—C84—C85—C862.2 (2)C8—C7—C9—C10147.76 (15)
C84—C85—C86—C810.1 (2)C6—C7—C9—C1029.89 (19)
C82—C81—C86—C852.5 (2)C7—C9—C10—C1154.36 (19)
C8—C81—C86—C85178.36 (14)C6—C5—C11—C1025.58 (18)
O31—N32—C33—N340.52 (15)C4—C5—C11—C10151.09 (12)
O31—N32—C33—C331179.68 (11)C9—C10—C11—C551.22 (18)
C35—N34—C33—N321.14 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21B···N340.88 (2)2.087 (19)2.7650 (18)133.7 (17)
C42—H42···O8i0.932.543.4594 (18)170
N21—H21A···O4ii0.872 (19)2.16 (2)3.0291 (18)171.8 (17)
C47—H47A···Cgiii0.962.593.489 (2)156
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC32H29N3O4
Mr519.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.5014 (3), 11.3187 (4), 11.6458 (4)
α, β, γ (°)91.07 (2), 98.45 (2), 104.10 (3)
V3)1325.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
36723, 9546, 6512
Rint0.025
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.178, 1.03
No. of reflections9546
No. of parameters360
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.32

Computer programs: APEX2 (Bruker, 2004a), SAINT (Bruker, 2004b), SAINT, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21B···N340.88 (2)2.087 (19)2.7650 (18)133.7 (17)
C42—H42···O8i0.932.543.4594 (18)170.3
N21—H21A···O4ii0.872 (19)2.16 (2)3.0291 (18)171.8 (17)
C47—H47A···Cgiii0.962.593.489 (2)156
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+2, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds