Download citation
Download citation
link to html
In the title compound, [Ni2(C23H24N4O4)(H2O)4](ClO4)2·4H2O, each NiII atom is coordinated by two bridging phenoxide O atoms, two azomethine N atoms and two water mol­ecules in a slightly distorted octa­hedral geometry. The crystal packing is stabilized by inter­molecular O—H...O hydrogen bonds mediated through the water mol­ecules and perchlorate anions. The bis­(amino­oxy)ethane and diamino­propane groups are disordered across the centre of the mol­ecule, and as a result the complex mol­ecule and the crystal structure is centrosymmetric.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039001/ci2420sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039001/ci2420Isup2.hkl
Contains datablock I

CCDC reference: 660098

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.034
  • wR factor = 0.113
  • Data-to-parameter ratio = 24.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.93 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT301_ALERT_3_C Main Residue Disorder ......................... 16.00 Perc. PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C9 PLAT731_ALERT_1_C Bond Calc 0.837(17), Rep 0.838(8) ...... 2.12 su-Ra O1 -H1B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.839(10) ...... 3.00 su-Ra O4 -H4A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.831(10) ...... 3.00 su-Ra O4 -H4B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.837(17), Rep 0.838(8) ...... 2.12 su-Ra O1 -H1B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.839(10) ...... 3.00 su-Ra O4 -H4A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.83(3), Rep 0.831(10) ...... 3.00 su-Ra O4 -H4B 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 16.40 Deg. O5 -N1 -C12 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 14.20 Deg. O6 -N2 -C10 1.555 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 Cl O4 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 H2 O PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 H2 O
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.931 Tmax scaled 0.768 Tmin scaled 0.681 REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 37.33 From the CIF: _reflns_number_total 7176 From the CIF: _diffrn_reflns_limit_ max hkl 12. 15. 17. From the CIF: _diffrn_reflns_limit_ min hkl -9. -15. -18. TEST1: Expected hkl limits for theta max Calculated maximum hkl 12. 17. 20. Calculated minimum hkl -12. -17. -20. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 25
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 10 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Dinuclear metal complexes of diphenolic Schiff base macrocyclic ligands have attracted much attention as they have contributed significantly to the understanding of the relationship between chemical behaviour and structural properties (Hong et al., 2005). Complexes of ligands which contain two or more metal ions in close proximity are important as potential catalysts (Mckenzie & Robson, 1988), models of reaction centers for metalloenzymes (Tsou et al., 1982) and non-linear optical materials (Lacroix et al., 2001). Stability of the complexes depend upon the cavity size of the ligand and the radius of the metal ion. In continuation of our earlier studies (Krishnapriya & Kandaswamy, 2005) we report here the crystal structure of a dinuclear NiII complex with a ligand containing two compartments with different compartmental sizes, in which one of the compartments has 1,3-diamino propane and the another compartment has 1,2-bis(aminooxy)ethane.

The coordination geometry at each NiII ion is distorted octahedral (Fig. 1), in which the equatorial plane is formed by two bridging phenoxide O atoms and two azomethine N atoms while the axial coordination sites are occupied by two water molecules. The trans angles at the NiII centres are close to 180°, ranging from 170.78 (5) to 173.88 (4)°. All other angles subtended at the NiII centres are close to 90°, ranging from 81.64 (4) to 99.47 (5), which indicates a slightly distorted octahedral geometry of NiII atoms. The Ni—N and Ni—O bond lengths lie in the range 1.9984 (13)–2.0263 (13) Å and 2.0122 (10)–2.1604 (11) Å, respectively, and the bond lengths are comparable to those observed in a related structure (Black et al., 1998). The two benzene rings in the molecule are parallel to each other, within the limits of standard deviations.

The crystal packing is stabilized by intermolecular O—H···O hydrogen bonding involving the water molecules and perchlorate anions. The inversion disorder of bis-aminooxy ethane and diamino propane groups shows an apparent centrosymmetry in the crystal structure.

Related literature top

For synthesis, see: Dixon & Weiss (1984); Verani et al. (2000). For general background on dinuclear metal complexes, see: Hong et al. (2005); Krishnapriya & Kandaswamy (2005); Lacroix (2001); Mckenzie & Robson (1988); Tsou et al. (1982). For a related structure, see: Black et al. (1998).

Experimental top

To a vigorously stirred suspension of N,N'-propylene-bis(3-formyl-5-methyl-salicylaldimino)nickel(II) (Verani et al., 2000) (1.0 g, 2.36 mmol) in methanol (25 ml), a methanolic solution (10 ml) of Ni(ClO4)2.6H2O (0.86 g, 2.36 mmol) was added slowly and the mixture was stirred for 15 min to obtain a clear solution. Then a methanolic solution (5 ml) of 1,2-bis(aminooxy)ethane (Dixon & Weiss, 1984) (0.10 g, 2.36 mmol) was added dropwise to the above solution. The resulting solution was refluxed for 3 h. A pale green coloured solid was separated on evaporating the solution at 398 K and the compound was washed with ether and dried. Green crystals suitable for X-ray analysis were obtained after several days by slow evaporation of a acetonitrile solution (yield 69%).

Refinement top

Eventhough there is only one molecule in the unit cell and molecule does not possess center of symmetry, a near perfect inversion disorder makes it possible for structure to be solved in the centrosymmetric space group P1. Physically, it may be interpreted as, 50% of the unit cells are inversion of the other 50%. Hence, strictly speaking, the space group of the unit cell is P1. The structure could be solved and refined to the same R-factor in P1 space group with appropriate disorder on either side of the molecule. However, The shift/e.s.d. parameters were oscillating rather than converging. Therefore, it was decided to adopt the P1 space group for solving and refining the structure, with the bis-aminooxy ethane and diamino propane groups disordered across the inversion center. As electron densities of these groups may overlap at many places, the unrestrained refinement will lead to abnormal geometries. Therefore the following restraints on distances were applied to atoms of the disordered groups: N—O = 1.450 (1) Å, N—C = 1.470 (1) Å, C—C = 1.530 (1) Å and O—C = 1.470 (1) Å. Water H atoms were located in a difference map and refined isotropically, with O—H and H···H distance restraints of 0.85 (1) and 1.38 (1) Å, respectively. Further Ni···H distances were fixed at 2.6Å for H atoms of coordinated water molecules. All the hydrogen atoms except the ones at disordered sites were located in difference maps. They were relocated in idealized positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

Dinuclear metal complexes of diphenolic Schiff base macrocyclic ligands have attracted much attention as they have contributed significantly to the understanding of the relationship between chemical behaviour and structural properties (Hong et al., 2005). Complexes of ligands which contain two or more metal ions in close proximity are important as potential catalysts (Mckenzie & Robson, 1988), models of reaction centers for metalloenzymes (Tsou et al., 1982) and non-linear optical materials (Lacroix et al., 2001). Stability of the complexes depend upon the cavity size of the ligand and the radius of the metal ion. In continuation of our earlier studies (Krishnapriya & Kandaswamy, 2005) we report here the crystal structure of a dinuclear NiII complex with a ligand containing two compartments with different compartmental sizes, in which one of the compartments has 1,3-diamino propane and the another compartment has 1,2-bis(aminooxy)ethane.

The coordination geometry at each NiII ion is distorted octahedral (Fig. 1), in which the equatorial plane is formed by two bridging phenoxide O atoms and two azomethine N atoms while the axial coordination sites are occupied by two water molecules. The trans angles at the NiII centres are close to 180°, ranging from 170.78 (5) to 173.88 (4)°. All other angles subtended at the NiII centres are close to 90°, ranging from 81.64 (4) to 99.47 (5), which indicates a slightly distorted octahedral geometry of NiII atoms. The Ni—N and Ni—O bond lengths lie in the range 1.9984 (13)–2.0263 (13) Å and 2.0122 (10)–2.1604 (11) Å, respectively, and the bond lengths are comparable to those observed in a related structure (Black et al., 1998). The two benzene rings in the molecule are parallel to each other, within the limits of standard deviations.

The crystal packing is stabilized by intermolecular O—H···O hydrogen bonding involving the water molecules and perchlorate anions. The inversion disorder of bis-aminooxy ethane and diamino propane groups shows an apparent centrosymmetry in the crystal structure.

For synthesis, see: Dixon & Weiss (1984); Verani et al. (2000). For general background on dinuclear metal complexes, see: Hong et al. (2005); Krishnapriya & Kandaswamy (2005); Lacroix (2001); Mckenzie & Robson (1988); Tsou et al. (1982). For a related structure, see: Black et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The unit-cell contents of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Only one disorder component is shown. Symmetry code (i): -x, -y, -z
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. C-bound H atoms have been omitted for clarity. Both disorder components are shown.
[µ-11,24-dimethyl-16,19-dioxa-3,7,15,20- tetraazatricyclo[20.3.1.19,13]heptacosa- 1(25),2,7,9,11,13 (27),14,20,22 (26),23-decaene-26,27- diolato]bis[diaquanickel(II)] bis(perchlorate) tetrahydrate top
Crystal data top
[Ni2(C23H24N4O4)(H2O)4](ClO4)2·4H2OZ = 1
Mr = 880.91F(000) = 456
Triclinic, P1Dx = 1.674 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5227 (3) ÅCell parameters from 7997 reflections
b = 10.3081 (3) Åθ = 2.2–33.5°
c = 12.2764 (5) ŵ = 1.32 mm1
α = 107.167 (2)°T = 293 K
β = 94.932 (2)°Block, green
γ = 103.092 (2)°0.30 × 0.20 × 0.20 mm
V = 873.89 (6) Å3
Data collection top
Bruker Kappa-APEXII area-detector
diffractometer
7176 independent reflections
Radiation source: fine-focus sealed tube5831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scansθmax = 37.3°, θmin = 1.8°
Absorption correction: multi-scan
(Blessing, 1995)
h = 912
Tmin = 0.732, Tmax = 0.825k = 1515
24651 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.067P)2 + 0.1283P]
where P = (Fo2 + 2Fc2)/3
7176 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.59 e Å3
25 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni2(C23H24N4O4)(H2O)4](ClO4)2·4H2Oγ = 103.092 (2)°
Mr = 880.91V = 873.89 (6) Å3
Triclinic, P1Z = 1
a = 7.5227 (3) ÅMo Kα radiation
b = 10.3081 (3) ŵ = 1.32 mm1
c = 12.2764 (5) ÅT = 293 K
α = 107.167 (2)°0.30 × 0.20 × 0.20 mm
β = 94.932 (2)°
Data collection top
Bruker Kappa-APEXII area-detector
diffractometer
7176 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5831 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.825Rint = 0.020
24651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03425 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.59 e Å3
7176 reflectionsΔρmin = 0.36 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0971 (2)0.15878 (19)0.23328 (13)0.0444 (3)
H10.12150.18750.29680.053*
C20.13711 (19)0.27002 (16)0.12198 (13)0.0371 (3)
C30.2263 (2)0.40586 (18)0.12170 (15)0.0428 (3)
H30.25840.41730.19040.051*
C40.26796 (19)0.52242 (17)0.02416 (16)0.0433 (3)
C50.2108 (2)0.50310 (16)0.07479 (15)0.0414 (3)
H50.23140.58140.14060.050*
C60.12309 (18)0.37082 (15)0.08068 (12)0.0353 (3)
C70.08787 (16)0.24933 (14)0.01828 (12)0.0322 (2)
C80.0622 (2)0.37031 (16)0.18958 (13)0.0412 (3)
H80.06270.45700.24140.049*
C90.3681 (3)0.66680 (19)0.0250 (2)0.0554 (4)
H9C0.39630.66060.10090.083*
H9B0.48090.70170.02970.083*
H9A0.29080.72970.00440.083*
N10.00792 (18)0.26233 (14)0.22116 (10)0.0388 (2)
N20.03246 (19)0.02623 (15)0.25431 (10)0.0415 (3)
O50.0838 (8)0.2869 (9)0.3212 (5)0.0556 (13)0.50
O60.0362 (10)0.0402 (6)0.3736 (5)0.0577 (14)0.50
C130.0346 (6)0.2933 (5)0.4219 (3)0.0556 (9)0.50
H13A0.13840.37610.44120.067*0.50
H13B0.03370.30500.48610.067*0.50
C140.1078 (7)0.1681 (5)0.4099 (4)0.0531 (10)0.50
H14B0.17740.17810.48350.064*0.50
H14A0.19180.16380.35400.064*0.50
C100.0080 (15)0.0655 (8)0.3768 (6)0.0563 (18)0.50
H10B0.10430.04760.40950.068*0.50
H10A0.09880.03510.41730.068*0.50
C110.0782 (7)0.2234 (5)0.4048 (4)0.0521 (10)0.50
H11C0.08150.26760.48680.063*0.50
H11D0.20440.24440.39010.063*0.50
C120.0324 (12)0.2907 (11)0.3390 (6)0.0520 (16)0.50
H12B0.00080.39160.37790.062*0.50
H12A0.16350.25310.33690.062*0.50
O10.29581 (15)0.01748 (13)0.08643 (10)0.0431 (2)
O20.00840 (13)0.12288 (10)0.01495 (8)0.03364 (18)
O30.29405 (15)0.11087 (13)0.15299 (10)0.0420 (2)
O40.5126 (3)0.3673 (2)0.30007 (17)0.0826 (5)
O70.6566 (5)0.3989 (3)0.4449 (3)0.1479 (12)
O80.5456 (5)0.1699 (4)0.5264 (3)0.1534 (14)
O90.4749 (5)0.2772 (5)0.3522 (3)0.1690 (15)
O100.7589 (4)0.2542 (3)0.3600 (2)0.1299 (10)
O110.4866 (3)0.03465 (19)0.25509 (14)0.0650 (4)
Cl10.60736 (8)0.27329 (6)0.42118 (4)0.06240 (13)
Ni10.00424 (2)0.064272 (18)0.128772 (13)0.03218 (6)
H1A0.3359 (15)0.028 (2)0.0145 (8)0.073 (8)*
H1B0.3590 (14)0.023 (2)0.1257 (13)0.054 (6)*
H3B0.3473 (15)0.1940 (11)0.191 (2)0.077 (8)*
H3A0.3323 (15)0.0541 (17)0.180 (2)0.076 (8)*
H11A0.518 (5)0.030 (2)0.3197 (15)0.110 (13)*
H11B0.443 (4)0.1130 (16)0.266 (2)0.099 (11)*
H4A0.498 (6)0.449 (2)0.318 (3)0.150 (18)*
H4B0.589 (4)0.357 (3)0.348 (2)0.101 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0518 (8)0.0572 (9)0.0346 (7)0.0199 (7)0.0128 (6)0.0246 (7)
C20.0355 (6)0.0454 (7)0.0374 (7)0.0126 (5)0.0087 (5)0.0214 (6)
C30.0399 (6)0.0514 (8)0.0477 (8)0.0141 (6)0.0125 (6)0.0289 (7)
C40.0343 (6)0.0448 (7)0.0575 (9)0.0094 (5)0.0066 (6)0.0273 (7)
C50.0395 (6)0.0382 (7)0.0465 (8)0.0091 (5)0.0033 (6)0.0156 (6)
C60.0337 (5)0.0369 (6)0.0374 (7)0.0100 (5)0.0048 (5)0.0148 (5)
C70.0280 (5)0.0388 (6)0.0345 (6)0.0112 (4)0.0062 (4)0.0166 (5)
C80.0490 (7)0.0376 (7)0.0364 (7)0.0133 (6)0.0086 (6)0.0092 (5)
C90.0479 (8)0.0468 (9)0.0750 (13)0.0043 (7)0.0080 (8)0.0318 (9)
N10.0432 (6)0.0421 (6)0.0316 (5)0.0131 (5)0.0116 (4)0.0099 (5)
N20.0469 (6)0.0548 (7)0.0274 (5)0.0161 (5)0.0096 (4)0.0175 (5)
O50.066 (3)0.066 (2)0.040 (2)0.022 (2)0.0271 (19)0.0164 (18)
O60.081 (4)0.055 (2)0.0329 (16)0.005 (2)0.0250 (17)0.0149 (14)
C130.069 (2)0.054 (2)0.0342 (18)0.0033 (18)0.0128 (15)0.0085 (16)
C140.054 (2)0.069 (3)0.0304 (16)0.009 (2)0.0015 (13)0.014 (2)
C100.074 (5)0.067 (4)0.030 (2)0.009 (3)0.013 (2)0.027 (2)
C110.070 (3)0.054 (3)0.0280 (16)0.014 (2)0.0050 (15)0.0098 (19)
C120.073 (5)0.047 (2)0.037 (3)0.017 (3)0.027 (3)0.0095 (19)
O10.0356 (4)0.0546 (6)0.0416 (6)0.0117 (4)0.0110 (4)0.0180 (5)
O20.0370 (4)0.0354 (4)0.0302 (4)0.0085 (3)0.0089 (3)0.0130 (4)
O30.0366 (5)0.0490 (6)0.0403 (6)0.0107 (4)0.0044 (4)0.0152 (5)
O40.0912 (13)0.0749 (12)0.0683 (11)0.0135 (10)0.0104 (9)0.0165 (9)
O70.179 (3)0.0998 (18)0.171 (3)0.0049 (18)0.002 (2)0.084 (2)
O80.171 (3)0.138 (2)0.0934 (18)0.050 (2)0.0225 (18)0.0410 (17)
O90.139 (3)0.268 (5)0.126 (2)0.066 (3)0.080 (2)0.076 (3)
O100.138 (2)0.145 (2)0.1073 (18)0.0674 (19)0.0220 (16)0.0308 (17)
O110.0833 (10)0.0713 (10)0.0509 (8)0.0242 (8)0.0179 (7)0.0304 (8)
Cl10.0776 (3)0.0597 (3)0.0468 (2)0.0139 (2)0.0083 (2)0.0164 (2)
Ni10.03454 (9)0.03765 (10)0.02645 (9)0.00998 (6)0.00817 (6)0.01227 (7)
Geometric parameters (Å, º) top
C1—N21.280 (2)C13—H13A0.97
C1—C21.456 (2)C13—H13B0.97
C1—H10.93C14—H14B0.97
C2—C31.408 (2)C14—H14A0.97
C2—C71.4174 (18)C10—C111.515 (7)
C3—C41.375 (3)C10—H10B0.97
C3—H30.93C10—H10A0.97
C4—C51.376 (2)C11—C121.518 (8)
C4—C91.512 (2)C11—H11C0.97
C5—C61.400 (2)C11—H11D0.97
C5—H50.93C12—H12B0.97
C6—C71.418 (2)C12—H12A0.97
C6—C81.451 (2)O1—Ni12.1191 (11)
C7—O21.3193 (16)O1—H1A0.858 (9)
C8—N1i1.277 (2)O1—H1B0.838 (8)
C8—H80.93O2—Ni12.0122 (10)
C9—H9C0.96O2—Ni1i2.0297 (10)
C9—H9B0.96O3—Ni12.1604 (11)
C9—H9A0.96O3—H3B0.831 (9)
N1—C8i1.277 (2)O3—H3A0.846 (9)
N1—O51.445 (5)O4—H4A0.839 (10)
N1—C121.461 (7)O4—H4B0.831 (10)
N1—Ni11.9984 (13)O7—Cl11.386 (2)
N2—O61.427 (5)O8—Cl11.371 (2)
N2—C101.483 (7)O9—Cl11.362 (3)
N2—Ni12.0263 (13)O10—Cl11.394 (3)
O5—C131.437 (6)O11—H11A0.846 (10)
O6—C141.426 (6)O11—H11B0.856 (10)
C13—C141.488 (6)Ni1—O2i2.0297 (10)
N2—C1—C2127.86 (13)O6—C14—H14A109.2
N2—C1—H1116.1C13—C14—H14A109.2
C2—C1—H1116.1H14B—C14—H14A107.9
C3—C2—C7119.81 (14)N2—C10—C11119.2 (5)
C3—C2—C1115.97 (13)N2—C10—H10B107.5
C7—C2—C1124.19 (13)C11—C10—H10B107.5
C4—C3—C2122.83 (14)N2—C10—H10A107.5
C4—C3—H3118.6C11—C10—H10A107.5
C2—C3—H3118.6H10B—C10—H10A107.0
C3—C4—C5117.12 (14)C10—C11—C12116.2 (7)
C3—C4—C9121.99 (16)C10—C11—H11C108.2
C5—C4—C9120.87 (16)C12—C11—H11C108.2
C4—C5—C6122.87 (15)C10—C11—H11D108.2
C4—C5—H5118.6C12—C11—H11D108.2
C6—C5—H5118.6H11C—C11—H11D107.4
C5—C6—C7120.13 (13)N1—C12—C11109.9 (5)
C5—C6—C8115.70 (14)N1—C12—H12B109.7
C7—C6—C8124.03 (13)C11—C12—H12B109.7
O2—C7—C2121.32 (12)N1—C12—H12A109.7
O2—C7—C6121.57 (12)C11—C12—H12A109.7
C2—C7—C6117.08 (12)H12B—C12—H12A108.2
N1i—C8—C6126.29 (14)Ni1—O1—H1A112.7 (9)
N1i—C8—H8116.9Ni1—O1—H1B117.1 (9)
C6—C8—H8116.9H1A—O1—H1B108.8 (12)
C4—C9—H9C109.5C7—O2—Ni1127.60 (8)
C4—C9—H9B109.5C7—O2—Ni1i126.25 (9)
H9C—C9—H9B109.5Ni1—O2—Ni1i98.36 (4)
C4—C9—H9A109.5Ni1—O3—H3B113.9 (9)
H9C—C9—H9A109.5Ni1—O3—H3A111.3 (9)
H9B—C9—H9A109.5H3B—O3—H3A111.6 (13)
C8i—N1—O5114.5 (3)H4A—O4—H4B113.0 (17)
C8i—N1—C12115.8 (4)H11A—O11—H11B108.9 (16)
O5—N1—C1216.4 (5)O9—Cl1—O8112.2 (3)
C8i—N1—Ni1125.50 (10)O9—Cl1—O7110.1 (3)
O5—N1—Ni1118.8 (3)O8—Cl1—O7105.8 (2)
C12—N1—Ni1118.5 (4)O9—Cl1—O10106.5 (2)
C1—N2—O6106.9 (3)O8—Cl1—O10112.06 (19)
C1—N2—C10117.7 (3)O7—Cl1—O10110.2 (2)
O6—N2—C1014.2 (5)N1—Ni1—O2170.85 (4)
C1—N2—Ni1123.23 (11)N1—Ni1—N299.47 (5)
O6—N2—Ni1127.8 (3)O2—Ni1—N289.65 (5)
C10—N2—Ni1118.9 (3)N1—Ni1—O2i89.29 (5)
C13—O5—N1111.0 (4)O2—Ni1—O2i81.64 (4)
C14—O6—N2106.3 (4)N2—Ni1—O2i170.78 (5)
O5—C13—C14114.9 (4)N1—Ni1—O190.78 (5)
O5—C13—H13A108.5O2—Ni1—O189.95 (4)
C14—C13—H13A108.5N2—Ni1—O190.20 (5)
O5—C13—H13B108.5O2i—Ni1—O186.79 (4)
C14—C13—H13B108.5N1—Ni1—O391.14 (5)
H13A—C13—H13B107.5O2—Ni1—O387.24 (4)
O6—C14—C13112.1 (5)N2—Ni1—O395.21 (5)
O6—C14—H14B109.2O2i—Ni1—O387.43 (4)
C13—C14—H14B109.2O1—Ni1—O3173.88 (4)
N2—C1—C2—C3173.41 (16)Ni1—N1—C12—C1149.5 (8)
N2—C1—C2—C78.3 (3)C10—C11—C12—N176.3 (8)
C7—C2—C3—C40.5 (2)C2—C7—O2—Ni118.74 (17)
C1—C2—C3—C4177.90 (14)C6—C7—O2—Ni1163.04 (9)
C2—C3—C4—C53.0 (2)C2—C7—O2—Ni1i161.14 (9)
C2—C3—C4—C9178.42 (15)C6—C7—O2—Ni1i20.64 (17)
C3—C4—C5—C63.5 (2)C8i—N1—Ni1—N2165.19 (14)
C9—C4—C5—C6177.85 (15)O5—N1—Ni1—N227.8 (3)
C4—C5—C6—C70.6 (2)C12—N1—Ni1—N29.1 (4)
C4—C5—C6—C8176.51 (14)C8i—N1—Ni1—O2i17.70 (14)
C3—C2—C7—O2178.27 (13)O5—N1—Ni1—O2i149.3 (3)
C1—C2—C7—O23.5 (2)C12—N1—Ni1—O2i168.0 (4)
C3—C2—C7—C63.43 (19)C8i—N1—Ni1—O1104.47 (14)
C1—C2—C7—C6174.83 (13)O5—N1—Ni1—O162.5 (3)
C5—C6—C7—O2178.79 (12)C12—N1—Ni1—O181.2 (4)
C8—C6—C7—O25.7 (2)C8i—N1—Ni1—O369.72 (14)
C5—C6—C7—C22.92 (19)O5—N1—Ni1—O3123.3 (3)
C8—C6—C7—C2172.64 (13)C12—N1—Ni1—O3104.6 (4)
C5—C6—C8—N1i167.56 (16)C7—O2—Ni1—N226.78 (11)
C7—C6—C8—N1i16.7 (2)Ni1i—O2—Ni1—N2176.96 (5)
C2—C1—N2—O6173.9 (4)C7—O2—Ni1—O2i150.18 (13)
C2—C1—N2—C10176.1 (5)Ni1i—O2—Ni1—O2i0.0
C2—C1—N2—Ni19.3 (2)C7—O2—Ni1—O163.42 (11)
C8i—N1—O5—C13105.4 (5)Ni1i—O2—Ni1—O186.76 (4)
C12—N1—O5—C137 (2)C7—O2—Ni1—O3122.01 (11)
Ni1—N1—O5—C1386.3 (6)Ni1i—O2—Ni1—O387.81 (4)
C1—N2—O6—C14152.8 (5)C1—N2—Ni1—N1159.75 (13)
C10—N2—O6—C1412 (3)O6—N2—Ni1—N11.5 (4)
Ni1—N2—O6—C1443.5 (7)C10—N2—Ni1—N114.8 (5)
N1—O5—C13—C1455.4 (7)C1—N2—Ni1—O221.03 (14)
N2—O6—C14—C13104.3 (5)O6—N2—Ni1—O2177.7 (4)
O5—C13—C14—O654.2 (6)C10—N2—Ni1—O2164.4 (5)
C1—N2—C10—C11177.8 (6)C1—N2—Ni1—O168.92 (13)
O6—N2—C10—C11135 (4)O6—N2—Ni1—O192.3 (4)
Ni1—N2—C10—C113.0 (11)C10—N2—Ni1—O1105.6 (5)
N2—C10—C11—C1250.5 (11)C1—N2—Ni1—O3108.22 (13)
C8i—N1—C12—C11125.4 (5)O6—N2—Ni1—O390.5 (4)
O5—N1—C12—C11145 (3)C10—N2—Ni1—O377.2 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.86 (1)2.06 (1)2.8475 (15)152 (1)
O1—H1B···O11ii0.84 (1)2.06 (1)2.8455 (19)155 (2)
O3—H3B···O40.83 (1)1.96 (1)2.766 (2)165 (2)
O3—H3A···O110.85 (1)1.95 (1)2.775 (2)164 (1)
O11—H11A···O8iii0.85 (1)1.97 (1)2.806 (3)170 (3)
O11—H11B···O9iv0.86 (1)2.40 (2)3.127 (5)143 (3)
O11—H11B···O10iv0.86 (1)2.46 (2)3.229 (4)150 (3)
O4—H4A···O7v0.84 (1)2.43 (3)3.137 (5)142 (4)
O4—H4B···O7iii0.83 (1)2.43 (2)3.120 (4)140 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z; (v) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Ni2(C23H24N4O4)(H2O)4](ClO4)2·4H2O
Mr880.91
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5227 (3), 10.3081 (3), 12.2764 (5)
α, β, γ (°)107.167 (2), 94.932 (2), 103.092 (2)
V3)873.89 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa-APEXII area-detector
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.732, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
24651, 7176, 5831
Rint0.020
(sin θ/λ)max1)0.853
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.113, 1.04
No. of reflections7176
No. of parameters295
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.36

Computer programs: APEX2 (Bruker, 2004), APEX2, SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.858 (9)2.06 (1)2.8475 (15)152 (1)
O1—H1B···O11ii0.838 (8)2.06 (1)2.8455 (19)155 (2)
O3—H3B···O40.831 (9)1.96 (1)2.766 (2)165 (2)
O3—H3A···O110.846 (9)1.95 (1)2.775 (2)164 (1)
O11—H11A···O8iii0.846 (10)1.97 (1)2.806 (3)170 (3)
O11—H11B···O9iv0.856 (10)2.40 (2)3.127 (5)143 (3)
O11—H11B···O10iv0.856 (10)2.46 (2)3.229 (4)150 (3)
O4—H4A···O7v0.839 (10)2.43 (3)3.137 (5)142 (4)
O4—H4B···O7iii0.831 (10)2.43 (2)3.120 (4)140 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z; (v) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds