supplementary materials


Acta Cryst. (2007). E63, o3699    [ doi:10.1107/S1600536807037543 ]

1-[2-Imino-4-methyl-3-(4-nitrophenyl)-2,3-dihydrothiazol-5-yl]ethanone

Y.-F. Lin, G.-X. Zhong, F. Xu and W.-X. Hu

Abstract top

The title compound, C12H11N3O3S, was obtained as a by-product during the attempted preparation of a thiazolone. The dihedral angle between the benzene and the thiazole ring is 85.36 (5)°. The ethanone group is coplanar with the thiazole ring, whereas the nitro group is twisted away from the attached benzene ring by 10.7 (2)°. Intermolecular C-H...O and N-H...O hydrogen bonds, involving the ethanone O atom, link the molecules into a two-dimensional network parallel to the bc plane.

Comment top

The title compound, (I), was obtained as a by-product during the attempted preparation of a thiazolone (Patil et al., 1978). We report here the crystal structure of (I).

The molecule structure of (I) is illustrated in Fig. 1. The benzene ring is twisted out of the central thiazole ring by 85.36 (5)°. The ethanone group is coplanar with the thiazole ring [dihedral angle = 2.6 (1)°] whereas the nitro group forms a dihedral angle of 10.7 (2)° with the attached benzene ring.

In the crystal structure, weak intermolecular C—H···O and N—H···O hydrogen bonds (Table 1), involving the ethanone oxygen atom, link the molecules into a two-dimensional network parallel to the bc plane (Fig. 2).

Related literature top

For synthesis of thiazolone, see: Patil et al. (1978).

Experimental top

A mixture of 3-bromopentane-2,4-dione (1.79 g, 0.01 mol) and 1-(4-nitrophenyl)thiourea (1.97 g, 0.01 mol) in acetone (20 ml) was refluxed for 1 h. The mixture was cooled to room temperature, then it was neutralized with 15% sodium carbonate aqueous solution to a pH of 8, to obtain a yellow precipitate. The precipitate was filtered off and recrystallized from acetone to give the crude product. The solid product was dissolved in ethanol evaporated gradually at room temperature to afford single crystals of the title compound (m.p. 441–441.5 K). 1HNMR(CDCl3)σp.p.m.: 8.42(d,2H,Ar), 7.50(d,2H,Ar), 2.36(s,1H,CH3), 2.25(s,3H,CH3). MS.(m/z,%): 276(M+,100), 262 (15), 230 (20), 163 (80), 117 (55), 76 (30).

Refinement top

Atom H6 was located in a difference Fourier map and refined isotropically with the N—H bond restraint of 0.86 (2) Å. Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and torsion angles were refined to fit the electron density [Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal structure of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
1-[2-Imino-4-methyl-3-(4-nitrophenyl)-2,3-dihydrothiazol-5-yl]ethanone top
Crystal data top
C12H11N3O3SF000 = 576
Mr = 277.30Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2619 reflections
a = 11.446 (2) Åθ = 2.6–26.9º
b = 11.1475 (19) ŵ = 0.26 mm1
c = 10.5155 (18) ÅT = 296 (2) K
β = 103.108 (2)ºPrism, colourless
V = 1306.8 (4) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2218 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 296(2) Kθmax = 27.5º
φ and ω scansθmin = 2.6º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 14→12
Tmin = 0.939, Tmax = 0.941k = 14→14
8104 measured reflectionsl = 13→12
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.110  w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1727P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2957 reflectionsΔρmax = 0.22 e Å3
178 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H11N3O3SV = 1306.8 (4) Å3
Mr = 277.30Z = 4
Monoclinic, P21/cMo Kα
a = 11.446 (2) ŵ = 0.26 mm1
b = 11.1475 (19) ÅT = 296 (2) K
c = 10.5155 (18) Å0.25 × 0.20 × 0.20 mm
β = 103.108 (2)º
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
2957 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2218 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.941Rint = 0.020
8104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.110H atoms treated by a mixture of
independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
2957 reflectionsΔρmin = 0.21 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41478 (4)0.47752 (4)0.66509 (4)0.05007 (16)
C20.29327 (16)0.54805 (15)0.55964 (15)0.0474 (4)
N30.25911 (13)0.47702 (12)0.44709 (13)0.0454 (3)
C40.32876 (14)0.37655 (14)0.44183 (14)0.0419 (4)
C50.41624 (14)0.36138 (14)0.55179 (14)0.0423 (4)
N60.24008 (16)0.64488 (15)0.57377 (17)0.0654 (4)
H60.271 (2)0.677 (2)0.6472 (18)0.089 (8)*
C70.15721 (15)0.51090 (14)0.34560 (16)0.0452 (4)
C80.17215 (16)0.59002 (17)0.25130 (18)0.0588 (5)
H80.24750.62230.25340.071*
C90.07504 (17)0.62214 (17)0.15259 (19)0.0606 (5)
H90.08370.67690.08860.073*
C100.03356 (15)0.57147 (17)0.15162 (18)0.0548 (4)
C110.05053 (18)0.4921 (2)0.2445 (2)0.0701 (6)
H110.12570.45890.24100.084*
C120.04649 (18)0.46203 (19)0.3440 (2)0.0646 (5)
H120.03700.40920.40930.078*
C130.30315 (17)0.30545 (17)0.31897 (16)0.0571 (5)
H13A0.33360.34710.25350.086*
H13B0.21810.29490.28930.086*
H13C0.34120.22840.33480.086*
C140.50708 (14)0.27027 (15)0.59324 (15)0.0450 (4)
C150.52307 (18)0.16729 (18)0.50871 (18)0.0623 (5)
H15A0.59140.12100.55140.093*
H15B0.53540.19680.42700.093*
H15C0.45270.11770.49320.093*
N160.13660 (16)0.60437 (19)0.04487 (18)0.0728 (5)
O10.57196 (11)0.27919 (12)0.70342 (11)0.0597 (3)
O20.22880 (14)0.5470 (2)0.0333 (2)0.1050 (6)
O30.12451 (16)0.6876 (2)0.02542 (17)0.1007 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0592 (3)0.0519 (3)0.0348 (2)0.00628 (19)0.00156 (18)0.00343 (16)
C20.0545 (10)0.0450 (9)0.0408 (8)0.0065 (7)0.0066 (7)0.0018 (7)
N30.0502 (8)0.0432 (7)0.0383 (7)0.0004 (6)0.0004 (6)0.0012 (5)
C40.0466 (9)0.0424 (8)0.0352 (8)0.0016 (7)0.0060 (6)0.0009 (6)
C50.0474 (9)0.0453 (8)0.0328 (7)0.0059 (7)0.0062 (6)0.0006 (6)
N60.0786 (12)0.0523 (10)0.0596 (10)0.0051 (8)0.0038 (9)0.0137 (8)
C70.0458 (9)0.0431 (8)0.0427 (8)0.0009 (7)0.0017 (7)0.0014 (6)
C80.0470 (10)0.0600 (11)0.0622 (11)0.0121 (8)0.0030 (8)0.0143 (9)
C90.0577 (11)0.0585 (11)0.0584 (11)0.0020 (9)0.0016 (9)0.0127 (9)
C100.0447 (9)0.0580 (10)0.0548 (10)0.0081 (8)0.0029 (8)0.0104 (8)
C110.0416 (10)0.0887 (15)0.0775 (14)0.0101 (10)0.0082 (10)0.0033 (11)
C120.0563 (11)0.0737 (13)0.0631 (12)0.0104 (10)0.0117 (9)0.0119 (10)
C130.0647 (11)0.0601 (11)0.0396 (9)0.0086 (9)0.0027 (8)0.0083 (8)
C140.0407 (8)0.0554 (10)0.0374 (8)0.0043 (7)0.0060 (7)0.0063 (7)
C150.0595 (11)0.0651 (11)0.0567 (11)0.0144 (9)0.0012 (9)0.0005 (9)
N160.0548 (11)0.0859 (13)0.0671 (11)0.0176 (9)0.0084 (8)0.0193 (10)
O10.0527 (7)0.0779 (9)0.0418 (6)0.0014 (6)0.0036 (5)0.0048 (6)
O20.0463 (9)0.1384 (17)0.1146 (14)0.0024 (10)0.0146 (9)0.0233 (12)
O30.0961 (13)0.1092 (14)0.0755 (11)0.0222 (11)0.0251 (9)0.0102 (10)
Geometric parameters (Å, °) top
S1—C21.7558 (18)C10—C111.364 (3)
S1—C51.7620 (16)C10—N161.478 (2)
C2—N61.264 (2)C11—C121.383 (3)
C2—N31.404 (2)C11—H110.93
N3—C41.383 (2)C12—H120.93
N3—C71.441 (2)C13—H13A0.96
C4—C51.358 (2)C13—H13B0.96
C4—C131.487 (2)C13—H13C0.96
C5—C141.448 (2)C14—O11.2303 (19)
N6—H60.85 (2)C14—C151.488 (2)
C7—C81.367 (2)C15—H15A0.96
C7—C121.376 (3)C15—H15B0.96
C8—C91.385 (2)C15—H15C0.96
C8—H80.93N16—O31.214 (3)
C9—C101.363 (3)N16—O21.216 (3)
C9—H90.93
C2—S1—C591.70 (8)C11—C10—N16119.07 (18)
N6—C2—N3122.08 (16)C10—C11—C12118.58 (18)
N6—C2—S1129.91 (14)C10—C11—H11120.7
N3—C2—S1108.00 (12)C12—C11—H11120.7
C4—N3—C2115.95 (13)C7—C12—C11119.52 (18)
C4—N3—C7124.02 (13)C7—C12—H12120.2
C2—N3—C7120.02 (13)C11—C12—H12120.2
C5—C4—N3112.78 (13)C4—C13—H13A109.5
C5—C4—C13129.46 (15)C4—C13—H13B109.5
N3—C4—C13117.68 (14)H13A—C13—H13B109.5
C4—C5—C14133.17 (15)C4—C13—H13C109.5
C4—C5—S1111.48 (12)H13A—C13—H13C109.5
C14—C5—S1115.34 (11)H13B—C13—H13C109.5
C2—N6—H6110.6 (17)O1—C14—C5117.75 (15)
C8—C7—C12120.87 (16)O1—C14—C15119.67 (16)
C8—C7—N3119.53 (15)C5—C14—C15122.57 (14)
C12—C7—N3119.59 (16)C14—C15—H15A109.5
C7—C8—C9119.96 (17)C14—C15—H15B109.5
C7—C8—H8120.0H15A—C15—H15B109.5
C9—C8—H8120.0C14—C15—H15C109.5
C10—C9—C8118.30 (17)H15A—C15—H15C109.5
C10—C9—H9120.9H15B—C15—H15C109.5
C8—C9—H9120.9O3—N16—O2123.9 (2)
C9—C10—C11122.76 (17)O3—N16—C10118.08 (19)
C9—C10—N16118.17 (19)O2—N16—C10118.0 (2)
C5—S1—C2—N6178.16 (19)C2—N3—C7—C1295.0 (2)
C5—S1—C2—N31.87 (12)C12—C7—C8—C90.1 (3)
N6—C2—N3—C4176.94 (16)N3—C7—C8—C9179.31 (16)
S1—C2—N3—C43.09 (17)C7—C8—C9—C101.0 (3)
N6—C2—N3—C72.8 (3)C8—C9—C10—C110.9 (3)
S1—C2—N3—C7177.17 (12)C8—C9—C10—N16178.98 (17)
C2—N3—C4—C53.0 (2)C9—C10—C11—C120.2 (3)
C7—N3—C4—C5177.31 (14)N16—C10—C11—C12179.94 (19)
C2—N3—C4—C13174.16 (15)C8—C7—C12—C111.0 (3)
C7—N3—C4—C135.6 (2)N3—C7—C12—C11178.22 (17)
N3—C4—C5—C14177.98 (16)C10—C11—C12—C71.1 (3)
C13—C4—C5—C145.3 (3)C4—C5—C14—O1177.10 (17)
N3—C4—C5—S11.33 (17)S1—C5—C14—O12.19 (19)
C13—C4—C5—S1175.36 (15)C4—C5—C14—C152.2 (3)
C2—S1—C5—C40.36 (13)S1—C5—C14—C15178.54 (14)
C2—S1—C5—C14179.80 (12)C9—C10—N16—O310.8 (3)
C4—N3—C7—C894.0 (2)C11—C10—N16—O3169.3 (2)
C2—N3—C7—C885.8 (2)C9—C10—N16—O2169.77 (19)
C4—N3—C7—C1285.2 (2)C11—C10—N16—O210.1 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.85 (2)2.39 (2)3.174 (2)153 (2)
C8—H8···O1ii0.932.293.209 (2)168
C15—H15B···O1iii0.962.493.434 (2)166
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.85 (2)2.39 (2)3.174 (2)153 (2)
C8—H8···O1ii0.932.293.209 (2)168
C15—H15B···O1iii0.962.493.434 (2)166
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z−1/2.
references
References top

Bruker (2005). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Patil, V. H., Mane, R. A. & Ingle, D. B. (1978). Indian J. Chem. Sect. B, 16, 1114–1116.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.