Download citation
Download citation
link to html
In the title compound, C20H36O6·H3O+·Br3, the torsion angles of the individual O—C—C—O segments of the macrocyclic strand are ag+a, aga, ag+a, aga, ag+a and aga. Both cyclo­hexane rings adopt chair conformations. The hydroxonium ion is anchored in the crown-ether cavity by O—H...O hydrogen bonds. In addition, the hydroxonium ion is also involved in O—H...Br hydrogen bonds. The value of the Flack parameter indicates inversion twinning.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039244/ci2434sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039244/ci2434Isup2.hkl
Contains datablock I

CCDC reference: 660277

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.043
  • wR factor = 0.122
  • Data-to-parameter ratio = 20.8

checkCIF/PLATON results

No syntax errors found



Alert level C STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.638 From the CIF: _refine_ls_abs_structure_Flack_su 0.014 PLAT033_ALERT_2_C Flack Parameter Value Deviates 2 * su from zero. 0.64 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.94 PLAT313_ALERT_2_C Oxygen with three covalent bonds (rare) ........ O7 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 3
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.940 Tmax scaled 0.591 Tmin scaled 0.233 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 5850 Count of symmetry unique reflns 3316 Completeness (_total/calc) 176.42% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2534 Fraction of Friedel pairs measured 0.764 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C5 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C15 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C20 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The complexation of dicyclohexano-18-crown-6 (DCH18C6) with some lanthanide ions normally leads to the formation of a complex via metal–oxygen chelation such as {La(NO3)3(DCH18C6)]} (Harman et al., 1976) and {[Eu(NO3)2(DCH18C6)]2[Eu(NO3)5]} (Nicoló et al., 1987) and salt-type compounds namely [Ln(Pic)2(DCH18C6)]+(Pic)- for Ln = La and Ce and also [Ln(Pic)2(DCH18C6)]+(Pic)-·0.5(DCH18C6) for Ln = Pr and Nd (Kusrini, 2006). However, different products without lanthanide coordination with crown ethers have also been observed namely (15-crown-5)triaquadichlorodioxouranium (Hassaballa et al., 1998) and [Gd(NO3)3(OH2)3].18-crown-6 (Backer-Dirks et al., 1980).

In our study, no complexation product was obtained from a solution mixture containing dicyclohexano-18-crown-6, europium nitrate and hydrogen bromide. Instead, the formation of a tribromide anion along with a hydroxonium ion occurred. A similar product, namely, bis(2,3-dibromo-6,7,9,10,12,13,15,16-octahydro- 5,8,11,14,17-pentaoxabenzocyclopentadecene)hydroxonium tribromide has been reported (Saleh et al., 2006).

Bond lengths and angles are in normal ranges (Allen et al., 1987). The macrocyclic strand of the molecule displays a series of anti and gauche torsion angles for C—O and C—C bonds (Fig. 1). The individual O—C—C—O segments are ag+a, ag-a, ag+a, ag-a, ag+a and ag-a. Relevant torsion angles are listed in Table 1. Both cyclohexane rings adopt chair conformations, with puckering parameters Q = 0.578 (6) Å, θ = 0.0 (6)° and φ = 8(20)° for the C5–C10 ring, and Q = 0.568 (7) Å, θ = 176.2 (7)° and φ = 200 (10)° for the C15–C20 ring (Cremer & Pople, 1975).

The crystal structure is stabilized by O—H···Br and O—H···O hydrogen bonds (Table 2, Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature, see Harman et al. (1976); Nicoló et al. (1987); Kusrini (2006); Hassaballa et al. (1998); Backer-Dirks et al. (1980); Saleh et al. (2006). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by the reaction of dicyclohexano-18-crown-6 (0.384 g, 1 mmol) and europium nitrate (0.443 g 1 mmol) in the presence of hydrogen bromide (2 ml, 12.5 M, 25 mmol) in 20 ml mixed acetronitrile–methanol (1:1 v/v) solution. The resulting solution was left to evaporate at room temperature. Orange crystals suitable for X-ray diffraction were collected after 3 weeks (yield 75%; m.p. 430.4–436.8 K). Elemental analysis data: Found (calculated) C 37.17 (38.02) and H 5.55 (6.0)%.

Refinement top

The oxonium H atoms were located in a difference Fourier map and refined with O—H and H···H distance restraints of 0.82 (5) Å and 1.37 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and treated as riding, with C—H = 0.97–0.98 Å, and with Uiso(H) = 1.2Ueq(C). Because of racemic twinning, the TWIN and BASF instructions were used in the final refinement.

Structure description top

The complexation of dicyclohexano-18-crown-6 (DCH18C6) with some lanthanide ions normally leads to the formation of a complex via metal–oxygen chelation such as {La(NO3)3(DCH18C6)]} (Harman et al., 1976) and {[Eu(NO3)2(DCH18C6)]2[Eu(NO3)5]} (Nicoló et al., 1987) and salt-type compounds namely [Ln(Pic)2(DCH18C6)]+(Pic)- for Ln = La and Ce and also [Ln(Pic)2(DCH18C6)]+(Pic)-·0.5(DCH18C6) for Ln = Pr and Nd (Kusrini, 2006). However, different products without lanthanide coordination with crown ethers have also been observed namely (15-crown-5)triaquadichlorodioxouranium (Hassaballa et al., 1998) and [Gd(NO3)3(OH2)3].18-crown-6 (Backer-Dirks et al., 1980).

In our study, no complexation product was obtained from a solution mixture containing dicyclohexano-18-crown-6, europium nitrate and hydrogen bromide. Instead, the formation of a tribromide anion along with a hydroxonium ion occurred. A similar product, namely, bis(2,3-dibromo-6,7,9,10,12,13,15,16-octahydro- 5,8,11,14,17-pentaoxabenzocyclopentadecene)hydroxonium tribromide has been reported (Saleh et al., 2006).

Bond lengths and angles are in normal ranges (Allen et al., 1987). The macrocyclic strand of the molecule displays a series of anti and gauche torsion angles for C—O and C—C bonds (Fig. 1). The individual O—C—C—O segments are ag+a, ag-a, ag+a, ag-a, ag+a and ag-a. Relevant torsion angles are listed in Table 1. Both cyclohexane rings adopt chair conformations, with puckering parameters Q = 0.578 (6) Å, θ = 0.0 (6)° and φ = 8(20)° for the C5–C10 ring, and Q = 0.568 (7) Å, θ = 176.2 (7)° and φ = 200 (10)° for the C15–C20 ring (Cremer & Pople, 1975).

The crystal structure is stabilized by O—H···Br and O—H···O hydrogen bonds (Table 2, Fig. 2).

For bond-length data, see: Allen et al. (1987). For related literature, see Harman et al. (1976); Nicoló et al. (1987); Kusrini (2006); Hassaballa et al. (1998); Backer-Dirks et al. (1980); Saleh et al. (2006). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds.
Dicyclohexano-18-crown-6 hydroxonium tribromide top
Crystal data top
C20H36O6·H3O+·Br3F(000) = 1280
Mr = 631.24Dx = 1.645 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5411 reflections
a = 8.2703 (9) Åθ = 1.7–24.5°
b = 13.1939 (14) ŵ = 4.78 mm1
c = 23.363 (3) ÅT = 100 K
V = 2549.3 (5) Å3Needle, orange
Z = 40.41 × 0.11 × 0.11 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5850 independent reflections
Radiation source: fine-focus sealed tube4248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1717
Tmin = 0.248, Tmax = 0.629l = 3030
31119 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0578P)2 + 1.0999P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5850 reflectionsΔρmax = 0.87 e Å3
281 parametersΔρmin = 0.81 e Å3
6 restraintsAbsolute structure: Flack (1983), with 2535 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.638 (14)
Crystal data top
C20H36O6·H3O+·Br3V = 2549.3 (5) Å3
Mr = 631.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2703 (9) ŵ = 4.78 mm1
b = 13.1939 (14) ÅT = 100 K
c = 23.363 (3) Å0.41 × 0.11 × 0.11 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4248 reflections with I > 2σ(I)
Tmin = 0.248, Tmax = 0.629Rint = 0.089
31119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.87 e Å3
S = 1.09Δρmin = 0.81 e Å3
5850 reflectionsAbsolute structure: Flack (1983), with 2535 Friedel pairs
281 parametersAbsolute structure parameter: 0.638 (14)
6 restraints
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50581 (7)0.45651 (5)0.20640 (2)0.02836 (15)
Br20.46209 (9)0.57409 (6)0.28793 (3)0.0431 (2)
Br30.54389 (9)0.33108 (5)0.11935 (3)0.03887 (19)
O10.9888 (5)0.5804 (3)0.13934 (16)0.0259 (9)
O20.9961 (5)0.4629 (3)0.03717 (16)0.0253 (8)
O30.7158 (4)0.4708 (3)0.03546 (17)0.0230 (9)
O40.5259 (4)0.6398 (3)0.02434 (15)0.0196 (8)
O50.5170 (5)0.7480 (3)0.07877 (15)0.0212 (8)
O60.7817 (5)0.7404 (3)0.15891 (17)0.0238 (9)
C11.1254 (7)0.5219 (5)0.1214 (3)0.0303 (15)
H1A1.18720.50080.15460.036*
H1B1.19480.56290.09730.036*
C21.0695 (7)0.4312 (5)0.0892 (3)0.0281 (14)
H2A1.16070.38720.08100.034*
H2B0.99230.39340.11200.034*
C30.9354 (7)0.3796 (5)0.0057 (2)0.0257 (13)
H3A0.85480.34410.02820.031*
H3B1.02260.33270.00260.031*
C40.8615 (7)0.4154 (5)0.0490 (3)0.0282 (14)
H4A0.93670.45880.06930.034*
H4B0.83600.35790.07330.034*
C50.6289 (6)0.5088 (4)0.0847 (2)0.0193 (12)
H5A0.69500.56000.10410.023*
C60.5845 (7)0.4259 (5)0.1271 (2)0.0249 (13)
H6A0.68210.39380.14120.030*
H6B0.52800.45540.15940.030*
C70.4765 (8)0.3463 (4)0.0985 (3)0.0290 (14)
H7A0.44430.29600.12650.035*
H7B0.53660.31210.06850.035*
C80.3263 (7)0.3961 (5)0.0729 (3)0.0303 (15)
H8A0.26010.42320.10360.036*
H8B0.26320.34530.05290.036*
C90.3699 (7)0.4806 (5)0.0318 (3)0.0238 (14)
H9A0.42490.45250.00120.029*
H9B0.27210.51370.01860.029*
C100.4794 (7)0.5582 (4)0.0611 (2)0.0227 (12)
H10A0.41930.58720.09330.027*
C110.3958 (7)0.7063 (5)0.0104 (3)0.0261 (14)
H11A0.31130.66860.00900.031*
H11B0.35050.73440.04530.031*
C120.4534 (7)0.7904 (4)0.0272 (2)0.0230 (13)
H12A0.53660.82900.00780.028*
H12B0.36450.83560.03610.028*
C130.5503 (7)0.8242 (5)0.1199 (2)0.0231 (12)
H13A0.45110.85910.13010.028*
H13B0.62480.87350.10400.028*
C140.6237 (7)0.7760 (5)0.1725 (3)0.0268 (14)
H14A0.62960.82530.20320.032*
H14B0.55670.72000.18520.032*
C150.8604 (7)0.6903 (5)0.2066 (3)0.0259 (13)
H15A0.79410.63320.21960.031*
C160.8918 (8)0.7619 (5)0.2565 (3)0.0309 (15)
H16A0.78950.78760.27070.037*
H16B0.94330.72460.28740.037*
C170.9985 (9)0.8501 (5)0.2396 (2)0.0310 (14)
H17A1.01870.89250.27270.037*
H17B0.94380.89080.21090.037*
C181.1579 (7)0.8118 (5)0.2156 (3)0.0328 (16)
H18A1.21880.77950.24610.039*
H18B1.22060.86900.20200.039*
C191.1349 (7)0.7362 (5)0.1667 (3)0.0276 (14)
H19A1.09020.77090.13370.033*
H19B1.23880.70810.15580.033*
C201.0221 (7)0.6514 (4)0.1847 (2)0.0233 (13)
H20A1.07430.61410.21600.028*
O70.6958 (5)0.5617 (4)0.0781 (2)0.0392 (12)
H7OA0.703 (8)0.539 (4)0.0434 (10)0.059*
H7OB0.655 (8)0.512 (3)0.097 (2)0.059*
H7OC0.622 (6)0.608 (4)0.077 (3)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0157 (2)0.0360 (3)0.0334 (3)0.0008 (3)0.0016 (2)0.0130 (3)
Br20.0440 (4)0.0503 (4)0.0349 (4)0.0017 (3)0.0087 (3)0.0050 (3)
Br30.0446 (4)0.0289 (3)0.0431 (4)0.0083 (3)0.0040 (3)0.0028 (3)
O10.0150 (19)0.024 (2)0.039 (2)0.0024 (19)0.0083 (18)0.0019 (17)
O20.0186 (18)0.025 (2)0.032 (2)0.002 (2)0.0020 (18)0.0023 (17)
O30.0146 (19)0.028 (2)0.026 (2)0.0076 (18)0.0023 (16)0.0007 (19)
O40.0102 (19)0.023 (2)0.025 (2)0.0016 (17)0.0028 (16)0.0025 (15)
O50.017 (2)0.022 (2)0.0242 (19)0.0011 (18)0.0041 (17)0.0007 (15)
O60.016 (2)0.031 (3)0.025 (2)0.0010 (18)0.0008 (16)0.0019 (19)
C10.012 (3)0.033 (4)0.046 (4)0.009 (3)0.007 (3)0.002 (3)
C20.020 (3)0.026 (3)0.038 (3)0.012 (3)0.001 (3)0.004 (3)
C30.020 (3)0.023 (3)0.034 (3)0.003 (3)0.007 (3)0.004 (3)
C40.019 (3)0.029 (4)0.036 (4)0.010 (3)0.010 (3)0.002 (3)
C50.011 (3)0.023 (3)0.025 (3)0.005 (2)0.001 (2)0.005 (3)
C60.021 (3)0.027 (3)0.026 (3)0.003 (3)0.004 (2)0.004 (3)
C70.029 (3)0.020 (3)0.038 (3)0.003 (3)0.009 (3)0.006 (3)
C80.018 (3)0.029 (4)0.044 (4)0.006 (3)0.003 (3)0.000 (3)
C90.018 (3)0.023 (3)0.030 (3)0.001 (2)0.005 (2)0.002 (3)
C100.025 (3)0.020 (3)0.024 (3)0.001 (3)0.004 (2)0.002 (2)
C110.013 (3)0.028 (4)0.037 (4)0.005 (3)0.004 (3)0.003 (3)
C120.013 (3)0.027 (3)0.029 (3)0.007 (2)0.001 (2)0.000 (2)
C130.013 (3)0.032 (3)0.024 (3)0.000 (3)0.001 (2)0.001 (3)
C140.013 (3)0.040 (4)0.028 (3)0.001 (3)0.002 (2)0.002 (3)
C150.024 (3)0.026 (3)0.028 (3)0.000 (3)0.003 (3)0.006 (3)
C160.027 (3)0.037 (4)0.029 (3)0.006 (3)0.005 (3)0.008 (3)
C170.034 (3)0.035 (4)0.024 (3)0.005 (3)0.006 (3)0.000 (2)
C180.022 (3)0.036 (4)0.040 (4)0.007 (3)0.009 (3)0.005 (3)
C190.018 (3)0.030 (4)0.035 (4)0.003 (3)0.005 (3)0.007 (3)
C200.018 (3)0.024 (3)0.028 (3)0.003 (3)0.009 (3)0.006 (2)
O70.033 (2)0.044 (3)0.041 (3)0.002 (2)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
Br1—Br22.4831 (9)C8—H8B0.97
Br1—Br32.6408 (9)C9—C101.528 (8)
O1—C11.430 (7)C9—H9A0.97
O1—C201.442 (7)C9—H9B0.97
O2—C31.415 (7)C10—H10A0.98
O2—C21.422 (7)C11—C121.494 (8)
O3—C41.444 (7)C11—H11A0.97
O3—C51.446 (7)C11—H11B0.97
O4—C111.427 (7)C12—H12A0.97
O4—C101.429 (6)C12—H12B0.97
O5—C131.418 (7)C13—C141.511 (8)
O5—C121.428 (7)C13—H13A0.97
O6—C141.425 (7)C13—H13B0.97
O6—C151.450 (7)C14—H14A0.97
C1—C21.488 (9)C14—H14B0.97
C1—H1A0.97C15—C201.521 (8)
C1—H1B0.97C15—C161.522 (9)
C2—H2A0.97C15—H15A0.98
C2—H2B0.97C16—C171.513 (9)
C3—C41.492 (8)C16—H16A0.97
C3—H3A0.97C16—H16B0.97
C3—H3B0.97C17—C181.519 (9)
C4—H4A0.97C17—H17A0.97
C4—H4B0.97C17—H17B0.97
C5—C101.503 (8)C18—C191.530 (9)
C5—C61.521 (8)C18—H18A0.97
C5—H5A0.98C18—H18B0.97
C6—C71.531 (8)C19—C201.518 (8)
C6—H6A0.97C19—H19A0.97
C6—H6B0.97C19—H19B0.97
C7—C81.527 (8)C20—H20A0.98
C7—H7A0.97O7—H7OA0.87 (3)
C7—H7B0.97O7—H7OB0.86 (5)
C8—C91.516 (9)O7—H7OC0.86 (5)
C8—H8A0.97
Br2—Br1—Br3178.48 (4)C5—C10—H10A107.7
C1—O1—C20114.5 (4)C9—C10—H10A107.7
C3—O2—C2111.6 (4)O4—C11—C12110.5 (5)
C4—O3—C5114.6 (4)O4—C11—H11A109.5
C11—O4—C10113.4 (4)C12—C11—H11A109.5
C13—O5—C12111.4 (4)O4—C11—H11B109.5
C14—O6—C15113.0 (4)C12—C11—H11B109.5
O1—C1—C2109.7 (5)H11A—C11—H11B108.1
O1—C1—H1A109.7O5—C12—C11108.9 (5)
C2—C1—H1A109.7O5—C12—H12A109.9
O1—C1—H1B109.7C11—C12—H12A109.9
C2—C1—H1B109.7O5—C12—H12B109.9
H1A—C1—H1B108.2C11—C12—H12B109.9
O2—C2—C1109.2 (5)H12A—C12—H12B108.3
O2—C2—H2A109.8O5—C13—C14109.3 (5)
C1—C2—H2A109.8O5—C13—H13A109.8
O2—C2—H2B109.8C14—C13—H13A109.8
C1—C2—H2B109.8O5—C13—H13B109.8
H2A—C2—H2B108.3C14—C13—H13B109.8
O2—C3—C4110.2 (5)H13A—C13—H13B108.3
O2—C3—H3A109.6O6—C14—C13109.0 (5)
C4—C3—H3A109.6O6—C14—H14A109.9
O2—C3—H3B109.6C13—C14—H14A109.9
C4—C3—H3B109.6O6—C14—H14B109.9
H3A—C3—H3B108.1C13—C14—H14B109.9
O3—C4—C3108.3 (5)H14A—C14—H14B108.3
O3—C4—H4A110.0O6—C15—C20106.8 (5)
C3—C4—H4A110.0O6—C15—C16112.5 (5)
O3—C4—H4B110.0C20—C15—C16108.5 (5)
C3—C4—H4B110.0O6—C15—H15A109.6
H4A—C4—H4B108.4C20—C15—H15A109.6
O3—C5—C10105.5 (4)C16—C15—H15A109.6
O3—C5—C6112.8 (5)C17—C16—C15112.0 (5)
C10—C5—C6110.6 (4)C17—C16—H16A109.2
O3—C5—H5A109.3C15—C16—H16A109.2
C10—C5—H5A109.3C17—C16—H16B109.2
C6—C5—H5A109.3C15—C16—H16B109.2
C5—C6—C7110.5 (5)H16A—C16—H16B107.9
C5—C6—H6A109.5C16—C17—C18110.3 (5)
C7—C6—H6A109.5C16—C17—H17A109.6
C5—C6—H6B109.5C18—C17—H17A109.6
C7—C6—H6B109.5C16—C17—H17B109.6
H6A—C6—H6B108.1C18—C17—H17B109.6
C8—C7—C6110.5 (5)H17A—C17—H17B108.1
C8—C7—H7A109.6C17—C18—C19112.6 (5)
C6—C7—H7A109.6C17—C18—H18A109.1
C8—C7—H7B109.6C19—C18—H18A109.1
C6—C7—H7B109.6C17—C18—H18B109.1
H7A—C7—H7B108.1C19—C18—H18B109.1
C9—C8—C7111.8 (5)H18A—C18—H18B107.8
C9—C8—H8A109.3C20—C19—C18110.4 (5)
C7—C8—H8A109.3C20—C19—H19A109.6
C9—C8—H8B109.3C18—C19—H19A109.6
C7—C8—H8B109.3C20—C19—H19B109.6
H8A—C8—H8B107.9C18—C19—H19B109.6
C8—C9—C10110.5 (5)H19A—C19—H19B108.1
C8—C9—H9A109.5O1—C20—C19113.1 (5)
C10—C9—H9A109.5O1—C20—C15107.4 (4)
C8—C9—H9B109.5C19—C20—C15112.6 (5)
C10—C9—H9B109.5O1—C20—H20A107.8
H9A—C9—H9B108.1C19—C20—H20A107.8
O4—C10—C5109.0 (4)C15—C20—H20A107.8
O4—C10—C9113.3 (4)H7OA—O7—H7OB104 (5)
C5—C10—C9111.2 (5)H7OA—O7—H7OC105 (6)
O4—C10—H10A107.7H7OB—O7—H7OC106 (6)
C20—O1—C1—C2162.0 (5)C10—O4—C11—C12179.1 (4)
C3—O2—C2—C1177.9 (5)C13—O5—C12—C11170.8 (4)
O1—C1—C2—O266.3 (6)O4—C11—C12—O560.2 (6)
C2—O2—C3—C4179.1 (4)C12—O5—C13—C14177.6 (4)
C5—O3—C4—C3179.0 (5)C15—O6—C14—C13178.5 (5)
O2—C3—C4—O369.0 (6)O5—C13—C14—O669.3 (6)
C4—O3—C5—C10177.1 (5)C14—O6—C15—C20176.7 (5)
C4—O3—C5—C656.2 (6)C14—O6—C15—C1664.3 (6)
O3—C5—C6—C760.0 (6)O6—C15—C16—C1759.5 (7)
C10—C5—C6—C757.9 (6)C20—C15—C16—C1758.5 (7)
C5—C6—C7—C856.1 (7)C15—C16—C17—C1857.3 (7)
C6—C7—C8—C955.2 (7)C16—C17—C18—C1953.9 (7)
C7—C8—C9—C1055.0 (7)C17—C18—C19—C2052.6 (7)
C11—O4—C10—C5166.1 (5)C1—O1—C20—C1966.7 (6)
C11—O4—C10—C969.6 (6)C1—O1—C20—C15168.4 (5)
O3—C5—C10—O461.3 (5)C18—C19—C20—O1176.9 (5)
C6—C5—C10—O4176.4 (4)C18—C19—C20—C1554.9 (6)
O3—C5—C10—C964.3 (6)O6—C15—C20—O161.0 (6)
C6—C5—C10—C958.1 (6)C16—C15—C20—O1177.4 (4)
C8—C9—C10—O4179.6 (5)O6—C15—C20—C1964.1 (6)
C8—C9—C10—C556.4 (6)C16—C15—C20—C1957.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7OA···O30.87 (3)2.05 (3)2.916 (6)174 (6)
O7—H7OA···O40.87 (3)2.53 (5)2.960 (6)111 (5)
O7—H7OB···Br30.86 (5)2.61 (4)3.430 (5)160 (4)
O7—H7OC···O40.86 (5)2.53 (7)2.960 (6)112 (5)
O7—H7OC···O50.86 (5)2.04 (5)2.869 (6)160 (5)

Experimental details

Crystal data
Chemical formulaC20H36O6·H3O+·Br3
Mr631.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.2703 (9), 13.1939 (14), 23.363 (3)
V3)2549.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.78
Crystal size (mm)0.41 × 0.11 × 0.11
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.248, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
31119, 5850, 4248
Rint0.089
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.09
No. of reflections5850
No. of parameters281
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.81
Absolute structureFlack (1983), with 2535 Friedel pairs
Absolute structure parameter0.638 (14)

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Selected torsion angles (º) top
C20—O1—C1—C2162.0 (5)C10—O4—C11—C12179.1 (4)
C3—O2—C2—C1177.9 (5)C13—O5—C12—C11170.8 (4)
O1—C1—C2—O266.3 (6)O4—C11—C12—O560.2 (6)
C2—O2—C3—C4179.1 (4)C12—O5—C13—C14177.6 (4)
C5—O3—C4—C3179.0 (5)C15—O6—C14—C13178.5 (5)
O2—C3—C4—O369.0 (6)O5—C13—C14—O669.3 (6)
C4—O3—C5—C10177.1 (5)C14—O6—C15—C20176.7 (5)
C4—O3—C5—C656.2 (6)C1—O1—C20—C15168.4 (5)
C11—O4—C10—C5166.1 (5)O6—C15—C20—O161.0 (6)
O3—C5—C10—O461.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7OA···O30.87 (3)2.05 (3)2.916 (6)174 (6)
O7—H7OA···O40.87 (3)2.53 (5)2.960 (6)111 (5)
O7—H7OB···Br30.86 (5)2.61 (4)3.430 (5)160 (4)
O7—H7OC···O40.86 (5)2.53 (7)2.960 (6)112 (5)
O7—H7OC···O50.86 (5)2.04 (5)2.869 (6)160 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds