supplementary materials


Acta Cryst. (2007). E63, m2432-m2433    [ doi:10.1107/S1600536807041797 ]

Poly[bis([mu]2-5-thioxo-1H-1,2,4-thiadiazole-3-thiolato-[kappa]2S3:S5)zinc(II)]

X.-L. Zhang, N. An, Y.-E. Qiu, C.-L. Zhang and Y.-C. Wang

Abstract top

In the crystal structure of the neutral polymeric title compound, [Zn(C2HN2S3)2]n, the ZnII atom is located at a site of 2 symmetry and is coordinated by four S atoms of four symmetry-related 5-thioxo-1H-1,2,4-thiadiazole-3-thiolate ligands in a tetrahedral geometry, with S-Zn distances of 2.3343 (6) and 2.3560 (6) Å, and S-Zn-S angles ranging from 103.78 (3) to 112.572 (17)°. Each of the ligands bridges two ZnII atoms through two terminal S atoms, leading to the formation of a chiral two-dimensional layer containing homochiral helical chains. However, in the crystal structure, adjacent layers have opposite chirality and are connected into a three-dimensional network by N-H...S hydrogen bonds.

Comment top

The structures of free 2,5-dimercapto-1,3,4-thiodiazole (Bats, 1976) and some of its metal-complexes (Li et al., 2005; Mura et al., 1985; Ma et al., 2004a,b; Qiu et al., 2006; Tannai et al., 2003, 2005, 2006; Tzeng et al., 2007) have been reported. In such complexes, the 2,5-dimercapto-1,3,4-thiodiazole ligand shows different valences and different coordination modes. Herein, we report a neutral ZnII complex, [Zn(C2HN2S3)2]n, with the above ligand.

As shown in Fig. 1, the ZnII atom lies at a site of 2 symmetry. It is four-coordinated by four symmetry related 5-thioxo-1H-1,2,4-thiadiazole-3-thiolate ligands through their S atoms to form a tetrahedral geometry. The S—Zn distances are 2.3343 (6) and 2.3560 (6) Å, and S—Zn—S angles range from 103.78 (3) to 112.572 (17)° (Table 1). Each of the ligand coordinates to two ZnII atoms through the two terminal S atoms to form a chiral two-dimensional layer (Fig. 2) containing homochiral helical chains (left- or right-hand single helical chain). The separation of ZnII atom across the ligand is 7.779 (6) Å and the screw-pitch is 7.604 (5) Å. However, in the crystal structure, adjacent layers have opposite chirality, and were connected into a three-dimensional network by N—H···S hydrogen bonds (see Table 2).

Related literature top

For related literature, see: Bats (1976); Li et al. (2005); Ma et al. (2004a, 2004b); Mura et al. (1985); Qiu et al. (2006); Tannai et al. (2003, 2005, 2006); Tzeng et al. (2007).

Experimental top

The title compound was synthesized by the hydrothermal method. A mixture of ZnCl2 (27 mg, 0.2 mmol) and 2,5-dimercapto-1,3,4-thiodiazole (60 mg, 0.4 mmol) in water (10 ml) was placed in a Teflon-lined stainless-steel Parr bomb. The bomb was heated at 413 K for 30 h and then allowed to cool to room temperature; colourless crystals were isolated in about 20% yield. FT—IR (KBr pellets, cm−1): 3157m, 1593w, 1478 s, 1411m, 1297m, 1124 s, 1103 s, 1036 s, 734m, 668w, 581w, 544m.

Refinement top

Atom H1 was located in a difference map and refined isotropically, with an N—H distance restraint of 0.90 (1) Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Part of a two-dimensional network in the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) 1 − x, y, 1/2 − z; (B) 3/2 − x, 1/2 − y, 1/2 + z; (C) −1/2 + x, 1/2 − y, −z.
[Figure 2] Fig. 2. Two-dimensional network structure in the title compound.
Poly[bis(µ2-5-thioxo-1H-1,2,4-thiadiazole-3-thiolato-κ2S3:S5)zinc(II)] top
Crystal data top
[Zn(C2HN2S3)2]F000 = 720
Mr = 363.83Dx = 2.138 Mg m3
Orthorhombic, PbcnMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9116 reflections
a = 12.983 (3) Åθ = 3.1–27.5º
b = 11.448 (2) ŵ = 3.25 mm1
c = 7.6035 (15) ÅT = 293 (2) K
V = 1130.1 (4) Å3Block, colourless
Z = 40.20 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1298 independent reflections
Radiation source: fine-focus sealed tube1213 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
T = 293(2) Kθmax = 27.5º
φ and ω scansθmin = 3.1º
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 16→16
Tmin = 0.863, Tmax = 1.000k = 14→14
10211 measured reflectionsl = 8→9
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.047  w = 1/[σ2(Fo2) + (0.0201P)2 + 0.66P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1298 reflectionsΔρmax = 0.34 e Å3
73 parametersΔρmin = 0.31 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
[Zn(C2HN2S3)2]V = 1130.1 (4) Å3
Mr = 363.83Z = 4
Orthorhombic, PbcnMo Kα
a = 12.983 (3) ŵ = 3.25 mm1
b = 11.448 (2) ÅT = 293 (2) K
c = 7.6035 (15) Å0.20 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1213 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.030
10211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0191 restraint
wR(F2) = 0.047H atoms treated by a mixture of
independent and constrained refinement
S = 1.08Δρmax = 0.34 e Å3
1298 reflectionsΔρmin = 0.31 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.16347 (3)0.25000.02437 (9)
S20.47751 (3)0.28669 (5)0.00481 (7)0.03425 (13)
S10.64938 (3)0.44469 (4)0.11880 (7)0.03453 (13)
S30.85977 (3)0.46238 (4)0.28194 (6)0.02663 (11)
N10.66827 (11)0.23028 (13)0.1150 (2)0.0291 (3)
N50.76058 (11)0.26501 (13)0.1854 (2)0.0297 (3)
C20.76163 (12)0.37822 (15)0.1961 (2)0.0223 (3)
C10.59931 (13)0.30944 (15)0.0721 (2)0.0248 (3)
H10.6565 (19)0.1542 (9)0.109 (4)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02160 (14)0.02878 (16)0.02272 (15)0.0000.00047 (10)0.000
S20.0217 (2)0.0482 (3)0.0329 (3)0.00767 (18)0.00397 (18)0.0153 (2)
S10.0295 (2)0.0264 (2)0.0477 (3)0.00416 (17)0.0111 (2)0.00510 (19)
S30.0236 (2)0.0240 (2)0.0323 (2)0.00054 (15)0.00432 (17)0.00029 (16)
N10.0241 (7)0.0247 (7)0.0386 (8)0.0021 (6)0.0049 (6)0.0062 (6)
N50.0232 (7)0.0263 (8)0.0395 (8)0.0037 (6)0.0069 (7)0.0030 (6)
C20.0201 (7)0.0256 (8)0.0211 (7)0.0029 (6)0.0005 (6)0.0027 (6)
C10.0239 (8)0.0303 (8)0.0203 (8)0.0023 (6)0.0010 (6)0.0037 (6)
Geometric parameters (Å, °) top
Zn1—S3i2.3343 (6)S3—C21.7258 (17)
Zn1—S3ii2.3343 (6)S3—Zn1iv2.3343 (6)
Zn1—S2iii2.3560 (6)N1—C11.315 (2)
Zn1—S22.3560 (6)N1—N51.371 (2)
S2—C11.7060 (17)N1—H10.885 (10)
S1—C11.7164 (18)N5—C21.299 (2)
S1—C21.7458 (16)
S3i—Zn1—S3ii103.78 (3)C1—N1—H1123.2 (17)
S3i—Zn1—S2iii112.572 (17)N5—N1—H1117.1 (17)
S3ii—Zn1—S2iii110.807 (17)C2—N5—N1108.84 (14)
S3i—Zn1—S2110.807 (18)N5—C2—S3126.06 (12)
S3ii—Zn1—S2112.572 (17)N5—C2—S1113.90 (12)
S2iii—Zn1—S2106.44 (3)S3—C2—S1120.02 (10)
C1—S2—Zn1104.35 (6)N1—C1—S2127.66 (14)
C1—S1—C289.58 (8)N1—C1—S1108.20 (12)
C2—S3—Zn1iv101.07 (6)S2—C1—S1124.04 (10)
C1—N1—N5119.47 (15)
S3i—Zn1—S2—C1147.61 (7)C1—S1—C2—N50.51 (14)
S3ii—Zn1—S2—C131.90 (7)C1—S1—C2—S3177.92 (11)
S2iii—Zn1—S2—C189.68 (7)N5—N1—C1—S2175.91 (13)
C1—N1—N5—C20.2 (2)N5—N1—C1—S10.5 (2)
N1—N5—C2—S3178.01 (13)Zn1—S2—C1—N153.89 (17)
N1—N5—C2—S10.31 (19)Zn1—S2—C1—S1130.19 (10)
Zn1iv—S3—C2—N523.57 (17)C2—S1—C1—N10.55 (13)
Zn1iv—S3—C2—S1158.20 (8)C2—S1—C1—S2176.05 (12)
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) −x+3/2, −y+1/2, z+1/2; (iii) −x+1, y, −z+1/2; (iv) −x+3/2, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S3v0.89 (1)2.57 (2)3.339 (2)146 (2)
N1—H1···S3ii0.89 (1)2.83 (2)3.378 (2)121 (2)
Symmetry codes: (v) −x+3/2, y−1/2, z; (ii) −x+3/2, −y+1/2, z+1/2.
Table 1
Selected geometric parameters (Å, °)
top
Zn1—S3i2.3343 (6)Zn1—S22.3560 (6)
S3ii—Zn1—S3i103.78 (3)S3i—Zn1—S2112.572 (17)
S3ii—Zn1—S2110.807 (18)S2iii—Zn1—S2106.44 (3)
Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, −z; (iii) −x+1, y, −z+1/2.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···S3iv0.89 (1)2.57 (2)3.339 (2)146 (2)
N1—H1···S3i0.89 (1)2.83 (2)3.378 (2)121 (2)
Symmetry codes: (iv) −x+3/2, y−1/2, z; (i) −x+3/2, −y+1/2, z+1/2.
Acknowledgements top

The authors thank Dr Jianrong Li of Nankai University for discussion, and Dezhou University for supporting this study.

references
References top

Bats, J. W. (1976). Acta Cryst. B32, 2866–2870.

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Li, Z.-H., Du, S.-W. & Wu, X.-T. (2005). Polyhedron, 24, 2988–2993.

Ma, C., Li, F., Jiang, Q. & Zhang, R. (2004a). J. Organomet. Chem. 689, 96–104.

Ma, C., Li, F., Jiang, Q. & Zhang, R. (2004b). Eur. J. Inorg. Chem. pp. 2775–2783.

Mura, P. B., Olby, G. & Robinson, S. D. (1985). Inorg. Chim. Acta, 97, 45–52.

Qiu, L.-L., Li, J.-K., Sun, J.-S. & Zhang, R.-F. (2006). Acta Cryst. E62, m3052–m3053.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Tannai, H., Tsuge, K. & Sasaki, Y. (2005). Inorg. Chem. 44, 5206–5208.

Tannai, H., Tsuge, K. & Sasaki, Y. (2006). Bull. Chem. Soc. Jpn, 79, 1223–1230.

Tannai, H., Tsuge, K., Sasaki, Y., Hatozaki, O. & Oyamab, N. (2003). Dalton Trans. pp. 2353–2358.

Tzeng, B.-C., Wu, Y.-L., Lee, G.-H. & Peng, S.-M. (2007). New J. Chem. 31, 199–201.