Download citation
Download citation
link to html
The title mol­ecule, C26H16N2, is nonplanar, the dihedral angle between the two acridine ring systems being 84.67 (7)°. In the crystal structure, inter­molecular C—H...N and C—H...π hydrogen-bonding inter­actions link the adjacent mol­ecules into a two-dimensional network parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041463/ci2445sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041463/ci2445Isup2.hkl
Contains datablock I

CCDC reference: 660363

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.060
  • wR factor = 0.113
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 42 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). The most frequently used neutral bridging ligands are 4,4'-bipyridine and its derivatives (Kitagawa et al., 2004). In comparison with other N-containing heterocyclic ligands, acridine-based ligands have some primary structural characteristics: (a) acridine ring has larger conjugated π-systems, therefore π-π stacking interactions may play important roles in the formations of their metal complexes and (b) the larger conjugated π-systems and the steric hindrance of H atoms of the adjacent benzene rings may probably affect the coordination abilities of the acridine N donor atom (Bu et al., 2004; Liu et al., 2006). Recently, we synthesized a 4,4'-bipyridyl-like linear diamine bridging ligand, 9,9'-biacridine, (I). We report here the crystal structure of (I).

Bond distances and angles in (I) (Fig. 1) have normal values, and are comparable to those observed for similar acridine-based molecules (Boyer et al., 1999; Liu et al., 2006). Each of the acridine ring system is essentially planar. The two acridine ring systems are twisted away from one another by an angle of 84.67 (7)°.

In the crystal structure, the adjacent molecules are linked into a chain along the [1 1 0] direction by intermolecular C—H···N hydrogen-bonding interactions (Fig. 2 and Table 1) (Desiraju et al., 1999). The adjacent chains are cross-linked via intermolecular C—H···π interactions (Table 1) involving the N1/C9—C13 pyridine ring (centroid Cg1), forming a two-dimensional network parallel to the ab plane (Fig. 3). In the adjacent chains the acridine rings are arranged in an edge-to-face orientation (Sony et al., 2006).

Related literature top

For related literature, see: Boyer et al. (1999); Bu et al. (2004); Kitagawa et al. (2004); Liu et al. (2006); Steel (2005). For related hydrogen bonds, see: Desiraju & Steiner (1999); Sony & Ponnuswamy (2006).

Experimental top

Compound (I) was synthesized according to the method reported in the literature (Boyer et al., 1999). A solution of (I) (0.1 mmol) in methanol (15 ml) was filtered off and the resulting solution was kept at room temperature. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days (yield: 30%). Analysis calculated for C26H16N2: C 87.62, H 4.52, N 7.86%; found: C 87.75, H 4.59, N 7.77%.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). The most frequently used neutral bridging ligands are 4,4'-bipyridine and its derivatives (Kitagawa et al., 2004). In comparison with other N-containing heterocyclic ligands, acridine-based ligands have some primary structural characteristics: (a) acridine ring has larger conjugated π-systems, therefore π-π stacking interactions may play important roles in the formations of their metal complexes and (b) the larger conjugated π-systems and the steric hindrance of H atoms of the adjacent benzene rings may probably affect the coordination abilities of the acridine N donor atom (Bu et al., 2004; Liu et al., 2006). Recently, we synthesized a 4,4'-bipyridyl-like linear diamine bridging ligand, 9,9'-biacridine, (I). We report here the crystal structure of (I).

Bond distances and angles in (I) (Fig. 1) have normal values, and are comparable to those observed for similar acridine-based molecules (Boyer et al., 1999; Liu et al., 2006). Each of the acridine ring system is essentially planar. The two acridine ring systems are twisted away from one another by an angle of 84.67 (7)°.

In the crystal structure, the adjacent molecules are linked into a chain along the [1 1 0] direction by intermolecular C—H···N hydrogen-bonding interactions (Fig. 2 and Table 1) (Desiraju et al., 1999). The adjacent chains are cross-linked via intermolecular C—H···π interactions (Table 1) involving the N1/C9—C13 pyridine ring (centroid Cg1), forming a two-dimensional network parallel to the ab plane (Fig. 3). In the adjacent chains the acridine rings are arranged in an edge-to-face orientation (Sony et al., 2006).

For related literature, see: Boyer et al. (1999); Bu et al. (2004); Kitagawa et al. (2004); Liu et al. (2006); Steel (2005). For related hydrogen bonds, see: Desiraju & Steiner (1999); Sony & Ponnuswamy (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing in the title compound, showing a C—H···N hydrogen-bonded (dashed lines) chain. The atoms labelled with the suffixes B and C are generated by the symmetry operations (1/2 - x, 3/2 - y, -z) and (-x, 2 - y, -z), respectively. For clarity, only H atoms involved in the interactions are shown.
[Figure 3] Fig. 3. View of the two-dimensional network formed by intermolecular C—H···π interactions (dashed lines).
9,9'-Biacridine top
Crystal data top
C26H16N2F(000) = 1488
Mr = 356.41Dx = 1.323 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 881 reflections
a = 24.427 (8) Åθ = 2.3–21.3°
b = 9.463 (3) ŵ = 0.08 mm1
c = 15.644 (5) ÅT = 293 K
β = 98.253 (6)°Block, yellow
V = 3578.9 (19) Å30.30 × 0.25 × 0.25 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3166 independent reflections
Radiation source: fine-focus sealed tube1342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2828
Tmin = 0.977, Tmax = 0.981k = 811
8953 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
3166 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C26H16N2V = 3578.9 (19) Å3
Mr = 356.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.427 (8) ŵ = 0.08 mm1
b = 9.463 (3) ÅT = 293 K
c = 15.644 (5) Å0.30 × 0.25 × 0.25 mm
β = 98.253 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3166 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1342 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.099
8953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.96Δρmax = 0.16 e Å3
3166 reflectionsΔρmin = 0.17 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19370 (14)0.7778 (3)0.2003 (2)0.0500 (10)
H1A0.16760.83950.21730.060*
C20.23874 (15)0.7408 (4)0.2580 (2)0.0572 (10)
H2A0.24320.77730.31370.069*
C30.27834 (15)0.6474 (4)0.2331 (2)0.0612 (11)
H3A0.30930.62410.27240.073*
C40.27214 (13)0.5911 (3)0.1531 (2)0.0544 (10)
H4A0.29840.52770.13850.065*
C50.17604 (14)0.5463 (4)0.1308 (2)0.0545 (10)
H5A0.20260.48100.14200.065*
C60.13522 (16)0.5805 (4)0.1946 (2)0.0636 (11)
H6A0.13390.53990.24900.076*
C70.09413 (14)0.6788 (4)0.1784 (2)0.0569 (10)
H7A0.06610.70300.22270.068*
C80.09507 (14)0.7383 (4)0.0992 (2)0.0489 (9)
H8A0.06750.80170.08940.059*
C90.14161 (12)0.7630 (3)0.0516 (2)0.0375 (8)
C100.18597 (13)0.7233 (3)0.1144 (2)0.0391 (8)
C110.22609 (13)0.6270 (3)0.0906 (2)0.0410 (9)
C120.17990 (13)0.6065 (3)0.0472 (2)0.0407 (9)
C130.13817 (12)0.7038 (3)0.0310 (2)0.0388 (8)
C140.03651 (14)0.6738 (4)0.1059 (2)0.0566 (10)
H14A0.06110.60500.09240.068*
C150.01240 (15)0.6344 (4)0.1313 (2)0.0662 (11)
H15A0.02090.53890.13450.079*
C160.05029 (15)0.7365 (5)0.1529 (2)0.0647 (11)
H16A0.08340.70810.17020.078*
C170.03851 (13)0.8749 (4)0.1484 (2)0.0550 (10)
H17A0.06370.94130.16300.066*
C180.07636 (15)1.2536 (4)0.08545 (19)0.0542 (10)
H18A0.05011.31630.10070.065*
C190.12268 (15)1.3040 (4)0.0582 (2)0.0610 (10)
H19A0.12771.40110.05450.073*
C200.16333 (14)1.2119 (4)0.0353 (2)0.0532 (10)
H20A0.19491.24870.01660.064*
C210.15701 (12)1.0701 (3)0.04014 (18)0.0429 (9)
H21A0.18431.01020.02520.052*
C220.09950 (12)0.8657 (3)0.07359 (18)0.0377 (8)
C230.05018 (12)0.8194 (4)0.09971 (18)0.0403 (8)
C240.01180 (13)0.9217 (4)0.12164 (19)0.0415 (8)
C250.06751 (13)1.1060 (3)0.09096 (18)0.0397 (8)
C260.10848 (12)1.0121 (3)0.06823 (17)0.0365 (8)
N10.22283 (10)0.5684 (3)0.01215 (18)0.0449 (8)
N20.02041 (10)1.0618 (3)0.11775 (15)0.0447 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (2)0.038 (2)0.057 (3)0.0051 (19)0.008 (2)0.001 (2)
C20.067 (3)0.046 (3)0.056 (3)0.004 (2)0.000 (2)0.003 (2)
C30.057 (3)0.055 (3)0.068 (3)0.010 (2)0.005 (2)0.009 (2)
C40.046 (2)0.042 (2)0.076 (3)0.0075 (19)0.011 (2)0.011 (2)
C50.059 (3)0.045 (2)0.063 (3)0.004 (2)0.022 (2)0.004 (2)
C60.077 (3)0.061 (3)0.056 (3)0.004 (2)0.018 (2)0.010 (2)
C70.056 (3)0.061 (3)0.052 (2)0.004 (2)0.0015 (19)0.001 (2)
C80.044 (2)0.047 (2)0.056 (2)0.0013 (18)0.0086 (19)0.000 (2)
C90.0324 (19)0.032 (2)0.050 (2)0.0002 (17)0.0128 (17)0.0045 (18)
C100.038 (2)0.030 (2)0.050 (2)0.0020 (17)0.0116 (18)0.0023 (18)
C110.0330 (19)0.030 (2)0.060 (3)0.0017 (17)0.0083 (18)0.0112 (19)
C120.041 (2)0.035 (2)0.048 (2)0.0007 (18)0.0153 (18)0.0001 (18)
C130.034 (2)0.030 (2)0.055 (2)0.0009 (17)0.0164 (18)0.0012 (18)
C140.055 (2)0.043 (3)0.077 (3)0.002 (2)0.025 (2)0.005 (2)
C150.062 (3)0.052 (3)0.089 (3)0.009 (2)0.024 (2)0.006 (2)
C160.045 (2)0.072 (3)0.081 (3)0.003 (2)0.024 (2)0.010 (2)
C170.040 (2)0.068 (3)0.060 (3)0.008 (2)0.0170 (18)0.007 (2)
C180.059 (3)0.042 (3)0.063 (3)0.010 (2)0.017 (2)0.001 (2)
C190.071 (3)0.037 (2)0.078 (3)0.000 (2)0.020 (2)0.004 (2)
C200.048 (2)0.047 (3)0.066 (2)0.005 (2)0.0140 (18)0.000 (2)
C210.041 (2)0.037 (2)0.051 (2)0.0045 (19)0.0097 (16)0.0013 (18)
C220.0327 (19)0.040 (2)0.041 (2)0.0063 (18)0.0058 (16)0.0002 (17)
C230.036 (2)0.040 (2)0.045 (2)0.0037 (19)0.0062 (16)0.0031 (17)
C240.034 (2)0.044 (2)0.048 (2)0.0020 (19)0.0086 (16)0.0021 (18)
C250.040 (2)0.038 (2)0.041 (2)0.0056 (19)0.0074 (16)0.0003 (17)
C260.0338 (19)0.037 (2)0.039 (2)0.0054 (18)0.0066 (15)0.0013 (17)
N10.0439 (18)0.0339 (18)0.059 (2)0.0049 (15)0.0141 (16)0.0017 (16)
N20.0401 (18)0.043 (2)0.0533 (19)0.0086 (16)0.0131 (14)0.0037 (15)
Geometric parameters (Å, º) top
C1—C21.365 (4)C14—C151.364 (4)
C1—C101.427 (4)C14—C231.425 (4)
C1—H1A0.93C14—H14A0.93
C2—C31.406 (4)C15—C161.412 (4)
C2—H2A0.93C15—H15A0.93
C3—C41.349 (4)C16—C171.345 (4)
C3—H3A0.93C16—H16A0.93
C4—C111.421 (4)C17—C241.424 (4)
C4—H4A0.93C17—H17A0.93
C5—C61.345 (4)C18—C191.352 (4)
C5—C121.418 (4)C18—C251.419 (4)
C5—H5A0.93C18—H18A0.93
C6—C71.418 (4)C19—C201.406 (4)
C6—H6A0.93C19—H19A0.93
C7—C81.358 (4)C20—C211.354 (4)
C7—H7A0.93C20—H20A0.93
C8—C131.425 (4)C21—C261.432 (4)
C8—H8A0.93C21—H21A0.93
C9—C131.399 (4)C22—C231.397 (4)
C9—C101.405 (4)C22—C261.407 (4)
C9—C221.491 (4)C23—C241.423 (4)
C10—C111.426 (4)C24—N21.345 (4)
C11—N11.339 (4)C25—N21.346 (3)
C12—N11.346 (4)C25—C261.421 (4)
C12—C131.423 (4)
C2—C1—C10121.0 (3)C15—C14—H14A119.8
C2—C1—H1A119.5C23—C14—H14A119.8
C10—C1—H1A119.5C14—C15—C16120.9 (4)
C1—C2—C3120.0 (3)C14—C15—H15A119.5
C1—C2—H2A120.0C16—C15—H15A119.5
C3—C2—H2A120.0C17—C16—C15120.1 (4)
C4—C3—C2121.0 (3)C17—C16—H16A119.9
C4—C3—H3A119.5C15—C16—H16A119.9
C2—C3—H3A119.5C16—C17—C24121.2 (3)
C3—C4—C11121.0 (3)C16—C17—H17A119.4
C3—C4—H4A119.5C24—C17—H17A119.4
C11—C4—H4A119.5C19—C18—C25120.5 (3)
C6—C5—C12122.1 (4)C19—C18—H18A119.7
C6—C5—H5A119.0C25—C18—H18A119.7
C12—C5—H5A119.0C18—C19—C20121.0 (3)
C5—C6—C7119.6 (4)C18—C19—H19A119.5
C5—C6—H6A120.2C20—C19—H19A119.5
C7—C6—H6A120.2C21—C20—C19120.6 (3)
C8—C7—C6121.0 (3)C21—C20—H20A119.7
C8—C7—H7A119.5C19—C20—H20A119.7
C6—C7—H7A119.5C20—C21—C26120.2 (3)
C7—C8—C13120.1 (3)C20—C21—H21A119.9
C7—C8—H8A119.9C26—C21—H21A119.9
C13—C8—H8A119.9C23—C22—C26118.3 (3)
C13—C9—C10118.5 (3)C23—C22—C9121.0 (3)
C13—C9—C22121.5 (3)C26—C22—C9120.7 (3)
C10—C9—C22120.1 (3)C22—C23—C24118.8 (3)
C9—C10—C11118.6 (3)C22—C23—C14122.9 (3)
C9—C10—C1123.1 (3)C24—C23—C14118.2 (3)
C11—C10—C1118.3 (3)N2—C24—C23123.2 (3)
N1—C11—C4117.9 (3)N2—C24—C17117.8 (3)
N1—C11—C10123.4 (3)C23—C24—C17119.0 (3)
C4—C11—C10118.7 (3)N2—C25—C18118.0 (3)
N1—C12—C5118.1 (3)N2—C25—C26123.2 (3)
N1—C12—C13123.9 (3)C18—C25—C26118.8 (3)
C5—C12—C13118.1 (3)C22—C26—C25118.6 (3)
C9—C13—C12118.3 (3)C22—C26—C21122.6 (3)
C9—C13—C8122.7 (3)C25—C26—C21118.8 (3)
C12—C13—C8119.1 (3)C11—N1—C12117.3 (3)
C15—C14—C23120.5 (3)C24—N2—C25117.8 (3)
C10—C1—C2—C30.1 (5)C13—C9—C22—C2384.9 (4)
C1—C2—C3—C41.3 (5)C10—C9—C22—C2395.0 (4)
C2—C3—C4—C111.6 (5)C13—C9—C22—C2694.8 (4)
C12—C5—C6—C70.6 (5)C10—C9—C22—C2685.2 (4)
C5—C6—C7—C80.5 (5)C26—C22—C23—C241.4 (4)
C6—C7—C8—C130.8 (5)C9—C22—C23—C24178.8 (3)
C13—C9—C10—C111.3 (4)C26—C22—C23—C14178.9 (3)
C22—C9—C10—C11178.8 (3)C9—C22—C23—C140.9 (4)
C13—C9—C10—C1179.5 (3)C15—C14—C23—C22179.7 (3)
C22—C9—C10—C10.5 (4)C15—C14—C23—C240.6 (5)
C2—C1—C10—C9177.1 (3)C22—C23—C24—N20.6 (5)
C2—C1—C10—C111.1 (4)C14—C23—C24—N2179.7 (3)
C3—C4—C11—N1179.3 (3)C22—C23—C24—C17180.0 (3)
C3—C4—C11—C100.6 (5)C14—C23—C24—C170.2 (4)
C9—C10—C11—N12.3 (4)C16—C17—C24—N2179.2 (3)
C1—C10—C11—N1179.4 (3)C16—C17—C24—C230.2 (5)
C9—C10—C11—C4177.6 (3)C19—C18—C25—N2179.4 (3)
C1—C10—C11—C40.8 (4)C19—C18—C25—C260.7 (5)
C6—C5—C12—N1178.6 (3)C23—C22—C26—C251.1 (4)
C6—C5—C12—C131.4 (5)C9—C22—C26—C25179.2 (3)
C10—C9—C13—C120.1 (4)C23—C22—C26—C21178.4 (3)
C22—C9—C13—C12180.0 (3)C9—C22—C26—C211.3 (4)
C10—C9—C13—C8179.4 (3)N2—C25—C26—C220.2 (4)
C22—C9—C13—C80.7 (4)C18—C25—C26—C22179.9 (3)
N1—C12—C13—C90.4 (5)N2—C25—C26—C21179.7 (3)
C5—C12—C13—C9179.6 (3)C18—C25—C26—C210.3 (4)
N1—C12—C13—C8178.9 (3)C20—C21—C26—C22179.3 (3)
C5—C12—C13—C81.0 (4)C20—C21—C26—C250.2 (4)
C7—C8—C13—C9179.3 (3)C4—C11—N1—C12178.1 (3)
C7—C8—C13—C120.0 (4)C10—C11—N1—C121.8 (4)
C23—C14—C15—C160.6 (5)C5—C12—N1—C11179.5 (3)
C14—C15—C16—C170.1 (6)C13—C12—N1—C110.4 (4)
C15—C16—C17—C240.3 (5)C23—C24—N2—C250.6 (4)
C25—C18—C19—C200.5 (5)C17—C24—N2—C25178.8 (3)
C18—C19—C20—C210.1 (5)C18—C25—N2—C24179.0 (3)
C19—C20—C21—C260.4 (5)C26—C25—N2—C241.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N2i0.932.493.374 (5)159
C21—H21A···N1ii0.932.533.419 (4)159
C19—H19A···Cg1iii0.932.883.764 (4)159
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+3/2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H16N2
Mr356.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.427 (8), 9.463 (3), 15.644 (5)
β (°) 98.253 (6)
V3)3578.9 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
8953, 3166, 1342
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.113, 0.96
No. of reflections3166
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N2i0.932.493.374 (5)159
C21—H21A···N1ii0.932.533.419 (4)159
C19—H19A···Cg1iii0.932.883.764 (4)159
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+3/2, z; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds