Download citation
Download citation
link to html
The title compound, C11H17NO2S, was synthesized by the Gewald reaction. Intra­molecular N—H...O and C—H...O hydrogen bonds determine the conformation of the mol­ecule. The packing of the mol­ecules in the crystal structure is governed mainly by inter­molecular N—H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703975X/cs2046sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703975X/cs2046Isup2.hkl
Contains datablock I

CCDC reference: 660297

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.070
  • wR factor = 0.172
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.75 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.03 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemistry of 2-aminothiophenes has received much attention because of the convenient availability through the most versatile synthetic methods developed by Gewald (Sabnis et al., 1999). Recently we have been interested in the synthesis of derivatives of heterocycles using the aza-Wittig reaction. Some related X-ray crystal structure reports for pyrimidinone derivatives have been published (Ding et al., 2004; Liu & Hu, 2006; Liu & Liao, 2006). Here, the structure of the title compound, which may be used as a new intermediate synthesized via the Gewald reaction, is reported (Fig. 1). The thiophene ring system is coplanar. Intramolecular N—H···O and C—H···O hydrogen bonds (Table 1) determine the conformation of the molecule. As can be seen from the packing diagram (Fig. 2), intramolecular and intermolecular N—H···O hydrogen bonds (Table 1) link the molecules.

Related literature top

A related synthetic method is described by Sabnis et al. (1999). For related literature, see: Ding et al. (2004); Liu & Hu (2006); Liu & Liao (2006).

Experimental top

To a solution of ethyl cyanoacetate(1.13 g, 10 mmol), sulfur (0.32 g, 10 mmol) and 4-methylpentan-2-one (1.00 g, 10 mmol) in anhydrous ethanol (20 ml) was added in morpholine (0.8 ml). The mixture was stirred for 6 h at 313 - 323 K. The solution was concentrated under reduced pressure and the residue was recrystallized from dichloromethane and ethanol (1:2 v/v) to give the title compound. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

All H atoms were located in difference maps and treated as riding atoms, except those at N1, with the following distance restraints: C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.98 Å, Uiso = 1.2Ueq (C) for CH, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, N—H = 0.86 Å, Uiso = 1.2Ueq (N) for NH2, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3.

Structure description top

The chemistry of 2-aminothiophenes has received much attention because of the convenient availability through the most versatile synthetic methods developed by Gewald (Sabnis et al., 1999). Recently we have been interested in the synthesis of derivatives of heterocycles using the aza-Wittig reaction. Some related X-ray crystal structure reports for pyrimidinone derivatives have been published (Ding et al., 2004; Liu & Hu, 2006; Liu & Liao, 2006). Here, the structure of the title compound, which may be used as a new intermediate synthesized via the Gewald reaction, is reported (Fig. 1). The thiophene ring system is coplanar. Intramolecular N—H···O and C—H···O hydrogen bonds (Table 1) determine the conformation of the molecule. As can be seen from the packing diagram (Fig. 2), intramolecular and intermolecular N—H···O hydrogen bonds (Table 1) link the molecules.

A related synthetic method is described by Sabnis et al. (1999). For related literature, see: Ding et al. (2004); Liu & Hu (2006); Liu & Liao (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, intramolecular hydrogen bonds are shown in dashed lines.
[Figure 2] Fig. 2. The packing in the crystal structure, showing the N—H···O hydrogen bonds as dashed lines.
Ethyl 2-amino-4-isobutylthiophene-3-carboxylate top
Crystal data top
C11H17NO2SF(000) = 488
Mr = 227.32Dx = 1.204 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3288 reflections
a = 13.4321 (7) Åθ = 2.5–27.0°
b = 9.4977 (7) ŵ = 0.24 mm1
c = 9.8629 (10) ÅT = 293 K
β = 94.435 (1)°Block, colorless
V = 1254.48 (17) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2458 independent reflections
Radiation source: fine-focus sealed tube1979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.931, Tmax = 0.954k = 1111
12038 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.08P)2 + 0.4453P]
where P = (Fo2 + 2Fc2)/3
2458 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H17NO2SV = 1254.48 (17) Å3
Mr = 227.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4321 (7) ŵ = 0.24 mm1
b = 9.4977 (7) ÅT = 293 K
c = 9.8629 (10) Å0.30 × 0.20 × 0.20 mm
β = 94.435 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2458 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1979 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.954Rint = 0.044
12038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.39 e Å3
2458 reflectionsΔρmin = 0.23 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1600 (2)0.2199 (3)0.5726 (3)0.0552 (8)
H10.18680.15420.63510.066*
C20.1898 (2)0.3551 (3)0.5718 (3)0.0440 (6)
C30.13509 (18)0.4346 (2)0.4638 (3)0.0389 (6)
C40.0652 (2)0.3515 (3)0.3900 (3)0.0423 (6)
C50.2705 (2)0.4095 (3)0.6717 (3)0.0540 (7)
H5A0.27730.34550.74850.065*
H5B0.24980.50000.70530.065*
C60.3726 (2)0.4269 (3)0.6161 (4)0.0634 (9)
H60.36540.49300.53980.076*
C70.4119 (3)0.2894 (5)0.5640 (5)0.1067 (15)
H7A0.47720.30410.53340.160*
H7B0.36780.25590.48980.160*
H7C0.41570.22100.63590.160*
C80.4457 (3)0.4899 (5)0.7246 (5)0.1052 (15)
H8A0.42050.57860.75380.158*
H8B0.50910.50410.68780.158*
H8C0.45380.42690.80080.158*
C90.1436 (2)0.5818 (3)0.4294 (3)0.0456 (7)
C100.2205 (3)0.8022 (3)0.4833 (4)0.0785 (11)
H10A0.15930.85240.49760.094*
H10B0.23510.81480.38930.094*
C110.3024 (3)0.8574 (4)0.5739 (5)0.0965 (14)
H11A0.28760.84370.66670.145*
H11B0.31040.95610.55690.145*
H11C0.36300.80880.55770.145*
N10.0020 (2)0.3892 (3)0.2887 (3)0.0533 (7)
H1B0.039 (2)0.330 (3)0.245 (3)0.064*
H1A0.003 (2)0.476 (4)0.264 (3)0.064*
O10.09739 (17)0.6374 (2)0.3336 (2)0.0669 (6)
O20.20850 (15)0.65355 (18)0.5122 (2)0.0583 (6)
S10.06791 (6)0.17970 (7)0.44771 (8)0.0563 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (2)0.0348 (14)0.0594 (18)0.0013 (13)0.0021 (15)0.0092 (13)
C20.0506 (15)0.0360 (13)0.0454 (15)0.0012 (11)0.0045 (12)0.0013 (11)
C30.0460 (14)0.0267 (12)0.0439 (14)0.0027 (10)0.0022 (11)0.0006 (10)
C40.0532 (16)0.0288 (12)0.0448 (15)0.0028 (10)0.0036 (12)0.0028 (10)
C50.0629 (19)0.0486 (16)0.0484 (17)0.0011 (13)0.0096 (14)0.0034 (13)
C60.0577 (19)0.0528 (18)0.077 (2)0.0024 (14)0.0096 (16)0.0093 (16)
C70.076 (3)0.088 (3)0.157 (5)0.021 (2)0.011 (3)0.009 (3)
C80.077 (3)0.115 (4)0.118 (4)0.022 (2)0.028 (3)0.004 (3)
C90.0459 (15)0.0340 (13)0.0560 (17)0.0041 (11)0.0028 (13)0.0018 (12)
C100.082 (2)0.0294 (15)0.122 (3)0.0067 (14)0.008 (2)0.0089 (17)
C110.089 (3)0.0433 (18)0.154 (4)0.0178 (18)0.017 (3)0.006 (2)
N10.0638 (16)0.0347 (12)0.0587 (16)0.0010 (11)0.0130 (13)0.0068 (11)
O10.0819 (15)0.0334 (10)0.0808 (16)0.0012 (10)0.0236 (12)0.0112 (10)
O20.0646 (13)0.0259 (9)0.0815 (15)0.0064 (8)0.0132 (11)0.0024 (9)
S10.0734 (6)0.0293 (4)0.0650 (5)0.0083 (3)0.0026 (4)0.0018 (3)
Geometric parameters (Å, º) top
C1—C21.345 (4)C7—H7B0.9600
C1—S11.720 (3)C7—H7C0.9600
C1—H10.9300C8—H8A0.9600
C2—C31.457 (3)C8—H8B0.9600
C2—C51.500 (4)C8—H8C0.9600
C3—C41.389 (4)C9—O11.211 (3)
C3—C91.446 (3)C9—O21.334 (3)
C4—N11.341 (4)C10—O21.452 (3)
C4—S11.728 (3)C10—C111.460 (5)
C5—C61.524 (4)C10—H10A0.9700
C5—H5A0.9700C10—H10B0.9700
C5—H5B0.9700C11—H11A0.9600
C6—C71.513 (5)C11—H11B0.9600
C6—C81.519 (5)C11—H11C0.9600
C6—H60.9800N1—H1B0.85 (3)
C7—H7A0.9600N1—H1A0.86 (3)
C2—C1—S1113.9 (2)H7A—C7—H7C109.5
C2—C1—H1123.0H7B—C7—H7C109.5
S1—C1—H1123.0C6—C8—H8A109.5
C1—C2—C3111.4 (2)C6—C8—H8B109.5
C1—C2—C5121.6 (3)H8A—C8—H8B109.5
C3—C2—C5126.9 (2)C6—C8—H8C109.5
C4—C3—C9119.2 (2)H8A—C8—H8C109.5
C4—C3—C2111.8 (2)H8B—C8—H8C109.5
C9—C3—C2128.9 (2)O1—C9—O2121.7 (2)
N1—C4—C3128.8 (2)O1—C9—C3124.1 (3)
N1—C4—S1119.6 (2)O2—C9—C3114.2 (2)
C3—C4—S1111.54 (19)O2—C10—C11108.6 (3)
C2—C5—C6115.2 (2)O2—C10—H10A110.0
C2—C5—H5A108.5C11—C10—H10A110.0
C6—C5—H5A108.5O2—C10—H10B110.0
C2—C5—H5B108.5C11—C10—H10B110.0
C6—C5—H5B108.5H10A—C10—H10B108.3
H5A—C5—H5B107.5C10—C11—H11A109.5
C7—C6—C8110.8 (3)C10—C11—H11B109.5
C7—C6—C5112.1 (3)H11A—C11—H11B109.5
C8—C6—C5109.9 (3)C10—C11—H11C109.5
C7—C6—H6108.0H11A—C11—H11C109.5
C8—C6—H6108.0H11B—C11—H11C109.5
C5—C6—H6108.0C4—N1—H1B122 (2)
C6—C7—H7A109.5C4—N1—H1A114 (2)
C6—C7—H7B109.5H1B—N1—H1A123 (3)
H7A—C7—H7B109.5C9—O2—C10117.0 (2)
C6—C7—H7C109.5C1—S1—C491.27 (13)
S1—C1—C2—C30.3 (3)C2—C5—C6—C759.4 (4)
S1—C1—C2—C5179.1 (2)C2—C5—C6—C8176.9 (3)
C1—C2—C3—C40.7 (3)C4—C3—C9—O14.7 (4)
C5—C2—C3—C4179.9 (2)C2—C3—C9—O1176.8 (3)
C1—C2—C3—C9179.3 (3)C4—C3—C9—O2176.0 (2)
C5—C2—C3—C91.4 (4)C2—C3—C9—O22.5 (4)
C9—C3—C4—N12.6 (4)O1—C9—O2—C100.8 (4)
C2—C3—C4—N1176.1 (3)C3—C9—O2—C10179.9 (3)
C9—C3—C4—S1179.87 (19)C11—C10—O2—C9173.3 (3)
C2—C3—C4—S11.4 (3)C2—C1—S1—C41.0 (2)
C1—C2—C5—C6101.9 (3)N1—C4—S1—C1176.5 (2)
C3—C2—C5—C677.4 (4)C3—C4—S1—C11.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.85 (3)2.11 (3)2.929 (3)162 (3)
N1—H1A···O10.86 (3)2.07 (3)2.728 (3)132 (3)
C6—H6···O20.982.603.193 (4)119
C5—H5B···O20.972.432.888 (3)109
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H17NO2S
Mr227.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.4321 (7), 9.4977 (7), 9.8629 (10)
β (°) 94.435 (1)
V3)1254.48 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
12038, 2458, 1979
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.172, 1.16
No. of reflections2458
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.85 (3)2.11 (3)2.929 (3)162 (3)
N1—H1A···O10.86 (3)2.07 (3)2.728 (3)132 (3)
C6—H6···O20.982.603.193 (4)119.2
C5—H5B···O20.972.432.888 (3)108.6
Symmetry code: (i) x, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds