Download citation
Download citation
link to html
In the title compound, C36H38CuN4O10·CHCl3, the CuII atom is coordinated by two phenolate O atoms and two amine N atoms and displays a distorted square-planar coordination geometry. The complex mol­ecule has approximate C2 symmetry. The chloro­form solvent mol­ecule is disordered equally over two positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038202/gk2091sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038202/gk2091Isup2.hkl
Contains datablock I

CCDC reference: 660074

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • H-atom completeness 98%
  • Disorder in solvent or counterion
  • R factor = 0.056
  • wR factor = 0.148
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for Cl2' PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for Cl3 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for Cl3' PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for C37' PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C37 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 50.00 Perc. PLAT432_ALERT_2_C Short Inter X...Y Contact Cl2' .. C26 .. 3.22 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact Cl3 .. C31 .. 3.23 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C2 Cl6
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C37 H39 Cl3 Cu1 N4 O10 Atom count from the _atom_site data: C37 H38 Cl3 Cu1 N4 O10 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C37 H39 Cl3 Cu N4 O10 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 74.00 74.00 0.00 H 78.00 76.00 2.00 Cl 6.00 6.00 0.00 Cu 2.00 2.00 0.00 N 8.00 8.00 0.00 O 20.00 20.00 0.00 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of N1 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of N2 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 10 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 9 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the last few decades, the modification of the macrocycles to control and tune properties of coordinated metal centers has been the subject of much interest (Meyerstein, 1990). We are involved in studies of oxaaza-macrocycles and their metal coordination compounds (Ma et al., 2005). In this paper, we report the preparation and crystal structure of the title macrocyclic complex of CuII.

In the reported crystal structure, the CuII atom is four-coordinated by two phenolate O atoms and two N atoms from the macrocyclic ligand forming a distorted square planar coordination geometry (Fig. 1). The title molecule has an approximate C2 symmetry. The geometry around the Cu atom is normal (Ma & Zhu, 2002). The chloroform molecule is disordered.

Related literature top

For related literature, see: Ma et al. (2005); Ma & Zhu (2002); Meyerstein (1990). For synthesis, see: López-Deber et al. (2005).

Experimental top

5,6:19,20-Dibenzo-1,4,11,14-tetraoxa-8,17-diazacycloeicosane (L2) was synthesized according to the reported method (López-Deber et al., 2005). An anhydrous toluene solution (200 ml) containing L2 (0.76 g, 2.00 mmol), paraformaldehyde (0.15 g, 5.00 mmol), and 4-nitrophenol (0.56 g, 4.00 mmol) was refluxed for 24 h. The solvent was evaporated by rotatory evaporation, and the yellow solid consisting of the title ligand H2L was obtained.

A solution of Cu(NO3)2.3H2O (0.024 g, 0.10 mmol) in 5 ml e thanol was added dropwise to a solution of H2L (0.068 g, 0.10 mmol) in 6 ml chloroform. After stirring for 30 min, the mixture was filtered. Green crystals of of the title compound were obtained by evaporating the filtrate at room temperature (yield 50%).

Refinement top

The H atoms bonded C atoms were placed at their idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97Å and Uiso(H) = 1.2Ueq(C) for methylene and aromatic H atoms. The chloroform molecule is disordered over two positions. It was refined with no restraints imposed on the molecular geometry and with the assumed occupancy factor of 0.5. The high residual peak on the final differnce map is located 0.70 Å from Cl2' atom. The H atom of the chloroform molecule was not localized and is not included in the structural model.

Structure description top

In the last few decades, the modification of the macrocycles to control and tune properties of coordinated metal centers has been the subject of much interest (Meyerstein, 1990). We are involved in studies of oxaaza-macrocycles and their metal coordination compounds (Ma et al., 2005). In this paper, we report the preparation and crystal structure of the title macrocyclic complex of CuII.

In the reported crystal structure, the CuII atom is four-coordinated by two phenolate O atoms and two N atoms from the macrocyclic ligand forming a distorted square planar coordination geometry (Fig. 1). The title molecule has an approximate C2 symmetry. The geometry around the Cu atom is normal (Ma & Zhu, 2002). The chloroform molecule is disordered.

For related literature, see: Ma et al. (2005); Ma & Zhu (2002); Meyerstein (1990). For synthesis, see: López-Deber et al. (2005).

Computing details top

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule the title molecule. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity, Only one orintation of CHCl3 is shown.
[8,17-Bis(5-nitro-2-oxidobenzyl-κO)-5,6:19,20-dibenzo-1,4,11,14-tetraoxa-8,17- diazacycloeicosane-κ4N,N']copper(II) chloroform solvate top
Crystal data top
C36H38CuN4O10·CHCl3Z = 2
Mr = 869.61F(000) = 898
Triclinic, P1Dx = 1.490 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 12.055 (3) ÅCell parameters from 13446 reflections
b = 12.819 (4) Åθ = 3.1–27.4°
c = 13.409 (4) ŵ = 0.83 mm1
α = 82.532 (12)°T = 293 K
β = 82.378 (11)°Block, green
γ = 71.364 (9)°0.23 × 0.22 × 0.15 mm
V = 1937.7 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8707 independent reflections
Radiation source: rotor target6756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.826, Tmax = 0.883l = 1717
18759 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0646P)2 + 1.7805P]
where P = (Fo2 + 2Fc2)/3
8707 reflections(Δ/σ)max = 0.001
527 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
C36H38CuN4O10·CHCl3γ = 71.364 (9)°
Mr = 869.61V = 1937.7 (10) Å3
Triclinic, P1Z = 2
a = 12.055 (3) ÅMo Kα radiation
b = 12.819 (4) ŵ = 0.83 mm1
c = 13.409 (4) ÅT = 293 K
α = 82.532 (12)°0.23 × 0.22 × 0.15 mm
β = 82.378 (11)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8707 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6756 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.883Rint = 0.027
18759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.07Δρmax = 1.33 e Å3
8707 reflectionsΔρmin = 1.04 e Å3
527 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.71823 (3)0.20288 (3)0.27584 (3)0.03486 (12)
C10.3790 (3)0.3280 (4)0.6013 (3)0.0620 (10)
H10.29970.34500.62470.074*
C20.4616 (4)0.2550 (4)0.6590 (3)0.0695 (11)
H20.43860.22380.72170.083*
C30.5793 (3)0.2283 (3)0.6231 (3)0.0554 (9)
H30.63520.17920.66250.067*
C40.6155 (3)0.2732 (3)0.5297 (2)0.0411 (7)
C50.5300 (3)0.3481 (3)0.4729 (2)0.0405 (7)
C60.4121 (3)0.3763 (3)0.5092 (3)0.0514 (8)
H60.35570.42740.47160.062*
C70.4897 (3)0.4700 (3)0.3214 (3)0.0495 (8)
H7A0.45180.53570.35660.059*
H7B0.42960.43990.30760.059*
C80.5560 (3)0.4981 (3)0.2251 (3)0.0503 (8)
H8A0.50760.56330.18830.060*
H8B0.62640.51260.23890.060*
C90.6373 (3)0.4149 (3)0.0713 (2)0.0443 (7)
C100.6663 (4)0.5075 (3)0.0251 (3)0.0596 (9)
H100.65350.56860.06060.072*
C110.7148 (4)0.5071 (4)0.0752 (3)0.0704 (12)
H110.73420.56900.10630.084*
C120.7345 (3)0.4184 (4)0.1290 (3)0.0633 (10)
H120.76680.41960.19590.076*
C130.7055 (3)0.3267 (3)0.0819 (3)0.0519 (8)
H130.71850.26600.11810.062*
C140.6576 (3)0.3229 (3)0.0180 (2)0.0399 (7)
C150.6212 (2)0.2252 (3)0.0668 (2)0.0375 (6)
H15A0.61060.18530.01400.045*
H15B0.54550.25220.10550.045*
C160.7440 (3)0.2485 (3)0.4927 (2)0.0395 (6)
H16A0.75710.31680.46170.047*
H16B0.78910.22440.55080.047*
C170.8248 (2)0.1088 (3)0.0779 (2)0.0395 (7)
H17A0.84630.17430.05060.047*
H17B0.81900.07160.02110.047*
C180.9229 (3)0.0329 (3)0.1370 (2)0.0429 (7)
H18A0.99800.03360.10080.052*
H18B0.91760.06040.20210.052*
C191.0058 (3)0.1512 (3)0.2126 (3)0.0511 (8)
H19A1.06790.11860.21430.061*
H19B1.04020.21980.18110.061*
C200.9581 (4)0.1763 (3)0.3186 (3)0.0608 (10)
H20A0.88900.19900.31700.073*
H20B1.01660.23760.35100.073*
C210.8062 (3)0.0388 (3)0.4051 (3)0.0487 (8)
H21A0.77700.09640.44200.058*
H21B0.76560.01340.34450.058*
C220.7783 (3)0.0561 (3)0.4694 (2)0.0430 (7)
H22A0.69770.07020.49940.052*
H22B0.82850.03270.52420.052*
C230.5085 (2)0.1334 (3)0.3020 (2)0.0370 (6)
C240.3935 (3)0.1536 (3)0.3514 (2)0.0470 (8)
H240.37200.19490.40690.056*
C250.3129 (3)0.1135 (3)0.3194 (2)0.0455 (7)
H250.23740.12770.35230.055*
C260.3459 (3)0.0513 (3)0.2372 (2)0.0417 (7)
C270.4568 (3)0.0326 (2)0.1851 (2)0.0389 (6)
H270.47610.00750.12880.047*
C280.5387 (2)0.0730 (2)0.2159 (2)0.0347 (6)
C290.9426 (2)0.2571 (2)0.3520 (2)0.0371 (6)
C300.8940 (2)0.3123 (3)0.2616 (2)0.0375 (6)
C310.9198 (3)0.4091 (3)0.2205 (3)0.0506 (8)
H310.88900.44590.16110.061*
C320.9903 (3)0.4512 (3)0.2668 (3)0.0547 (9)
H321.00780.51490.23820.066*
C331.0340 (3)0.3977 (3)0.3554 (3)0.0476 (8)
C341.0106 (2)0.3018 (3)0.3984 (2)0.0427 (7)
H341.04070.26730.45880.051*
C350.9206 (2)0.1509 (2)0.3955 (2)0.0376 (6)
H35A0.95890.12500.45720.045*
H35B0.95560.09550.34800.045*
C360.6608 (2)0.0469 (2)0.1620 (2)0.0358 (6)
H36A0.71450.00840.20420.043*
H36B0.66150.01480.10010.043*
C370.8037 (11)0.2229 (8)0.0476 (7)0.056 (3)0.50
C37'0.8568 (17)0.239 (2)0.0380 (19)0.161 (12)0.50
N10.70559 (19)0.1447 (2)0.13594 (17)0.0332 (5)
N20.79173 (19)0.16288 (19)0.41818 (17)0.0339 (5)
N31.1055 (3)0.4422 (3)0.4063 (3)0.0629 (9)
N40.2629 (3)0.0064 (3)0.2054 (2)0.0550 (7)
O10.57237 (18)0.38994 (18)0.38185 (16)0.0439 (5)
O20.5863 (2)0.40529 (18)0.16771 (16)0.0485 (5)
O30.9184 (2)0.07739 (19)0.1522 (2)0.0542 (6)
O40.9275 (2)0.0835 (2)0.3771 (2)0.0641 (7)
O50.58314 (18)0.1697 (2)0.33764 (16)0.0462 (5)
O60.82833 (19)0.27311 (19)0.21482 (15)0.0439 (5)
O70.1678 (2)0.0182 (3)0.2558 (2)0.0804 (9)
O80.2898 (3)0.0447 (3)0.1304 (2)0.0853 (10)
O91.1372 (3)0.3971 (3)0.4884 (3)0.0845 (10)
O101.1309 (3)0.5246 (3)0.3661 (3)0.0926 (11)
Cl10.8225 (5)0.3148 (4)0.1526 (4)0.1063 (18)0.50
Cl1'0.9885 (4)0.3439 (4)0.0298 (3)0.1373 (14)0.50
Cl20.6560 (2)0.19588 (18)0.0184 (2)0.0889 (8)0.50
Cl2'0.7794 (7)0.2300 (6)0.0623 (6)0.209 (2)*0.50
Cl30.8917 (5)0.2601 (4)0.0603 (4)0.177 (2)0.50
Cl3'0.7727 (5)0.2745 (5)0.1465 (5)0.147 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0335 (2)0.0416 (2)0.03340 (19)0.01475 (15)0.00599 (13)0.00648 (14)
C10.046 (2)0.074 (3)0.064 (2)0.0170 (18)0.0112 (17)0.023 (2)
C20.074 (3)0.071 (3)0.057 (2)0.024 (2)0.021 (2)0.007 (2)
C30.058 (2)0.052 (2)0.0466 (19)0.0075 (16)0.0037 (15)0.0049 (16)
C40.0439 (17)0.0411 (16)0.0385 (16)0.0113 (13)0.0002 (12)0.0127 (13)
C50.0388 (16)0.0427 (17)0.0411 (16)0.0096 (13)0.0046 (12)0.0147 (13)
C60.0414 (18)0.060 (2)0.053 (2)0.0092 (15)0.0051 (14)0.0194 (16)
C70.0468 (18)0.0446 (18)0.0496 (19)0.0039 (14)0.0150 (14)0.0130 (15)
C80.064 (2)0.0349 (16)0.0484 (19)0.0048 (14)0.0174 (16)0.0056 (14)
C90.0452 (17)0.0453 (18)0.0415 (17)0.0124 (14)0.0113 (13)0.0021 (14)
C100.072 (2)0.048 (2)0.063 (2)0.0260 (18)0.0138 (19)0.0038 (18)
C110.078 (3)0.064 (3)0.068 (3)0.032 (2)0.007 (2)0.025 (2)
C120.059 (2)0.073 (3)0.050 (2)0.0189 (19)0.0008 (17)0.0120 (19)
C130.0490 (19)0.059 (2)0.0424 (18)0.0105 (16)0.0049 (14)0.0011 (15)
C140.0354 (15)0.0438 (17)0.0380 (16)0.0089 (12)0.0086 (12)0.0018 (13)
C150.0340 (15)0.0454 (17)0.0348 (15)0.0117 (12)0.0080 (11)0.0060 (12)
C160.0381 (16)0.0432 (16)0.0372 (15)0.0089 (12)0.0069 (12)0.0099 (13)
C170.0337 (15)0.0486 (18)0.0362 (15)0.0124 (13)0.0015 (11)0.0088 (13)
C180.0362 (16)0.0467 (18)0.0481 (18)0.0134 (13)0.0041 (13)0.0105 (14)
C190.0394 (18)0.0458 (19)0.064 (2)0.0026 (14)0.0097 (15)0.0117 (16)
C200.076 (3)0.045 (2)0.062 (2)0.0166 (18)0.0013 (19)0.0196 (17)
C210.0496 (19)0.0390 (17)0.057 (2)0.0115 (14)0.0107 (15)0.0037 (15)
C220.0452 (17)0.0409 (17)0.0412 (17)0.0126 (13)0.0030 (13)0.0006 (13)
C230.0345 (15)0.0444 (16)0.0371 (15)0.0179 (12)0.0021 (11)0.0082 (12)
C240.0417 (17)0.061 (2)0.0436 (17)0.0217 (15)0.0056 (13)0.0199 (15)
C250.0344 (16)0.057 (2)0.0483 (18)0.0198 (14)0.0020 (13)0.0085 (15)
C260.0410 (16)0.0474 (18)0.0447 (17)0.0232 (14)0.0071 (13)0.0049 (14)
C270.0435 (16)0.0413 (16)0.0368 (15)0.0183 (13)0.0042 (12)0.0077 (13)
C280.0353 (15)0.0355 (15)0.0350 (15)0.0132 (12)0.0027 (11)0.0045 (12)
C290.0305 (14)0.0424 (16)0.0386 (15)0.0096 (12)0.0058 (11)0.0063 (12)
C300.0333 (15)0.0445 (16)0.0374 (15)0.0146 (12)0.0034 (11)0.0065 (12)
C310.060 (2)0.055 (2)0.0447 (18)0.0293 (17)0.0127 (15)0.0052 (15)
C320.060 (2)0.061 (2)0.056 (2)0.0377 (18)0.0046 (16)0.0030 (17)
C330.0377 (17)0.064 (2)0.0500 (19)0.0253 (15)0.0017 (13)0.0161 (16)
C340.0305 (15)0.0555 (19)0.0436 (17)0.0121 (13)0.0069 (12)0.0096 (14)
C350.0289 (14)0.0417 (16)0.0412 (16)0.0070 (12)0.0078 (11)0.0057 (13)
C360.0366 (15)0.0363 (15)0.0368 (15)0.0129 (12)0.0005 (11)0.0100 (12)
C370.101 (9)0.042 (4)0.041 (4)0.044 (5)0.014 (5)0.001 (3)
C37'0.134 (17)0.22 (2)0.168 (19)0.111 (17)0.097 (15)0.076 (16)
N10.0304 (12)0.0388 (13)0.0323 (12)0.0122 (10)0.0023 (9)0.0064 (10)
N20.0313 (12)0.0359 (13)0.0335 (12)0.0082 (9)0.0053 (9)0.0035 (10)
N30.0547 (18)0.091 (3)0.060 (2)0.0433 (18)0.0025 (15)0.0228 (18)
N40.0504 (17)0.070 (2)0.0574 (18)0.0332 (15)0.0080 (13)0.0104 (15)
O10.0414 (12)0.0473 (12)0.0393 (12)0.0066 (9)0.0080 (9)0.0048 (9)
O20.0642 (15)0.0424 (12)0.0399 (12)0.0164 (11)0.0056 (10)0.0066 (10)
O30.0479 (13)0.0438 (13)0.0744 (17)0.0114 (10)0.0230 (11)0.0069 (11)
O40.0591 (16)0.0587 (16)0.0785 (18)0.0153 (12)0.0020 (13)0.0331 (14)
O50.0412 (12)0.0688 (15)0.0393 (11)0.0275 (11)0.0017 (9)0.0220 (11)
O60.0500 (12)0.0559 (13)0.0354 (11)0.0286 (10)0.0116 (9)0.0009 (10)
O70.0516 (16)0.124 (3)0.088 (2)0.0548 (17)0.0049 (14)0.0307 (19)
O80.080 (2)0.122 (3)0.085 (2)0.063 (2)0.0053 (16)0.052 (2)
O90.081 (2)0.122 (3)0.076 (2)0.058 (2)0.0289 (16)0.0100 (19)
O100.112 (3)0.123 (3)0.081 (2)0.091 (2)0.0047 (18)0.015 (2)
Cl10.145 (4)0.089 (3)0.103 (3)0.058 (3)0.064 (3)0.034 (2)
Cl1'0.136 (3)0.143 (3)0.107 (3)0.010 (2)0.020 (2)0.035 (2)
Cl20.1068 (19)0.0546 (12)0.114 (2)0.0205 (12)0.0597 (16)0.0009 (12)
Cl30.186 (5)0.160 (4)0.168 (4)0.063 (3)0.127 (4)0.076 (3)
Cl3'0.138 (5)0.117 (4)0.192 (6)0.070 (3)0.070 (4)0.048 (4)
Geometric parameters (Å, º) top
Cu1—O51.874 (2)C20—H20B0.9700
Cu1—O61.878 (2)C21—O41.407 (4)
Cu1—N22.144 (2)C21—C221.507 (5)
Cu1—N12.147 (2)C21—H21A0.9700
C1—C21.374 (6)C21—H21B0.9700
C1—C61.377 (5)C22—N21.497 (4)
C1—H10.9300C22—H22A0.9700
C2—C31.383 (5)C22—H22B0.9700
C2—H20.9300C23—O51.301 (3)
C3—C41.386 (5)C23—C241.414 (4)
C3—H30.9300C23—C281.416 (4)
C4—C51.397 (4)C24—C251.371 (4)
C4—C161.506 (4)C24—H240.9300
C5—O11.371 (4)C25—C261.384 (5)
C5—C61.386 (4)C25—H250.9300
C6—H60.9300C26—C271.387 (4)
C7—O11.431 (4)C26—N41.436 (4)
C7—C81.491 (5)C27—C281.381 (4)
C7—H7A0.9700C27—H270.9300
C7—H7B0.9700C28—C361.506 (4)
C8—O21.424 (4)C29—C341.384 (4)
C8—H8A0.9700C29—C301.419 (4)
C8—H8B0.9700C29—C351.499 (4)
C9—O21.365 (4)C30—O61.318 (3)
C9—C101.389 (5)C30—C311.402 (4)
C9—C141.396 (5)C31—C321.385 (5)
C10—C111.394 (6)C31—H310.9300
C10—H100.9300C32—C331.373 (5)
C11—C121.366 (6)C32—H320.9300
C11—H110.9300C33—C341.384 (5)
C12—C131.384 (5)C33—N31.452 (4)
C12—H120.9300C34—H340.9300
C13—C141.389 (5)C35—N21.505 (3)
C13—H130.9300C35—H35A0.9700
C14—C151.500 (4)C35—H35B0.9700
C15—N11.512 (4)C36—N11.502 (4)
C15—H15A0.9700C36—H36A0.9700
C15—H15B0.9700C36—H36B0.9700
C16—N21.504 (4)C37—C37'0.61 (2)
C16—H16A0.9700C37—Cl3'1.460 (12)
C16—H16B0.9700C37—Cl2'1.560 (12)
C17—N11.503 (3)C37—Cl31.702 (11)
C17—C181.512 (4)C37—Cl11.705 (11)
C17—H17A0.9700C37—Cl21.788 (12)
C17—H17B0.9700C37'—Cl31.36 (3)
C18—O31.420 (4)C37'—Cl2'1.71 (2)
C18—H18A0.9700C37'—Cl1'1.72 (2)
C18—H18B0.9700C37'—Cl3'1.75 (2)
C19—O31.432 (4)C37'—Cl11.78 (2)
C19—C201.495 (5)N3—O91.223 (4)
C19—H19A0.9700N3—O101.231 (4)
C19—H19B0.9700N4—O81.223 (4)
C20—O41.433 (4)N4—O71.226 (4)
C20—H20A0.9700
O5—Cu1—O6165.47 (10)C25—C24—C23121.5 (3)
O5—Cu1—N289.60 (9)C25—C24—H24119.3
O6—Cu1—N294.16 (9)C23—C24—H24119.3
O5—Cu1—N192.40 (9)C24—C25—C26118.8 (3)
O6—Cu1—N192.16 (9)C24—C25—H25120.6
N2—Cu1—N1146.51 (9)C26—C25—H25120.6
C2—C1—C6120.8 (3)C25—C26—C27121.3 (3)
C2—C1—H1119.6C25—C26—N4119.0 (3)
C6—C1—H1119.6C27—C26—N4119.7 (3)
C1—C2—C3119.5 (4)C28—C27—C26120.5 (3)
C1—C2—H2120.3C28—C27—H27119.7
C3—C2—H2120.3C26—C27—H27119.7
C2—C3—C4121.2 (4)C27—C28—C23119.2 (3)
C2—C3—H3119.4C27—C28—C36119.9 (3)
C4—C3—H3119.4C23—C28—C36120.8 (2)
C3—C4—C5118.2 (3)C34—C29—C30119.5 (3)
C3—C4—C16121.3 (3)C34—C29—C35120.9 (3)
C5—C4—C16120.3 (3)C30—C29—C35119.7 (3)
O1—C5—C6124.3 (3)O6—C30—C31119.9 (3)
O1—C5—C4114.9 (3)O6—C30—C29121.7 (3)
C6—C5—C4120.7 (3)C31—C30—C29118.4 (3)
C1—C6—C5119.5 (3)C32—C31—C30121.3 (3)
C1—C6—H6120.3C32—C31—H31119.3
C5—C6—H6120.3C30—C31—H31119.3
O1—C7—C8107.5 (3)C33—C32—C31119.1 (3)
O1—C7—H7A110.2C33—C32—H32120.5
C8—C7—H7A110.2C31—C32—H32120.5
O1—C7—H7B110.2C32—C33—C34121.4 (3)
C8—C7—H7B110.2C32—C33—N3119.8 (3)
H7A—C7—H7B108.5C34—C33—N3118.8 (3)
O2—C8—C7106.8 (3)C33—C34—C29120.3 (3)
O2—C8—H8A110.4C33—C34—H34119.9
C7—C8—H8A110.4C29—C34—H34119.9
O2—C8—H8B110.4C29—C35—N2112.7 (2)
C7—C8—H8B110.4C29—C35—H35A109.1
H8A—C8—H8B108.6N2—C35—H35A109.1
O2—C9—C10125.1 (3)C29—C35—H35B109.1
O2—C9—C14114.6 (3)N2—C35—H35B109.1
C10—C9—C14120.4 (3)H35A—C35—H35B107.8
C9—C10—C11118.9 (4)N1—C36—C28114.4 (2)
C9—C10—H10120.5N1—C36—H36A108.7
C11—C10—H10120.5C28—C36—H36A108.7
C12—C11—C10121.8 (4)N1—C36—H36B108.7
C12—C11—H11119.1C28—C36—H36B108.7
C10—C11—H11119.1H36A—C36—H36B107.6
C11—C12—C13118.7 (4)C37'—C37—Cl3'109 (3)
C11—C12—H12120.7C37'—C37—Cl2'93 (3)
C13—C12—H12120.7Cl3'—C37—Cl2'133.9 (8)
C12—C13—C14121.6 (4)C37'—C37—Cl347 (3)
C12—C13—H13119.2Cl3'—C37—Cl3138.6 (8)
C14—C13—H13119.2Cl2'—C37—Cl346.2 (4)
C13—C14—C9118.6 (3)C37'—C37—Cl187 (3)
C13—C14—C15121.2 (3)Cl2'—C37—Cl1133.2 (6)
C9—C14—C15120.1 (3)Cl3—C37—Cl1118.4 (7)
C14—C15—N1115.7 (2)C37'—C37—Cl2153 (3)
C14—C15—H15A108.3Cl3'—C37—Cl288.9 (7)
N1—C15—H15A108.3Cl2'—C37—Cl260.2 (5)
C14—C15—H15B108.3Cl3—C37—Cl2106.3 (6)
N1—C15—H15B108.3Cl1—C37—Cl2107.0 (6)
H15A—C15—H15B107.4C37—C37'—Cl3114 (3)
N2—C16—C4116.3 (2)C37—C37'—Cl2'66 (2)
N2—C16—H16A108.2Cl3—C37'—Cl2'48.0 (7)
C4—C16—H16A108.2C37—C37'—Cl1'152 (3)
N2—C16—H16B108.2Cl3—C37'—Cl1'70.0 (13)
C4—C16—H16B108.2Cl2'—C37'—Cl1'111.5 (16)
H16A—C16—H16B107.4C37—C37'—Cl3'52 (2)
N1—C17—C18115.9 (2)Cl3—C37'—Cl3'143.3 (15)
N1—C17—H17A108.3Cl2'—C37'—Cl3'106.9 (10)
C18—C17—H17A108.3Cl1'—C37'—Cl3'107.1 (12)
N1—C17—H17B108.3C37—C37'—Cl173 (3)
C18—C17—H17B108.3Cl3—C37'—Cl1136.9 (18)
H17A—C17—H17B107.4Cl2'—C37'—Cl1118.6 (10)
O3—C18—C17112.2 (2)Cl1'—C37'—Cl185.7 (10)
O3—C18—H18A109.2C36—N1—C17109.0 (2)
C17—C18—H18A109.2C36—N1—C15105.9 (2)
O3—C18—H18B109.2C17—N1—C15108.3 (2)
C17—C18—H18B109.2C36—N1—Cu1107.17 (16)
H18A—C18—H18B107.9C17—N1—Cu1110.15 (16)
O3—C19—C20113.2 (3)C15—N1—Cu1116.07 (17)
O3—C19—H19A108.9C22—N2—C16107.6 (2)
C20—C19—H19A108.9C22—N2—C35109.0 (2)
O3—C19—H19B108.9C16—N2—C35106.1 (2)
C20—C19—H19B108.9C22—N2—Cu1111.25 (18)
H19A—C19—H19B107.8C16—N2—Cu1116.04 (17)
O4—C20—C19112.6 (3)C35—N2—Cu1106.49 (17)
O4—C20—H20A109.1O9—N3—O10122.4 (3)
C19—C20—H20A109.1O9—N3—C33118.7 (3)
O4—C20—H20B109.1O10—N3—C33119.0 (3)
C19—C20—H20B109.1O8—N4—O7121.9 (3)
H20A—C20—H20B107.8O8—N4—C26119.2 (3)
O4—C21—C22112.8 (3)O7—N4—C26118.8 (3)
O4—C21—H21A109.0C5—O1—C7117.8 (2)
C22—C21—H21A109.0C9—O2—C8118.1 (3)
O4—C21—H21B109.0C18—O3—C19114.2 (2)
C22—C21—H21B109.0C21—O4—C20114.6 (3)
H21A—C21—H21B107.8C23—O5—Cu1131.38 (19)
N2—C22—C21117.1 (3)C30—O6—Cu1126.55 (19)
N2—C22—H22A108.0Cl3'—Cl1—C3757.5 (9)
C21—C22—H22A108.0Cl3'—Cl1—C37'77.0 (11)
N2—C22—H22B108.0Cl3'—Cl1—Cl1'122.8 (10)
C21—C22—H22B108.0C37—Cl1—Cl1'65.3 (5)
H22A—C22—H22B107.3C37'—Cl1—Cl1'46.1 (8)
O5—C23—C24119.1 (3)C37'—Cl1'—Cl345.6 (8)
O5—C23—C28122.3 (3)C37'—Cl1'—Cl148.2 (8)
C24—C23—C28118.6 (3)
C6—C1—C2—C31.2 (6)Cl2'—C37—C37'—Cl3'138.8 (15)
C1—C2—C3—C40.4 (6)Cl3—C37—C37'—Cl3'140.0 (16)
C2—C3—C4—C51.1 (5)Cl1—C37—C37'—Cl3'5.6 (12)
C2—C3—C4—C16177.0 (3)Cl2—C37—C37'—Cl3'128 (7)
C3—C4—C5—O1179.4 (3)Cl3'—C37—C37'—Cl15.6 (12)
C16—C4—C5—O13.4 (4)Cl2'—C37—C37'—Cl1133.1 (6)
C3—C4—C5—C60.2 (5)Cl3—C37—C37'—Cl1134 (2)
C16—C4—C5—C6176.2 (3)Cl2—C37—C37'—Cl1123 (6)
C2—C1—C6—C52.1 (6)C28—C36—N1—C17177.0 (2)
O1—C5—C6—C1179.1 (3)C28—C36—N1—C1560.7 (3)
C4—C5—C6—C11.4 (5)C28—C36—N1—Cu163.8 (3)
O1—C7—C8—O272.7 (3)C18—C17—N1—C3668.8 (3)
O2—C9—C10—C11178.0 (3)C18—C17—N1—C15176.5 (2)
C14—C9—C10—C110.5 (5)C18—C17—N1—Cu148.6 (3)
C9—C10—C11—C120.0 (6)C14—C15—N1—C36171.3 (2)
C10—C11—C12—C130.1 (6)C14—C15—N1—C1754.4 (3)
C11—C12—C13—C140.2 (6)C14—C15—N1—Cu170.0 (3)
C12—C13—C14—C90.7 (5)O5—Cu1—N1—C3636.01 (18)
C12—C13—C14—C15177.1 (3)O6—Cu1—N1—C36157.78 (17)
O2—C9—C14—C13177.8 (3)N2—Cu1—N1—C3656.9 (2)
C10—C9—C14—C130.9 (5)O5—Cu1—N1—C17154.52 (19)
O2—C9—C14—C151.4 (4)O6—Cu1—N1—C1739.28 (19)
C10—C9—C14—C15177.3 (3)N2—Cu1—N1—C1761.6 (3)
C13—C14—C15—N1101.8 (3)O5—Cu1—N1—C1582.01 (19)
C9—C14—C15—N181.9 (3)O6—Cu1—N1—C1584.20 (19)
C3—C4—C16—N2100.6 (3)N2—Cu1—N1—C15174.92 (17)
C5—C4—C16—N283.6 (4)C21—C22—N2—C16172.5 (3)
N1—C17—C18—O376.9 (3)C21—C22—N2—C3572.8 (3)
O3—C19—C20—O470.6 (4)C21—C22—N2—Cu144.3 (3)
O4—C21—C22—N272.0 (4)C4—C16—N2—C2261.8 (3)
O5—C23—C24—C25177.4 (3)C4—C16—N2—C35178.4 (3)
C28—C23—C24—C251.8 (5)C4—C16—N2—Cu163.5 (3)
C23—C24—C25—C260.4 (5)C29—C35—N2—C22175.1 (2)
C24—C25—C26—C272.4 (5)C29—C35—N2—C1659.4 (3)
C24—C25—C26—N4178.1 (3)C29—C35—N2—Cu164.8 (3)
C25—C26—C27—C282.0 (5)O5—Cu1—N2—C2246.72 (19)
N4—C26—C27—C28178.5 (3)O6—Cu1—N2—C22147.32 (19)
C26—C27—C28—C230.3 (4)N1—Cu1—N2—C2247.0 (3)
C26—C27—C28—C36176.7 (3)O5—Cu1—N2—C1676.8 (2)
O5—C23—C28—C27177.0 (3)O6—Cu1—N2—C1689.2 (2)
C24—C23—C28—C272.2 (4)N1—Cu1—N2—C16170.52 (18)
O5—C23—C28—C360.6 (4)O5—Cu1—N2—C35165.42 (18)
C24—C23—C28—C36178.5 (3)O6—Cu1—N2—C3528.63 (18)
C34—C29—C30—O6179.8 (3)N1—Cu1—N2—C3571.7 (2)
C35—C29—C30—O60.7 (4)C32—C33—N3—O9175.3 (4)
C34—C29—C30—C312.0 (4)C34—C33—N3—O94.1 (5)
C35—C29—C30—C31177.5 (3)C32—C33—N3—O103.8 (5)
O6—C30—C31—C32178.8 (3)C34—C33—N3—O10176.8 (4)
C29—C30—C31—C320.5 (5)C25—C26—N4—O8177.0 (4)
C30—C31—C32—C331.0 (6)C27—C26—N4—O82.5 (5)
C31—C32—C33—C341.0 (6)C25—C26—N4—O74.7 (5)
C31—C32—C33—N3178.4 (3)C27—C26—N4—O7175.8 (3)
C32—C33—C34—C290.5 (5)C6—C5—O1—C71.6 (4)
N3—C33—C34—C29179.9 (3)C4—C5—O1—C7178.0 (3)
C30—C29—C34—C332.0 (4)C8—C7—O1—C5177.3 (3)
C35—C29—C34—C33177.5 (3)C10—C9—O2—C82.4 (5)
C34—C29—C35—N2122.6 (3)C14—C9—O2—C8176.2 (3)
C30—C29—C35—N257.9 (4)C7—C8—O2—C9173.4 (3)
C27—C28—C36—N1133.4 (3)C17—C18—O3—C19176.8 (3)
C23—C28—C36—N150.3 (4)C20—C19—O3—C18103.1 (3)
Cl3'—C37—C37'—Cl3140.0 (16)C22—C21—O4—C20178.1 (3)
Cl2'—C37—C37'—Cl31 (3)C19—C20—O4—C21112.7 (4)
Cl1—C37—C37'—Cl3134 (2)C24—C23—O5—Cu1156.6 (2)
Cl2—C37—C37'—Cl312 (8)C28—C23—O5—Cu124.3 (5)
Cl3'—C37—C37'—Cl2'138.8 (15)O6—Cu1—O5—C23103.5 (4)
Cl3—C37—C37'—Cl2'1 (3)N2—Cu1—O5—C23151.3 (3)
Cl1—C37—C37'—Cl2'133.1 (6)N1—Cu1—O5—C234.7 (3)
Cl2—C37—C37'—Cl2'11 (5)C31—C30—O6—Cu1144.3 (3)
Cl3'—C37—C37'—Cl1'48 (8)C29—C30—O6—Cu137.4 (4)
Cl2'—C37—C37'—Cl1'91 (7)O5—Cu1—O6—C3084.9 (4)
Cl3—C37—C37'—Cl1'92 (7)N2—Cu1—O6—C3019.7 (3)
Cl1—C37—C37'—Cl1'42 (7)N1—Cu1—O6—C30166.8 (3)
Cl2—C37—C37'—Cl1'80 (10)

Experimental details

Crystal data
Chemical formulaC36H38CuN4O10·CHCl3
Mr869.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.055 (3), 12.819 (4), 13.409 (4)
α, β, γ (°)82.532 (12), 82.378 (11), 71.364 (9)
V3)1937.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.23 × 0.22 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.826, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
18759, 8707, 6756
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.148, 1.07
No. of reflections8707
No. of parameters527
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.04

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O51.874 (2)Cu1—N22.144 (2)
Cu1—O61.878 (2)Cu1—N12.147 (2)
O5—Cu1—O6165.47 (10)O5—Cu1—N192.40 (9)
O5—Cu1—N289.60 (9)O6—Cu1—N192.16 (9)
O6—Cu1—N294.16 (9)N2—Cu1—N1146.51 (9)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds