Download citation
Download citation
link to html
The title compound, C17H24Cl2N2OS, adopts a transcis configuration of the deca­noyl and 3,4-dichloro­phenyl groups with respect to the thiono S atom across the thio­urea C—N bonds. The crystal structure is stabilized by inter­molecular N—H...S and C—H...S hydrogen bonds, forming dimers parallel to the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037762/hg2267sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037762/hg2267Isup2.hkl
Contains datablock I

CCDC reference: 660211

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.045
  • wR factor = 0.115
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT431_ALERT_2_B Short Inter HL..A Contact Cl1 .. O1 .. 2.96 Ang.
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.30 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.85 Ratio
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Thiourea derivatives receive considerable attention because of their potential applications in materials science (Wei et al., 2004) and their biological activities (Baruah et al., 2002). The title compound, (I), is similar to N-(3,4-Dichlorophenyl)-N'-(3-nitrobenzoyl)thiourea, (Yusof et al., 2006), except that the 3-nitrobenzoyl group is replaced by a decanoyl group (Fig.1). The molecule maintains its trans-cis configuration with respect to the position of the decanoyl and 3,4-dichlorophenyl groups relative to the thiono S1 atom across their C—N bonds, respectively. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable with other thiourea derivatives (Yusof, Ramlee et al. (2007); Yusof, Yaakob et al. (2007). The thiourea-3,4-dichlorophenyl (S1/N1/N2/C11—C17/Cl1/Cl2) fragment are essentially planar with a maximum deviation of 0.039 (2) Å for atom C10 from the least-squares plane.

There are two intramolecular hydrogen bonds, N2—H2···O1 and C17—H17···S1 (Table 2), forming two pseudo-six-membered rings (O1···H2—N2—C11—N1—C10—O1 and S1···H17—C17—C12—N2—C11—S1). In the crystal structure, the molecules are linked by intermolecular interactions, N—H···S and C—H···S (symmetry codes as in Table 2) forming dimers parallel to b axis (Fig.2).

Related literature top

For related crystal structures of the title compound, see: Yusof, Ramlee et al. (2007); Yusof, Yaakob et al. (2007). For details of potential applications in materials and biological activities, see: Wei et al. (2004); Baruah et al. (2002).

For related literature, see: Allen et al. (1987); Yusof et al. (2006).

Experimental top

To a stirring acetone solution (75 ml) of decanoyl chloride (2.0 g, 10 mmol) and ammoniumthiocyanate (0.80 g, 10 mmol), 3,4-dichloroaniline (1.70 g, 10 mmol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals were obtained by recrystallization from THF. Yield 75% (2.31 g).

Refinement top

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with C—H = 0.93–0.97 Å and N—H = 0.86 Å with Uiso(H)= 1.2 (CH2 and NH) or 1.5Ueq(C)(CH3).

Structure description top

Thiourea derivatives receive considerable attention because of their potential applications in materials science (Wei et al., 2004) and their biological activities (Baruah et al., 2002). The title compound, (I), is similar to N-(3,4-Dichlorophenyl)-N'-(3-nitrobenzoyl)thiourea, (Yusof et al., 2006), except that the 3-nitrobenzoyl group is replaced by a decanoyl group (Fig.1). The molecule maintains its trans-cis configuration with respect to the position of the decanoyl and 3,4-dichlorophenyl groups relative to the thiono S1 atom across their C—N bonds, respectively. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable with other thiourea derivatives (Yusof, Ramlee et al. (2007); Yusof, Yaakob et al. (2007). The thiourea-3,4-dichlorophenyl (S1/N1/N2/C11—C17/Cl1/Cl2) fragment are essentially planar with a maximum deviation of 0.039 (2) Å for atom C10 from the least-squares plane.

There are two intramolecular hydrogen bonds, N2—H2···O1 and C17—H17···S1 (Table 2), forming two pseudo-six-membered rings (O1···H2—N2—C11—N1—C10—O1 and S1···H17—C17—C12—N2—C11—S1). In the crystal structure, the molecules are linked by intermolecular interactions, N—H···S and C—H···S (symmetry codes as in Table 2) forming dimers parallel to b axis (Fig.2).

For related crystal structures of the title compound, see: Yusof, Ramlee et al. (2007); Yusof, Yaakob et al. (2007). For details of potential applications in materials and biological activities, see: Wei et al. (2004); Baruah et al. (2002).

For related literature, see: Allen et al. (1987); Yusof et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : The molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. : Packing diagram of compound,(I), viewed down the b axis. The dashed lines denote the N—H···S and C—H···S hydrogen bonds.
N-(3,4-Dichlorophenyl)-N'-decanoylthiourea top
Crystal data top
C17H24Cl2N2OSZ = 2
Mr = 375.34F(000) = 396
Triclinic, P1Dx = 1.286 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7368 (13) ÅCell parameters from 797 reflections
b = 11.295 (3) Åθ = 1.8–25.9°
c = 18.324 (5) ŵ = 0.45 mm1
α = 88.289 (5)°T = 293 K
β = 83.774 (5)°Slab, colourless
γ = 84.268 (4)°0.46 × 0.41 × 0.09 mm
V = 969.5 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3778 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.821, Tmax = 0.961l = 2222
10011 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.1967P]
where P = (Fo2 + 2Fc2)/3
3778 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C17H24Cl2N2OSγ = 84.268 (4)°
Mr = 375.34V = 969.5 (5) Å3
Triclinic, P1Z = 2
a = 4.7368 (13) ÅMo Kα radiation
b = 11.295 (3) ŵ = 0.45 mm1
c = 18.324 (5) ÅT = 293 K
α = 88.289 (5)°0.46 × 0.41 × 0.09 mm
β = 83.774 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2856 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.961Rint = 0.027
10011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3778 reflectionsΔρmin = 0.15 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01781 (13)0.07409 (5)0.37362 (4)0.0680 (2)
Cl20.2794 (2)0.02429 (7)0.21084 (4)0.0968 (3)
S10.91305 (13)0.40736 (5)0.40393 (3)0.05798 (19)
O10.3719 (3)0.26352 (14)0.59943 (8)0.0627 (4)
N10.7140 (4)0.36909 (14)0.54034 (9)0.0481 (4)
H10.82970.42050.54760.058*
N20.5577 (4)0.24761 (15)0.45933 (10)0.0517 (4)
H20.47220.22230.49980.062*
C10.9528 (12)0.8466 (4)1.0584 (2)0.1484 (18)
H1A0.80290.82561.09450.223*
H1B0.97530.92981.06160.223*
H1C1.12800.80061.06700.223*
C20.8783 (11)0.8216 (3)0.9835 (2)0.1307 (15)
H2A0.70700.87200.97450.157*
H2B1.03110.84360.94760.157*
C30.8308 (9)0.6977 (3)0.97181 (18)0.1074 (11)
H3A0.68370.67501.00910.129*
H3B1.00480.64790.97920.129*
C40.7440 (8)0.6707 (3)0.89723 (16)0.0951 (9)
H4A0.57340.72210.88890.114*
H4B0.89420.69000.85980.114*
C50.6872 (7)0.5449 (3)0.88831 (15)0.0873 (9)
H5A0.54160.52500.92690.105*
H5B0.85980.49390.89540.105*
C60.5922 (6)0.5167 (2)0.81562 (13)0.0747 (7)
H6A0.41860.56680.80840.090*
H6B0.73730.53600.77680.090*
C70.5383 (7)0.3888 (3)0.80900 (14)0.0787 (8)
H7A0.40220.36850.84980.094*
H7B0.71520.33940.81370.094*
C80.4263 (5)0.3578 (2)0.73827 (13)0.0658 (6)
H8A0.38920.27480.74060.079*
H8B0.24700.40550.73350.079*
C90.6313 (5)0.3787 (2)0.67181 (12)0.0550 (6)
H9A0.64360.46370.66550.066*
H9B0.81890.34220.68070.066*
C100.5548 (4)0.33149 (18)0.60210 (12)0.0502 (5)
C110.7161 (4)0.33642 (17)0.46781 (11)0.0448 (5)
C120.5032 (4)0.18709 (18)0.39686 (12)0.0478 (5)
C130.3189 (4)0.09942 (18)0.41067 (12)0.0499 (5)
H130.24110.08480.45850.060*
C140.2497 (4)0.03368 (18)0.35420 (13)0.0515 (5)
C150.3639 (5)0.0554 (2)0.28369 (13)0.0600 (6)
C160.5490 (6)0.1417 (2)0.26975 (14)0.0665 (7)
H160.62660.15570.22180.080*
C170.6212 (5)0.2079 (2)0.32576 (13)0.0613 (6)
H170.74760.26570.31590.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0635 (4)0.0518 (3)0.0937 (5)0.0211 (3)0.0138 (3)0.0129 (3)
Cl20.1279 (7)0.0942 (5)0.0775 (5)0.0338 (5)0.0231 (4)0.0307 (4)
S10.0643 (4)0.0517 (3)0.0606 (4)0.0245 (3)0.0003 (3)0.0033 (3)
O10.0618 (10)0.0693 (10)0.0627 (10)0.0372 (8)0.0035 (8)0.0062 (8)
N10.0472 (10)0.0453 (9)0.0553 (11)0.0194 (8)0.0065 (8)0.0065 (8)
N20.0549 (11)0.0517 (10)0.0523 (10)0.0232 (9)0.0059 (8)0.0036 (8)
C10.246 (5)0.117 (3)0.099 (3)0.070 (3)0.043 (3)0.014 (2)
C20.205 (5)0.100 (3)0.100 (3)0.049 (3)0.042 (3)0.010 (2)
C30.158 (3)0.092 (2)0.081 (2)0.035 (2)0.033 (2)0.0059 (17)
C40.134 (3)0.089 (2)0.0673 (18)0.0217 (19)0.0211 (18)0.0084 (15)
C50.118 (2)0.091 (2)0.0575 (16)0.0275 (18)0.0122 (16)0.0076 (14)
C60.096 (2)0.0782 (18)0.0521 (14)0.0202 (15)0.0076 (13)0.0066 (12)
C70.098 (2)0.089 (2)0.0534 (15)0.0347 (16)0.0063 (14)0.0052 (13)
C80.0718 (16)0.0731 (16)0.0562 (14)0.0297 (13)0.0043 (12)0.0029 (12)
C90.0527 (13)0.0580 (13)0.0576 (13)0.0179 (10)0.0080 (10)0.0038 (10)
C100.0464 (12)0.0463 (12)0.0600 (14)0.0113 (10)0.0082 (10)0.0035 (10)
C110.0399 (11)0.0372 (10)0.0588 (13)0.0051 (8)0.0092 (9)0.0042 (9)
C120.0480 (12)0.0434 (11)0.0541 (13)0.0087 (9)0.0108 (10)0.0039 (9)
C130.0472 (12)0.0451 (11)0.0584 (13)0.0068 (9)0.0074 (10)0.0050 (10)
C140.0479 (12)0.0414 (11)0.0682 (15)0.0083 (9)0.0140 (11)0.0081 (10)
C150.0673 (15)0.0541 (13)0.0625 (15)0.0081 (11)0.0190 (12)0.0138 (11)
C160.0820 (17)0.0647 (15)0.0558 (14)0.0194 (13)0.0082 (12)0.0041 (11)
C170.0717 (16)0.0548 (13)0.0608 (15)0.0220 (12)0.0080 (12)0.0013 (11)
Geometric parameters (Å, º) top
Cl1—C141.724 (2)C5—H5A0.9700
Cl2—C151.736 (2)C5—H5B0.9700
S1—C111.655 (2)C6—C71.503 (4)
O1—C101.219 (2)C6—H6A0.9700
N1—C101.371 (3)C6—H6B0.9700
N1—C111.389 (3)C7—C81.515 (3)
N1—H10.8600C7—H7A0.9700
N2—C111.333 (2)C7—H7B0.9700
N2—C121.411 (2)C8—C91.501 (3)
N2—H20.8600C8—H8A0.9700
C1—C21.495 (4)C8—H8B0.9700
C1—H1A0.9600C9—C101.492 (3)
C1—H1B0.9600C9—H9A0.9700
C1—H1C0.9600C9—H9B0.9700
C2—C31.465 (4)C12—C171.384 (3)
C2—H2A0.9700C12—C131.384 (3)
C2—H2B0.9700C13—C141.378 (3)
C3—C41.517 (4)C13—H130.9300
C3—H3A0.9700C14—C151.370 (3)
C3—H3B0.9700C15—C161.375 (3)
C4—C51.489 (4)C16—C171.379 (3)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—H170.9300
C5—C61.504 (3)
C10—N1—C11129.58 (17)C6—C7—C8115.6 (2)
C10—N1—H1115.2C6—C7—H7A108.4
C11—N1—H1115.2C8—C7—H7A108.4
C11—N2—C12132.43 (18)C6—C7—H7B108.4
C11—N2—H2113.8C8—C7—H7B108.4
C12—N2—H2113.8H7A—C7—H7B107.4
C2—C1—H1A109.5C9—C8—C7112.5 (2)
C2—C1—H1B109.5C9—C8—H8A109.1
H1A—C1—H1B109.5C7—C8—H8A109.1
C2—C1—H1C109.5C9—C8—H8B109.1
H1A—C1—H1C109.5C7—C8—H8B109.1
H1B—C1—H1C109.5H8A—C8—H8B107.8
C3—C2—C1115.0 (3)C10—C9—C8114.85 (18)
C3—C2—H2A108.5C10—C9—H9A108.6
C1—C2—H2A108.5C8—C9—H9A108.6
C3—C2—H2B108.5C10—C9—H9B108.6
C1—C2—H2B108.5C8—C9—H9B108.6
H2A—C2—H2B107.5H9A—C9—H9B107.5
C2—C3—C4116.1 (3)O1—C10—N1122.20 (19)
C2—C3—H3A108.3O1—C10—C9123.8 (2)
C4—C3—H3A108.3N1—C10—C9114.00 (17)
C2—C3—H3B108.3N2—C11—N1113.74 (18)
C4—C3—H3B108.3N2—C11—S1128.19 (16)
H3A—C3—H3B107.4N1—C11—S1118.06 (14)
C5—C4—C3114.6 (3)C17—C12—C13119.6 (2)
C5—C4—H4A108.6C17—C12—N2125.30 (19)
C3—C4—H4A108.6C13—C12—N2115.07 (18)
C5—C4—H4B108.6C14—C13—C12120.6 (2)
C3—C4—H4B108.6C14—C13—H13119.7
H4A—C4—H4B107.6C12—C13—H13119.7
C4—C5—C6115.6 (2)C15—C14—C13119.7 (2)
C4—C5—H5A108.4C15—C14—Cl1121.13 (17)
C6—C5—H5A108.4C13—C14—Cl1119.17 (18)
C4—C5—H5B108.4C14—C15—C16119.9 (2)
C6—C5—H5B108.4C14—C15—Cl2121.17 (18)
H5A—C5—H5B107.4C16—C15—Cl2118.9 (2)
C7—C6—C5113.8 (2)C15—C16—C17121.0 (2)
C7—C6—H6A108.8C15—C16—H16119.5
C5—C6—H6A108.8C17—C16—H16119.5
C7—C6—H6B108.8C16—C17—C12119.1 (2)
C5—C6—H6B108.8C16—C17—H17120.4
H6A—C6—H6B107.7C12—C17—H17120.4
C1—C2—C3—C4177.8 (4)C11—N2—C12—C172.1 (4)
C2—C3—C4—C5177.9 (4)C11—N2—C12—C13178.9 (2)
C3—C4—C5—C6178.2 (3)C17—C12—C13—C140.7 (3)
C4—C5—C6—C7179.8 (3)N2—C12—C13—C14179.76 (17)
C5—C6—C7—C8176.7 (3)C12—C13—C14—C150.1 (3)
C6—C7—C8—C961.8 (3)C12—C13—C14—Cl1179.65 (17)
C7—C8—C9—C10170.5 (2)C13—C14—C15—C160.7 (3)
C11—N1—C10—O13.9 (3)Cl1—C14—C15—C16179.83 (19)
C11—N1—C10—C9174.66 (19)C13—C14—C15—Cl2179.33 (16)
C8—C9—C10—O112.4 (3)Cl1—C14—C15—Cl20.2 (3)
C8—C9—C10—N1169.1 (2)C14—C15—C16—C170.4 (4)
C12—N2—C11—N1179.19 (19)Cl2—C15—C16—C17179.6 (2)
C12—N2—C11—S10.6 (3)C15—C16—C17—C120.4 (4)
C10—N1—C11—N26.8 (3)C13—C12—C17—C161.0 (3)
C10—N1—C11—S1174.47 (17)N2—C12—C17—C16179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.902.627 (2)142
C17—H17···S10.932.543.207 (3)129
N1—H1···S1i0.862.623.461 (2)166
C9—H9A···S1i0.972.843.552 (3)131
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H24Cl2N2OS
Mr375.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.7368 (13), 11.295 (3), 18.324 (5)
α, β, γ (°)88.289 (5), 83.774 (5), 84.268 (4)
V3)969.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.46 × 0.41 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.821, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
10011, 3778, 2856
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.04
No. of reflections3778
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.902.627 (2)142
C17—H17···S10.932.543.207 (3)129
N1—H1···S1i0.862.623.461 (2)166
C9—H9A···S1i0.972.843.552 (3)131
Symmetry code: (i) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds