supplementary materials


Acta Cryst. (2007). E63, m2369    [ doi:10.1107/S1600536807039888 ]

Bis(thiocyanato-[kappa]N)tetrakis(1-vinyl-1H-imidazole-[kappa]N3)nickel(II)

S.-J. Pang, J. Su and Q. Lin

Abstract top

The title compound, [Ni(NCS)2(C5H6N2)4], crystallizes with two independent half-molecules in the asymmetric unit; each Ni atom lies on a centre of symmetry. In both independent molecules, each NiII ion displays a compressed octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-vinylimidazole ligands building the NiN6 chromophore. In the crystal structure, [pi]-[pi] stacking interactions [centroid-to-centroid distance = 4.685 (3) Å] link the two independent molecules into a one-dimensional chain running along the a axis. Intermolecular C-H...S hydrogen bonds further stabilize the crystal structure.

Comment top

The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (Fig. 1). In the two independent molecules, each NiII ion, which are located on crystallographic centres of symmetry, displays a compressed octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-vinylimidazole ligands building the NiN6 chromophore. The equatorial planes in the two independent molecules are formed by four Ni—N(1-vinylimadazole) bonds with lengths ranging from 2.106 (5) to 2.118 (6) Å, and the axial positions are occupied by two N-bonded NCS groups [Ni—N(NCS) = 2.067 (6) and 2.065 (5) Å]. These values agree well with those observed in [Ni(NCS)2(1-methylimidazole)4] (Liu et al., 2005) and [Ni(NCS)2(1-ethylimidazole)4] (Liu et al., 2006). In the crystal, the distance of 4.685 (3)Å of Cg1···Cg1 [Cg1 is centroids of N9–N10/C18–C20; symmetry code: 1-X,-Y,1-Z] shows a presence of π···π stacking interactions which link the two independent molecules into 1-D chain running along the a axis. Intermolecular C—H···S hydrogen bonds further stabilize the crystal structure.

Related literature top

For related literature, see: Liu et al. (2005, 2006).

Experimental top

The title compound was prepared by the reaction of 1-vinylimidazole (1.88 g, 20 mmol) with NiCl2·6H2O(1.19 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in a stainless-steel reactor with Teflon liner at 383 K for 24 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.96 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis.
Bis(thiocyanato-κN)tetrakis(1-vinyl-1H-imidazole-κN3)nickel(II) top
Crystal data top
[Ni(NCS)2(C5H6N2)4]Z = 2
Mr = 551.34F000 = 572
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation
λ = 0.71073 Å
a = 9.6400 (19) ÅCell parameters from 3253 reflections
b = 10.242 (2) Åθ = 4–14º
c = 14.705 (3) ŵ = 0.91 mm1
α = 109.46 (3)ºT = 293 (2) K
β = 90.16 (3)ºBlock, blue
γ = 100.16 (3)º0.30 × 0.30 × 0.20 mm
V = 1344.5 (6) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5257 independent reflections
Radiation source: fine-focus sealed tube3080 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 293(2) Kθmax = 26.0º
thin–slice ω scansθmin = 1.5º
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 0→11
Tmin = 0.773, Tmax = 0.839k = 12→12
5593 measured reflectionsl = 18→18
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.198  w = 1/[σ2(Fo2) + (0.1152P)2 + 2.8055P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.032
5257 reflectionsΔρmax = 0.66 e Å3
307 parametersΔρmin = 1.65 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
[Ni(NCS)2(C5H6N2)4]γ = 100.16 (3)º
Mr = 551.34V = 1344.5 (6) Å3
Triclinic, P1Z = 2
a = 9.6400 (19) ÅMo Kα
b = 10.242 (2) ŵ = 0.91 mm1
c = 14.705 (3) ÅT = 293 (2) K
α = 109.46 (3)º0.30 × 0.30 × 0.20 mm
β = 90.16 (3)º
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5257 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3080 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.839Rint = 0.034
5593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.198H-atom parameters constrained
S = 1.01Δρmax = 0.66 e Å3
5257 reflectionsΔρmin = 1.65 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.0496 (4)
S10.0867 (3)0.2078 (3)0.07754 (18)0.0870 (8)
N10.3250 (7)0.0951 (7)0.0234 (4)0.0646 (17)
N30.3709 (9)0.3102 (8)0.1314 (6)0.080 (2)
N20.4058 (6)0.1414 (7)0.0687 (4)0.0597 (16)
N50.7598 (6)0.2755 (6)0.2474 (4)0.0493 (13)
N40.5948 (6)0.1415 (6)0.1351 (4)0.0530 (14)
C60.3214 (10)0.4777 (10)0.2129 (7)0.085
H6A0.24220.44010.23610.102*
H6B0.34300.55240.22930.102*
C50.4024 (15)0.4254 (13)0.1574 (9)0.122 (4)
H5A0.48150.46340.13450.147*
C30.2604 (12)0.2492 (12)0.1510 (8)0.099 (3)
H3A0.18370.27390.18410.118*
C40.2797 (9)0.1443 (11)0.1141 (7)0.086 (3)
H4A0.21780.08270.11820.104*
C20.4563 (10)0.2409 (9)0.0822 (7)0.076 (2)
H2A0.54250.26370.06070.091*
C110.9296 (9)0.4409 (8)0.3719 (6)0.068 (2)
H11A0.85780.47840.40770.082*
H11B1.02350.47670.39480.082*
C100.8991 (8)0.3395 (8)0.2904 (5)0.0562 (18)
H10A0.97400.30510.25690.067*
C80.6330 (8)0.3001 (8)0.2836 (5)0.0569 (18)
H8A0.61860.36150.34410.068*
C90.5329 (8)0.2177 (8)0.2143 (5)0.0584 (19)
H9A0.43610.21310.21940.070*
C70.7300 (8)0.1789 (8)0.1588 (5)0.0566 (18)
H7A0.79840.14240.11850.068*
C10.2269 (7)0.1420 (8)0.0464 (5)0.0520 (17)
Ni20.00000.00000.50000.0402 (3)
S20.3353 (2)0.3734 (2)0.4538 (2)0.0853 (8)
N60.1136 (6)0.1787 (6)0.4808 (5)0.0547 (15)
N80.1142 (8)0.2379 (10)0.2048 (5)0.086 (3)
N70.0582 (6)0.0859 (6)0.3503 (4)0.0514 (14)
N100.3853 (6)0.1437 (6)0.4179 (4)0.0526 (14)
N90.1789 (5)0.0955 (5)0.4706 (4)0.0459 (13)
C170.1907 (10)0.4674 (10)0.1355 (8)0.087
H17A0.19610.46930.19820.104*
H17B0.21630.55040.08310.104*
C160.1493 (15)0.3543 (14)0.1217 (11)0.145 (5)
H16A0.14240.34810.06010.174*
C140.0759 (10)0.1120 (11)0.1937 (7)0.079 (3)
H14A0.07460.09290.13610.095*
C150.0403 (8)0.0209 (9)0.2817 (5)0.065 (2)
H15A0.00740.07510.29560.077*
C130.1039 (9)0.2177 (9)0.3013 (7)0.074 (2)
H13A0.12650.28860.32810.089*
C220.5619 (9)0.0592 (11)0.3267 (7)0.087 (3)
H22A0.50620.00050.31470.104*
H22B0.65060.06150.30220.104*
C210.5170 (8)0.1359 (9)0.3762 (6)0.067 (2)
H21A0.57650.19280.38620.080*
C190.3321 (9)0.2359 (8)0.4646 (6)0.065 (2)
H19A0.37470.30590.47330.079*
C200.2070 (8)0.2054 (8)0.4953 (6)0.0607 (19)
H20A0.14780.25270.52870.073*
C180.2891 (7)0.0618 (7)0.4241 (5)0.0493 (16)
H18A0.29880.01080.39850.059*
C120.2049 (7)0.2587 (6)0.4678 (5)0.0449 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0353 (7)0.0620 (8)0.0486 (8)0.0122 (6)0.0028 (5)0.0136 (6)
S10.0682 (14)0.123 (2)0.0795 (16)0.0500 (14)0.0290 (12)0.0312 (15)
N10.054 (4)0.076 (5)0.057 (4)0.023 (3)0.006 (3)0.009 (3)
N30.090 (6)0.069 (5)0.082 (5)0.001 (4)0.009 (4)0.034 (4)
N20.052 (4)0.067 (4)0.055 (4)0.002 (3)0.005 (3)0.019 (3)
N50.048 (3)0.056 (3)0.043 (3)0.011 (3)0.006 (3)0.015 (3)
N40.045 (3)0.062 (4)0.047 (3)0.010 (3)0.003 (3)0.011 (3)
C60.0850.0850.0850.0160.0060.029
C50.046 (4)0.065 (5)0.039 (4)0.011 (4)0.001 (3)0.010 (3)
C30.083 (7)0.120 (9)0.100 (8)0.003 (7)0.003 (6)0.058 (7)
C40.064 (6)0.112 (8)0.097 (7)0.010 (5)0.018 (5)0.057 (6)
C20.069 (6)0.072 (6)0.086 (6)0.010 (5)0.002 (5)0.026 (5)
C110.072 (5)0.063 (5)0.061 (5)0.006 (4)0.004 (4)0.014 (4)
C100.055 (4)0.058 (4)0.048 (4)0.005 (3)0.003 (3)0.011 (4)
C80.062 (5)0.060 (4)0.043 (4)0.013 (4)0.006 (3)0.011 (3)
C90.052 (4)0.075 (5)0.050 (4)0.020 (4)0.006 (3)0.020 (4)
C70.049 (4)0.068 (5)0.046 (4)0.009 (3)0.004 (3)0.011 (4)
C10.046 (4)0.065 (5)0.039 (4)0.011 (4)0.001 (3)0.010 (3)
Ni20.0363 (6)0.0390 (6)0.0454 (7)0.0030 (5)0.0010 (5)0.0197 (5)
S20.0629 (13)0.0617 (13)0.134 (2)0.0008 (10)0.0420 (14)0.0422 (14)
N60.052 (3)0.047 (3)0.068 (4)0.002 (3)0.004 (3)0.029 (3)
N80.073 (4)0.103 (5)0.054 (3)0.022 (3)0.020 (3)0.012 (3)
N70.049 (3)0.053 (4)0.052 (3)0.005 (3)0.004 (3)0.019 (3)
N100.043 (3)0.054 (3)0.059 (4)0.012 (3)0.002 (3)0.017 (3)
N90.042 (3)0.046 (3)0.053 (3)0.004 (2)0.001 (3)0.022 (3)
C170.0870.0870.0870.0160.0060.029
C160.148 (3)0.067 (4)0.037 (3)0.009 (3)0.000 (2)0.010 (3)
C140.072 (6)0.101 (8)0.068 (6)0.021 (5)0.000 (5)0.032 (6)
C150.067 (5)0.080 (5)0.050 (5)0.014 (4)0.001 (4)0.025 (4)
C130.069 (5)0.067 (5)0.075 (6)0.003 (4)0.017 (4)0.016 (5)
C220.053 (5)0.124 (8)0.080 (6)0.009 (5)0.002 (4)0.033 (6)
C210.052 (5)0.076 (5)0.071 (5)0.013 (4)0.010 (4)0.020 (5)
C190.072 (5)0.055 (4)0.084 (6)0.028 (4)0.015 (4)0.035 (4)
C200.067 (5)0.052 (4)0.073 (5)0.011 (4)0.013 (4)0.034 (4)
C180.049 (4)0.054 (4)0.045 (4)0.002 (3)0.001 (3)0.022 (3)
C120.049 (4)0.039 (3)0.050 (4)0.011 (3)0.011 (3)0.017 (3)
Geometric parameters (Å, °) top
Ni1—N1i2.067 (6)Ni2—N6ii2.065 (5)
Ni1—N12.067 (6)Ni2—N62.065 (5)
Ni1—N22.111 (6)Ni2—N92.106 (5)
Ni1—N2i2.111 (6)Ni2—N9ii2.106 (5)
Ni1—N4i2.118 (6)Ni2—N72.113 (6)
Ni1—N42.118 (6)Ni2—N7ii2.113 (6)
S1—C11.615 (7)S2—C121.626 (7)
N1—C11.138 (9)N6—C121.155 (8)
N3—C31.313 (13)N8—C141.341 (12)
N3—C21.358 (11)N8—C131.366 (11)
N3—C51.434 (14)N8—C161.383 (15)
N2—C21.276 (10)N7—C131.294 (10)
N2—C41.388 (10)N7—C151.378 (9)
N5—C71.341 (9)N10—C181.340 (9)
N5—C81.366 (9)N10—C191.375 (9)
N5—C101.429 (9)N10—C211.413 (9)
N4—C71.303 (8)N9—C181.321 (8)
N4—C91.373 (9)N9—C201.361 (8)
C6—C51.308 (14)C17—C161.240 (19)
C6—H6A0.9300C17—H17A0.9300
C6—H6B0.9300C17—H17B0.9300
C5—H5A0.9300C16—H16A0.9300
C3—C41.343 (13)C14—C151.320 (11)
C3—H3A0.9300C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9300
C2—H2A0.9300C13—H13A0.9300
C11—C101.288 (10)C22—C211.264 (12)
C11—H11A0.9300C22—H22A0.9300
C11—H11B0.9300C22—H22B0.9300
C10—H10A0.9300C21—H21A0.9300
C8—C91.348 (10)C19—C201.340 (10)
C8—H8A0.9300C19—H19A0.9300
C9—H9A0.9300C20—H20A0.9300
C7—H7A0.9300C18—H18A0.9300
N1i—Ni1—N1180.0 (3)N6ii—Ni2—N6180.00 (18)
N1i—Ni1—N290.5 (3)N6ii—Ni2—N990.4 (2)
N1—Ni1—N289.5 (3)N6—Ni2—N989.6 (2)
N1i—Ni1—N2i89.5 (3)N6ii—Ni2—N9ii89.6 (2)
N1—Ni1—N2i90.5 (3)N6—Ni2—N9ii90.4 (2)
N2—Ni1—N2i180.0 (3)N9—Ni2—N9ii180.0 (3)
N1i—Ni1—N4i89.7 (2)N6ii—Ni2—N790.2 (2)
N1—Ni1—N4i90.3 (2)N6—Ni2—N789.8 (2)
N2—Ni1—N4i90.2 (2)N9—Ni2—N787.7 (2)
N2i—Ni1—N4i89.8 (2)N9ii—Ni2—N792.3 (2)
N1i—Ni1—N490.3 (2)N6ii—Ni2—N7ii89.8 (2)
N1—Ni1—N489.7 (2)N6—Ni2—N7ii90.2 (2)
N2—Ni1—N489.8 (2)N9—Ni2—N7ii92.3 (2)
N2i—Ni1—N490.2 (2)N9ii—Ni2—N7ii87.7 (2)
N4i—Ni1—N4180.0 (2)N7—Ni2—N7ii180.000 (1)
C1—N1—Ni1171.2 (7)C12—N6—Ni2162.1 (6)
C3—N3—C2107.0 (8)C14—N8—C13107.9 (7)
C3—N3—C5128.4 (10)C14—N8—C16117.1 (9)
C2—N3—C5124.6 (10)C13—N8—C16134.9 (10)
C2—N2—C4103.6 (8)C13—N7—C15104.7 (7)
C2—N2—Ni1127.3 (6)C13—N7—Ni2126.1 (6)
C4—N2—Ni1129.0 (6)C15—N7—Ni2128.7 (5)
C7—N5—C8106.2 (6)C18—N10—C19105.5 (6)
C7—N5—C10124.8 (6)C18—N10—C21128.4 (7)
C8—N5—C10128.9 (6)C19—N10—C21126.1 (7)
C7—N4—C9104.8 (6)C18—N9—C20104.6 (6)
C7—N4—Ni1125.7 (5)C18—N9—Ni2127.7 (5)
C9—N4—Ni1129.4 (5)C20—N9—Ni2127.8 (5)
C5—C6—H6A120.0C16—C17—H17A120.0
C5—C6—H6B120.0C16—C17—H17B120.0
H6A—C6—H6B120.0H17A—C17—H17B120.0
C6—C5—N3120.9 (13)C17—C16—N8114.9 (13)
C6—C5—H5A119.6C17—C16—H16A122.5
N3—C5—H5A119.6N8—C16—H16A122.6
N3—C3—C4106.6 (9)C15—C14—N8105.5 (8)
N3—C3—H3A126.7C15—C14—H14A127.2
C4—C3—H3A126.7N8—C14—H14A127.2
C3—C4—N2109.9 (9)C14—C15—N7111.5 (8)
C3—C4—H4A125.0C14—C15—H15A124.3
N2—C4—H4A125.0N7—C15—H15A124.3
N2—C2—N3112.8 (9)N7—C13—N8110.4 (8)
N2—C2—H2A123.6N7—C13—H13A124.8
N3—C2—H2A123.6N8—C13—H13A124.8
C10—C11—H11A120.0C21—C22—H22A120.0
C10—C11—H11B120.0C21—C22—H22B120.0
H11A—C11—H11B120.0H22A—C22—H22B120.0
C11—C10—N5125.5 (7)C22—C21—N10126.4 (9)
C11—C10—H10A117.3C22—C21—H21A116.8
N5—C10—H10A117.3N10—C21—H21A116.8
C9—C8—N5106.4 (6)C20—C19—N10106.9 (6)
C9—C8—H8A126.8C20—C19—H19A126.6
N5—C8—H8A126.8N10—C19—H19A126.6
C8—C9—N4109.9 (7)C19—C20—N9110.4 (7)
C8—C9—H9A125.0C19—C20—H20A124.8
N4—C9—H9A125.0N9—C20—H20A124.8
N4—C7—N5112.7 (6)N9—C18—N10112.6 (6)
N4—C7—H7A123.7N9—C18—H18A123.7
N5—C7—H7A123.7N10—C18—H18A123.7
N1—C1—S1179.2 (7)N6—C12—S2177.9 (7)
N1i—Ni1—N2—C20.4 (7)N7ii—Ni2—N6—C1287.5 (19)
N1—Ni1—N2—C2179.6 (7)N6ii—Ni2—N7—C1319.3 (7)
N4i—Ni1—N2—C289.2 (7)N6—Ni2—N7—C13160.7 (7)
N4—Ni1—N2—C290.8 (7)N9—Ni2—N7—C1371.0 (7)
N1i—Ni1—N2—C4175.8 (7)N9ii—Ni2—N7—C13109.0 (7)
N1—Ni1—N2—C44.2 (7)N6ii—Ni2—N7—C15169.7 (6)
N4i—Ni1—N2—C494.6 (7)N6—Ni2—N7—C1510.3 (6)
N4—Ni1—N2—C485.4 (7)N9—Ni2—N7—C15100.0 (6)
N1i—Ni1—N4—C725.0 (7)N9ii—Ni2—N7—C1580.0 (6)
N1—Ni1—N4—C7155.0 (7)N6ii—Ni2—N9—C18159.1 (6)
N2—Ni1—N4—C7115.5 (6)N6—Ni2—N9—C1820.9 (6)
N2i—Ni1—N4—C764.5 (6)N7—Ni2—N9—C1869.0 (6)
N1—Ni1—N4—C922.0 (7)N7ii—Ni2—N9—C18111.0 (6)
N2—Ni1—N4—C967.5 (6)N6ii—Ni2—N9—C2021.0 (6)
N2i—Ni1—N4—C9112.5 (6)N6—Ni2—N9—C20159.0 (6)
C3—N3—C5—C64.9 (18)N7—Ni2—N9—C20111.1 (6)
C2—N3—C5—C6173.2 (10)N7ii—Ni2—N9—C2068.9 (6)
C2—N3—C3—C40.1 (11)C14—N8—C16—C17176.6 (11)
C5—N3—C3—C4178.3 (10)C13—N8—C16—C176(2)
N3—C3—C4—N20.8 (12)C13—N8—C14—C151.6 (10)
C2—N2—C4—C31.3 (11)C16—N8—C14—C15176.5 (9)
Ni1—N2—C4—C3178.2 (6)N8—C14—C15—N71.4 (10)
C4—N2—C2—N31.2 (10)C13—N7—C15—C140.6 (9)
Ni1—N2—C2—N3178.2 (5)Ni2—N7—C15—C14173.1 (6)
C3—N3—C2—N20.8 (11)C15—N7—C13—N80.5 (9)
C5—N3—C2—N2179.3 (9)Ni2—N7—C13—N8172.3 (5)
C7—N5—C10—C11173.7 (8)C14—N8—C13—N71.4 (10)
C8—N5—C10—C114.3 (12)C16—N8—C13—N7176.3 (11)
C7—N5—C8—C90.6 (8)C18—N10—C21—C228.8 (14)
C10—N5—C8—C9177.6 (7)C19—N10—C21—C22174.1 (9)
N5—C8—C9—N40.1 (9)C18—N10—C19—C200.6 (8)
C7—N4—C9—C80.4 (9)C21—N10—C19—C20178.3 (7)
Ni1—N4—C9—C8177.1 (5)N10—C19—C20—N90.7 (9)
C9—N4—C7—N50.9 (9)C18—N9—C20—C190.4 (8)
Ni1—N4—C7—N5176.7 (5)Ni2—N9—C20—C19179.5 (5)
C8—N5—C7—N41.0 (9)C20—N9—C18—N100.0 (8)
C10—N5—C7—N4177.4 (6)Ni2—N9—C18—N10179.9 (4)
N9—Ni2—N6—C124.8 (19)C19—N10—C18—N90.4 (8)
N9ii—Ni2—N6—C12175.2 (19)C21—N10—C18—N9178.0 (6)
N7—Ni2—N6—C1292.5 (19)
Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S1iii0.932.863.638 (8)142
C10—H10A···S1iii0.932.793.601 (8)146
C16—H16A···S1iv0.932.853.717 (18)155
Symmetry codes: (iii) x+1, y, z; (iv) −x, −y, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S1i0.932.863.638 (8)142
C10—H10A···S1i0.932.793.601 (8)146
C16—H16A···S1ii0.932.853.717 (18)155
Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z.
references
References top

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457–m2458.

Liu, F.-Q., Jian, F.-F., Lu, L.-D., Yang, X.-J., Wang, X. & Xiao, H.-L. (2005). Acta Cryst. E61, m425–m426.

Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.