Download citation
Download citation
link to html
In the title compound, [Cu(C7H2N2O7)(C5H5N)(C10H8N2)], the CuII atom is coordinated by two O atoms from a 3,5-dinitro­salicylate ligand, two N atoms from a 2,2′-bipyridine ligand and one N atom from a pyridine ligand in a square-pyramidal geometry. The structure is stabilized by C—H...O hydrogen bonds and π–π inter­actions between the bipyridine ligands, with a centroid–centroid distance between neighbouring aromatic rings of 3.96 (8) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039876/hy2074sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039876/hy2074Isup2.hkl
Contains datablock I

CCDC reference: 660121

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.052
  • wR factor = 0.149
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 200 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT480_ALERT_4_C Long H...A H-Bond Reported H9A .. O6 .. 2.68 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H19A .. O5 .. 2.64 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.32
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Salicylic acid and its substituted derivatives continue to attract attention because of their versatile coordination modes (Thurston et al., 2004; Valigura et al., 2004; Wang & Okabe, 2004; Zhu et al., 2003) and biological applications (Lemoine et al., 2004). We report here the structure of a CuII complex with 3,5-dinitrosalicylic acid (He et al., 2005; He et al., 2006; Wen et al., 2007).

In the title complex, the CuII atom is bonded to two N atoms from a 2,2'-bipyridine ligand, one carboxylate O atom and one phenolato O atom from a 3,5-dinitrosalicylate ligand (Fig. 1). The coordination of the CuII atom is completed by bonding to a pyridine N atom in the axial direction, giving a square-pyramidal geometry (Table 1). The dihedral angle of the carboxylate group and the aromatic ring in 3,5-dinitrosalicylate ligand is 10.8 (9)°. The two rings in the 2,2'-bipyridine ligand are a little twisted relative to each other, with a dihedral angle of 2.2 (3)°. The adjacent mononuclear units are further connected to each other by C—H···O hydrogen bonds between the 2,2'-bipyridine (or pyridine) ligands and the O atoms from carboxylate and NO2 groups of the 3,5-dinitrosalicylate ligands (Table 2), resulting in an extended three-dimensional structure (Fig. 2). The partially overlapped arrangement indicates ππ interactions between the approximately parallel 2,2'-bipyridine ligands (the contact distances: C12···C17v = 3.45 (7), C11···C13v = 3.55 (6), C10···C14v = 3.55 (7) Å; symmetry code: (v) 1 - x, 1 - y, 2 - z). The centroid–centroid distance of aromatic rings of the neighboring 2,2'-bipyridine ligands is 3.96 (8) Å. The crystal structure is stabilized by C—H···O hydrogen bonds and ππ interactions.

Related literature top

For related literature, see: He et al. (2005, 2006); Lemoine et al. (2004); Thurston et al. (2004); Valigura et al. (2004); Wang & Okabe (2004); Wen et al. (2007); Zhu et al. (2003).

Experimental top

A mixture of Cu(NO3)2.4H2O (0.026 g, 0.1 mmol), 2,2'-bipyridine (0.016 g, 0.1 mmol), 3,5-dinitrosalicylic acid (0.046 g, 0.2 mmol), pyridine (0.1 ml), NaOH (0.008 g, 0.2 mmol) and distilled water (10 ml) was put into a 20 ml Teflon-lined autoclave and then heated at 393 K for 48 h. Green block-like crystals of the title compound suitable for X-ray analysis were collected from the reaction mixture.

Refinement top

H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Salicylic acid and its substituted derivatives continue to attract attention because of their versatile coordination modes (Thurston et al., 2004; Valigura et al., 2004; Wang & Okabe, 2004; Zhu et al., 2003) and biological applications (Lemoine et al., 2004). We report here the structure of a CuII complex with 3,5-dinitrosalicylic acid (He et al., 2005; He et al., 2006; Wen et al., 2007).

In the title complex, the CuII atom is bonded to two N atoms from a 2,2'-bipyridine ligand, one carboxylate O atom and one phenolato O atom from a 3,5-dinitrosalicylate ligand (Fig. 1). The coordination of the CuII atom is completed by bonding to a pyridine N atom in the axial direction, giving a square-pyramidal geometry (Table 1). The dihedral angle of the carboxylate group and the aromatic ring in 3,5-dinitrosalicylate ligand is 10.8 (9)°. The two rings in the 2,2'-bipyridine ligand are a little twisted relative to each other, with a dihedral angle of 2.2 (3)°. The adjacent mononuclear units are further connected to each other by C—H···O hydrogen bonds between the 2,2'-bipyridine (or pyridine) ligands and the O atoms from carboxylate and NO2 groups of the 3,5-dinitrosalicylate ligands (Table 2), resulting in an extended three-dimensional structure (Fig. 2). The partially overlapped arrangement indicates ππ interactions between the approximately parallel 2,2'-bipyridine ligands (the contact distances: C12···C17v = 3.45 (7), C11···C13v = 3.55 (6), C10···C14v = 3.55 (7) Å; symmetry code: (v) 1 - x, 1 - y, 2 - z). The centroid–centroid distance of aromatic rings of the neighboring 2,2'-bipyridine ligands is 3.96 (8) Å. The crystal structure is stabilized by C—H···O hydrogen bonds and ππ interactions.

For related literature, see: He et al. (2005, 2006); Lemoine et al. (2004); Thurston et al. (2004); Valigura et al. (2004); Wang & Okabe (2004); Wen et al. (2007); Zhu et al. (2003).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the c axis. Hydrogen bonds are denoted by dashed lines.
(2,2'-Bipyridine-κ2N,N')(3,5-dinitrosalicylato-κ2O1,O2)(pyridine- κN)copper(II) top
Crystal data top
[Cu(C7H2N2O7)(C5H5N)(C10H8N2)]Z = 2
Mr = 524.93F(000) = 534
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.981 (2) ÅCell parameters from 3813 reflections
b = 10.269 (2) Åθ = 1.9–25.5°
c = 11.913 (2) ŵ = 1.10 mm1
α = 68.99 (3)°T = 293 K
β = 67.88 (3)°Block, green
γ = 79.08 (3)°0.24 × 0.23 × 0.21 mm
V = 1053.9 (5) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3813 independent reflections
Radiation source: fine-focus sealed tube3149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.767, Tmax = 0.797k = 120
8700 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0764P)2 + 1.3696P]
where P = (Fo2 + 2Fc2)/3
3813 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(C7H2N2O7)(C5H5N)(C10H8N2)]γ = 79.08 (3)°
Mr = 524.93V = 1053.9 (5) Å3
Triclinic, P1Z = 2
a = 9.981 (2) ÅMo Kα radiation
b = 10.269 (2) ŵ = 1.10 mm1
c = 11.913 (2) ÅT = 293 K
α = 68.99 (3)°0.24 × 0.23 × 0.21 mm
β = 67.88 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3813 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3149 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.797Rint = 0.052
8700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.10Δρmax = 0.38 e Å3
3813 reflectionsΔρmin = 0.53 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73644 (5)0.53558 (5)0.63796 (4)0.03526 (19)
N11.1054 (5)0.8518 (4)0.4277 (5)0.0568 (11)
N21.1139 (4)0.8782 (4)0.0098 (4)0.0487 (10)
N30.5974 (4)0.3880 (4)0.7647 (3)0.0398 (8)
N40.7636 (4)0.5261 (4)0.7993 (3)0.0383 (8)
N50.5748 (4)0.7234 (4)0.6310 (3)0.0392 (8)
O10.7897 (4)0.4980 (4)0.2997 (3)0.0675 (12)
O20.7302 (3)0.4896 (3)0.4995 (3)0.0474 (8)
O30.9040 (3)0.6421 (3)0.5376 (3)0.0423 (7)
O41.0337 (5)0.8415 (4)0.5388 (4)0.0742 (12)
O51.2219 (5)0.9046 (5)0.3731 (5)0.0922 (15)
O61.2102 (4)0.9586 (4)0.0363 (4)0.0721 (12)
O71.0631 (4)0.8460 (4)0.0548 (3)0.0661 (10)
C10.9028 (4)0.6550 (4)0.3326 (4)0.0316 (8)
C20.9467 (4)0.6966 (4)0.4161 (4)0.0343 (9)
C31.0503 (4)0.8015 (5)0.3536 (4)0.0398 (10)
C41.1040 (5)0.8609 (5)0.2222 (5)0.0458 (11)
H4A1.17130.92880.18480.055*
C51.0565 (5)0.8179 (4)0.1485 (4)0.0398 (10)
C60.9573 (4)0.7168 (4)0.2024 (4)0.0380 (9)
H6A0.92670.68990.14980.046*
C70.8009 (5)0.5402 (5)0.3796 (4)0.0383 (9)
C80.5166 (5)0.3232 (5)0.7363 (5)0.0474 (11)
H8A0.52110.34780.65190.057*
C90.4261 (6)0.2202 (5)0.8288 (5)0.0589 (14)
H9A0.36900.17760.80730.071*
C100.4227 (6)0.1824 (5)0.9525 (5)0.0620 (15)
H10A0.36350.11311.01580.074*
C110.5064 (6)0.2467 (5)0.9828 (5)0.0554 (13)
H11A0.50560.22041.06630.066*
C120.6925 (5)0.4151 (6)1.0246 (4)0.0531 (12)
H12A0.63690.35071.09770.064*
C130.7826 (6)0.4939 (6)1.0325 (5)0.0614 (15)
H13A0.79000.48321.11090.074*
C140.8622 (6)0.5890 (6)0.9233 (5)0.0575 (13)
H14A0.92360.64390.92710.069*
C150.8506 (5)0.6029 (5)0.8071 (5)0.0480 (11)
H15A0.90490.66730.73320.058*
C160.6849 (5)0.4322 (5)0.9066 (4)0.0404 (10)
C170.5929 (5)0.3521 (4)0.8872 (4)0.0412 (10)
C180.5984 (5)0.8385 (5)0.6463 (4)0.0448 (11)
H18A0.69030.84710.64480.054*
C190.4958 (6)0.9440 (5)0.6640 (5)0.0536 (12)
H19A0.51741.02210.67470.064*
C200.3603 (6)0.9338 (6)0.6658 (5)0.0596 (14)
H20A0.28791.00380.67960.072*
C210.3327 (5)0.8176 (6)0.6469 (5)0.0575 (14)
H21A0.24210.80830.64630.069*
C220.4424 (5)0.7168 (5)0.6292 (4)0.0468 (11)
H22A0.42450.63940.61510.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0393 (3)0.0428 (3)0.0239 (3)0.0148 (2)0.0062 (2)0.0092 (2)
N10.054 (3)0.053 (3)0.074 (3)0.022 (2)0.024 (2)0.020 (2)
N20.045 (2)0.041 (2)0.036 (2)0.0020 (17)0.0007 (18)0.0001 (17)
N30.046 (2)0.0372 (19)0.0293 (17)0.0084 (16)0.0018 (15)0.0104 (15)
N40.0372 (18)0.049 (2)0.0327 (17)0.0015 (15)0.0127 (15)0.0175 (16)
N50.044 (2)0.042 (2)0.0341 (18)0.0130 (16)0.0160 (16)0.0069 (15)
O10.086 (3)0.095 (3)0.0326 (17)0.057 (2)0.0099 (17)0.0172 (17)
O20.0548 (19)0.063 (2)0.0282 (14)0.0365 (16)0.0002 (14)0.0169 (14)
O30.0400 (16)0.0597 (19)0.0293 (14)0.0219 (14)0.0053 (12)0.0140 (13)
O40.098 (3)0.084 (3)0.058 (2)0.044 (2)0.024 (2)0.025 (2)
O50.067 (3)0.121 (4)0.105 (3)0.055 (3)0.013 (3)0.046 (3)
O60.064 (2)0.062 (2)0.053 (2)0.0251 (19)0.0093 (19)0.0038 (18)
O70.071 (2)0.074 (3)0.0321 (17)0.006 (2)0.0065 (17)0.0024 (17)
C10.0288 (19)0.037 (2)0.0275 (18)0.0069 (16)0.0070 (16)0.0091 (16)
C20.0273 (19)0.038 (2)0.037 (2)0.0056 (16)0.0066 (16)0.0129 (17)
C30.035 (2)0.041 (2)0.049 (2)0.0097 (18)0.0141 (19)0.0166 (19)
C40.034 (2)0.036 (2)0.052 (3)0.0099 (18)0.003 (2)0.004 (2)
C50.035 (2)0.034 (2)0.034 (2)0.0043 (17)0.0023 (17)0.0015 (17)
C60.038 (2)0.043 (2)0.0294 (19)0.0043 (18)0.0105 (17)0.0073 (17)
C70.040 (2)0.051 (3)0.0290 (19)0.0168 (19)0.0113 (18)0.0123 (18)
C80.051 (3)0.044 (3)0.044 (2)0.018 (2)0.003 (2)0.015 (2)
C90.058 (3)0.048 (3)0.064 (3)0.017 (2)0.001 (3)0.024 (2)
C100.062 (3)0.044 (3)0.057 (3)0.020 (2)0.003 (3)0.006 (2)
C110.061 (3)0.045 (3)0.035 (2)0.001 (2)0.003 (2)0.001 (2)
C120.052 (3)0.069 (3)0.030 (2)0.011 (2)0.014 (2)0.014 (2)
C130.065 (3)0.089 (4)0.034 (2)0.020 (3)0.025 (2)0.027 (3)
C140.051 (3)0.084 (4)0.057 (3)0.009 (3)0.030 (3)0.038 (3)
C150.047 (3)0.062 (3)0.042 (2)0.001 (2)0.020 (2)0.021 (2)
C160.039 (2)0.045 (2)0.028 (2)0.0075 (19)0.0083 (18)0.0098 (18)
C170.042 (2)0.036 (2)0.031 (2)0.0048 (18)0.0031 (18)0.0070 (17)
C180.048 (3)0.047 (3)0.042 (2)0.019 (2)0.013 (2)0.011 (2)
C190.066 (3)0.046 (3)0.048 (3)0.007 (2)0.012 (2)0.020 (2)
C200.058 (3)0.063 (3)0.042 (3)0.005 (3)0.011 (2)0.010 (2)
C210.040 (3)0.077 (4)0.047 (3)0.016 (3)0.016 (2)0.002 (3)
C220.048 (3)0.052 (3)0.043 (2)0.016 (2)0.018 (2)0.009 (2)
Geometric parameters (Å, º) top
Cu1—O21.896 (3)C6—H6A0.9300
Cu1—O31.917 (3)C8—C91.388 (6)
Cu1—N42.007 (3)C8—H8A0.9300
Cu1—N32.020 (3)C9—C101.372 (8)
Cu1—N52.267 (4)C9—H9A0.9300
N1—O51.220 (5)C10—C111.367 (8)
N1—O41.220 (6)C10—H10A0.9300
N1—C31.466 (6)C11—C171.394 (6)
N2—O61.219 (5)C11—H11A0.9300
N2—O71.224 (6)C12—C131.367 (8)
N2—C51.460 (5)C12—C161.382 (6)
N3—C81.334 (6)C12—H12A0.9300
N3—C171.356 (6)C13—C141.372 (8)
N4—C151.326 (6)C13—H13A0.9300
N4—C161.352 (6)C14—C151.386 (6)
N5—C181.334 (6)C14—H14A0.9300
N5—C221.344 (6)C15—H15A0.9300
O1—C71.225 (5)C16—C171.468 (6)
O2—C71.287 (5)C18—C191.360 (7)
O3—C21.278 (5)C18—H18A0.9300
C1—C61.376 (5)C19—C201.367 (8)
C1—C21.439 (6)C19—H19A0.9300
C1—C71.513 (5)C20—C211.384 (8)
C2—C31.432 (5)C20—H20A0.9300
C3—C41.385 (6)C21—C221.366 (7)
C4—C51.364 (7)C21—H21A0.9300
C4—H4A0.9300C22—H22A0.9300
C5—C61.379 (6)
O2—Cu1—O394.21 (12)O2—C7—C1120.4 (3)
O2—Cu1—N4163.41 (15)N3—C8—C9122.0 (5)
O3—Cu1—N490.62 (14)N3—C8—H8A119.0
O2—Cu1—N391.20 (13)C9—C8—H8A119.0
O3—Cu1—N3164.71 (15)C10—C9—C8118.6 (5)
N4—Cu1—N380.41 (15)C10—C9—H9A120.7
O2—Cu1—N599.04 (15)C8—C9—H9A120.7
O3—Cu1—N595.26 (13)C11—C10—C9120.1 (5)
N4—Cu1—N596.30 (14)C11—C10—H10A120.0
N3—Cu1—N598.00 (14)C9—C10—H10A120.0
O5—N1—O4123.0 (5)C10—C11—C17119.3 (5)
O5—N1—C3117.2 (5)C10—C11—H11A120.3
O4—N1—C3119.7 (4)C17—C11—H11A120.3
O6—N2—O7123.1 (4)C13—C12—C16119.1 (5)
O6—N2—C5118.3 (5)C13—C12—H12A120.4
O7—N2—C5118.6 (4)C16—C12—H12A120.4
C8—N3—C17119.5 (4)C12—C13—C14119.2 (5)
C8—N3—Cu1125.5 (3)C12—C13—H13A120.4
C17—N3—Cu1114.9 (3)C14—C13—H13A120.4
C15—N4—C16119.4 (4)C13—C14—C15119.6 (5)
C15—N4—Cu1125.4 (3)C13—C14—H14A120.2
C16—N4—Cu1115.2 (3)C15—C14—H14A120.2
C18—N5—C22116.5 (4)N4—C15—C14121.3 (5)
C18—N5—Cu1121.6 (3)N4—C15—H15A119.4
C22—N5—Cu1121.3 (3)C14—C15—H15A119.4
C7—O2—Cu1128.7 (3)N4—C16—C12121.4 (4)
C2—O3—Cu1125.1 (3)N4—C16—C17115.0 (4)
C6—C1—C2120.3 (4)C12—C16—C17123.6 (4)
C6—C1—C7116.3 (4)N3—C17—C11120.5 (5)
C2—C1—C7123.3 (3)N3—C17—C16114.4 (4)
O3—C2—C3120.5 (4)C11—C17—C16125.1 (4)
O3—C2—C1124.2 (4)N5—C18—C19123.6 (4)
C3—C2—C1115.3 (4)N5—C18—H18A118.2
C4—C3—C2123.0 (4)C19—C18—H18A118.2
C4—C3—N1116.3 (4)C18—C19—C20119.1 (5)
C2—C3—N1120.7 (4)C18—C19—H19A120.5
C5—C4—C3118.7 (4)C20—C19—H19A120.5
C5—C4—H4A120.6C19—C20—C21118.9 (5)
C3—C4—H4A120.6C19—C20—H20A120.5
C4—C5—C6121.3 (4)C21—C20—H20A120.5
C4—C5—N2119.3 (4)C22—C21—C20118.1 (5)
C6—C5—N2119.4 (4)C22—C21—H21A121.0
C1—C6—C5121.3 (4)C20—C21—H21A121.0
C1—C6—H6A119.3N5—C22—C21123.7 (5)
C5—C6—H6A119.3N5—C22—H22A118.2
O1—C7—O2122.1 (4)C21—C22—H22A118.2
O1—C7—C1117.5 (4)
O2—Cu1—N3—C814.4 (4)C3—C4—C5—N2179.1 (4)
O3—Cu1—N3—C8125.2 (5)O6—N2—C5—C44.9 (6)
N4—Cu1—N3—C8180.0 (4)O7—N2—C5—C4175.0 (4)
N5—Cu1—N3—C884.9 (4)O6—N2—C5—C6173.9 (4)
O2—Cu1—N3—C17163.5 (3)O7—N2—C5—C66.1 (6)
O3—Cu1—N3—C1752.7 (6)C2—C1—C6—C51.1 (6)
N4—Cu1—N3—C172.2 (3)C7—C1—C6—C5176.9 (4)
N5—Cu1—N3—C1797.2 (3)C4—C5—C6—C10.2 (7)
O2—Cu1—N4—C15120.4 (5)N2—C5—C6—C1178.6 (4)
O3—Cu1—N4—C1513.3 (4)Cu1—O2—C7—O1177.8 (4)
N3—Cu1—N4—C15179.1 (4)Cu1—O2—C7—C11.7 (7)
N5—Cu1—N4—C1582.1 (4)C6—C1—C7—O19.6 (6)
O2—Cu1—N4—C1659.5 (6)C2—C1—C7—O1168.3 (4)
O3—Cu1—N4—C16166.6 (3)C6—C1—C7—O2170.8 (4)
N3—Cu1—N4—C161.0 (3)C2—C1—C7—O211.3 (7)
N5—Cu1—N4—C1698.0 (3)C17—N3—C8—C90.6 (7)
O2—Cu1—N5—C18138.0 (3)Cu1—N3—C8—C9178.4 (4)
O3—Cu1—N5—C1842.9 (3)N3—C8—C9—C101.4 (8)
N4—Cu1—N5—C1848.4 (3)C8—C9—C10—C110.5 (8)
N3—Cu1—N5—C18129.5 (3)C9—C10—C11—C171.0 (8)
O2—Cu1—N5—C2251.4 (3)C16—C12—C13—C140.7 (8)
O3—Cu1—N5—C22146.5 (3)C12—C13—C14—C150.4 (8)
N4—Cu1—N5—C22122.3 (3)C16—N4—C15—C140.2 (7)
N3—Cu1—N5—C2241.1 (3)Cu1—N4—C15—C14180.0 (4)
O3—Cu1—O2—C711.4 (4)C13—C14—C15—N40.2 (8)
N4—Cu1—O2—C7118.0 (5)C15—N4—C16—C120.4 (6)
N3—Cu1—O2—C7177.1 (4)Cu1—N4—C16—C12179.7 (3)
N5—Cu1—O2—C784.6 (4)C15—N4—C16—C17179.6 (4)
O2—Cu1—O3—C221.7 (4)Cu1—N4—C16—C170.3 (5)
N4—Cu1—O3—C2174.2 (4)C13—C12—C16—N40.6 (7)
N3—Cu1—O3—C2132.1 (5)C13—C12—C16—C17179.3 (4)
N5—Cu1—O3—C277.8 (4)C8—N3—C17—C111.0 (6)
Cu1—O3—C2—C3164.5 (3)Cu1—N3—C17—C11177.0 (3)
Cu1—O3—C2—C118.7 (6)C8—N3—C17—C16179.1 (4)
C6—C1—C2—O3178.2 (4)Cu1—N3—C17—C162.9 (5)
C7—C1—C2—O30.4 (7)C10—C11—C17—N31.8 (7)
C6—C1—C2—C31.3 (6)C10—C11—C17—C16178.3 (4)
C7—C1—C2—C3176.5 (4)N4—C16—C17—N32.1 (5)
O3—C2—C3—C4177.8 (4)C12—C16—C17—N3177.9 (4)
C1—C2—C3—C40.7 (6)N4—C16—C17—C11177.7 (4)
O3—C2—C3—N12.1 (7)C12—C16—C17—C112.2 (7)
C1—C2—C3—N1179.2 (4)C22—N5—C18—C192.3 (7)
O5—N1—C3—C422.6 (7)Cu1—N5—C18—C19168.7 (4)
O4—N1—C3—C4156.2 (5)N5—C18—C19—C200.4 (8)
O5—N1—C3—C2157.3 (5)C18—C19—C20—C211.4 (8)
O4—N1—C3—C223.8 (7)C19—C20—C21—C221.0 (7)
C2—C3—C4—C50.0 (7)C18—N5—C22—C212.7 (7)
N1—C3—C4—C5180.0 (4)Cu1—N5—C22—C21168.4 (4)
C3—C4—C5—C60.3 (7)C20—C21—C22—N51.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.313.226 (6)169
C22—H22A···O1ii0.932.473.174 (6)133
C9—H9A···O6iii0.932.683.306 (6)125
C19—H19A···O5iv0.932.643.283 (6)126
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y1, z+1; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H2N2O7)(C5H5N)(C10H8N2)]
Mr524.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.981 (2), 10.269 (2), 11.913 (2)
α, β, γ (°)68.99 (3), 67.88 (3), 79.08 (3)
V3)1053.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.24 × 0.23 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.767, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
8700, 3813, 3149
Rint0.052
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.10
No. of reflections3813
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.53

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O21.896 (3)Cu1—N32.020 (3)
Cu1—O31.917 (3)Cu1—N52.267 (4)
Cu1—N42.007 (3)
O2—Cu1—O394.21 (12)N4—Cu1—N380.41 (15)
O2—Cu1—N4163.41 (15)O2—Cu1—N599.04 (15)
O3—Cu1—N490.62 (14)O3—Cu1—N595.26 (13)
O2—Cu1—N391.20 (13)N4—Cu1—N596.30 (14)
O3—Cu1—N3164.71 (15)N3—Cu1—N598.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.313.226 (6)169
C22—H22A···O1ii0.932.473.174 (6)133
C9—H9A···O6iii0.932.683.306 (6)125
C19—H19A···O5iv0.932.643.283 (6)126
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y1, z+1; (iv) x+2, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds