supplementary materials


Acta Cryst. (2007). E63, m2415    [ doi:10.1107/S1600536807041268 ]

Bis(pyrazine-2-carboxylato-[kappa]2N1,O2)nickel(II) dihydrate

L. Hao and T. Yu

Abstract top

In the title compound, [Ni(C5H3N2O2)2]·2H2O, the NiII cation is four-coordinated by two N and two O atoms belonging to two pyrazine-2-carboxylate ligands. The NiII atom occupies a special position at a centre of symmetry. Hydrogen bonds between water molecules, and between water molecules and carboxylate O atoms, stabilize the crystal structure.

Comment top

In recent years carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound bis(pyrazine-2-carboxylato)nickel(II) hydrate (Fig. 1). The nickel cation is tetra-coordinated by two O an d two N atoms belonging to two pyrazine-2-carboxylate. Hydrogen bonds between symmetry operated water molecules, and water molecule and carboxylate oxygen atom stablize the crystal structure (Table 1 and Fig. 2).

Related literature top

For related literature, see: Church & Halvorson (1959); Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997).

Experimental top

The 8 ml etanol solution of nickel acetate (0.5 mmol), pyrazine-2-carboxylic acid (1.0 mmol) in a 25 ml Teflon-lined stainless steel autoclave was kept at 423 K for three days. Green crystals were obtained after cooling to room temperature with a yield of 35%. Anal. Calc. for C10H10N4Ni: C 35.19, H 2.93, N 16.42%; Found: C 35.11, H 2.97, N 16.38%.

Refinement top

The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of d(H–H) = 1.38 (2)Å and d(O–H) = 0.82 (2) Å. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq of the respective carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the 30% probability displacement ellipsoids. Symmetry operator i: 1 x, y, z + 1.
[Figure 2] Fig. 2. The packing diagram of the title compound along the direction [010].
Bis(pyrazine-2-carboxylato-κ2N1,O2)nickel(II) dihydrate top
Crystal data top
[Ni(C5H3N2O2)2]·2H2OZ = 1
Mr = 340.93F000 = 174
Triclinic, P1Dx = 1.632 Mg m3
Hall symbol: -P 1Mo Kα radiation
λ = 0.71073 Å
a = 5.5576 (6) ÅCell parameters from 1208 reflections
b = 7.3252 (9) Åθ = 2.3–25.0º
c = 9.3021 (11) ŵ = 1.43 mm1
α = 75.065 (2)ºT = 293 (2) K
β = 84.298 (2)ºCube, green
γ = 71.503 (2)º0.10 × 0.10 × 0.10 mm
V = 346.93 (7) Å3
Data collection top
Bruker APEX II CCD area-detector
diffractometer
1208 independent reflections
Radiation source: fine-focus sealed tube1111 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
T = 293(2) Kθmax = 25.0º
φ and ω scansθmin = 2.3º
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 6→5
Tmin = 0.870, Tmax = 0.870k = 8→8
1705 measured reflectionsl = 8→11
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1208 reflectionsΔρmax = 0.54 e Å3
103 parametersΔρmin = 0.51 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
[Ni(C5H3N2O2)2]·2H2Oγ = 71.503 (2)º
Mr = 340.93V = 346.93 (7) Å3
Triclinic, P1Z = 1
a = 5.5576 (6) ÅMo Kα
b = 7.3252 (9) ŵ = 1.43 mm1
c = 9.3021 (11) ÅT = 293 (2) K
α = 75.065 (2)º0.10 × 0.10 × 0.10 mm
β = 84.298 (2)º
Data collection top
Bruker APEX II CCD area-detector
diffractometer
1208 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1111 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.870Rint = 0.050
1705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.096H atoms treated by a mixture of
independent and constrained refinement
S = 1.00Δρmax = 0.54 e Å3
1208 reflectionsΔρmin = 0.51 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00001.00000.0297 (2)
C10.4654 (6)0.1781 (4)1.0641 (4)0.0332 (7)
C20.5285 (6)0.3005 (4)0.9152 (4)0.0317 (7)
C30.3444 (6)0.4682 (5)0.8416 (4)0.0385 (8)
H30.17970.50930.87890.046*
C40.6886 (8)0.4949 (5)0.6507 (4)0.0481 (9)
H40.73940.56400.56040.058*
C50.8593 (7)0.3250 (5)0.7289 (4)0.0412 (8)
H51.02280.27700.69190.049*
N10.7810 (5)0.2302 (4)0.8615 (3)0.0326 (6)
N20.4262 (7)0.5699 (5)0.7071 (4)0.0652 (10)
O10.6702 (4)0.0410 (3)1.1256 (2)0.0378 (5)
O20.2286 (4)0.2137 (3)1.1166 (3)0.0455 (6)
O1W0.2352 (8)0.0433 (7)0.4397 (4)0.1007 (13)
H1W0.212 (13)0.087 (10)0.347 (3)0.151*
H2W0.369 (8)0.051 (8)0.455 (7)0.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0229 (3)0.0247 (3)0.0327 (3)0.0004 (2)0.0048 (2)0.0021 (2)
C10.0315 (17)0.0276 (15)0.0401 (18)0.0068 (13)0.0029 (13)0.0115 (13)
C20.0307 (16)0.0260 (15)0.0393 (18)0.0074 (13)0.0009 (13)0.0114 (13)
C30.0374 (18)0.0293 (16)0.0450 (19)0.0040 (14)0.0017 (14)0.0100 (14)
C40.061 (2)0.0363 (18)0.041 (2)0.0155 (17)0.0010 (17)0.0021 (15)
C50.0383 (18)0.0409 (18)0.0406 (19)0.0125 (15)0.0048 (15)0.0046 (15)
N10.0315 (14)0.0272 (13)0.0365 (15)0.0072 (11)0.0026 (11)0.0065 (11)
N20.074 (3)0.0471 (19)0.067 (2)0.0094 (17)0.0119 (19)0.0083 (17)
O10.0340 (12)0.0307 (11)0.0390 (13)0.0014 (9)0.0043 (10)0.0043 (10)
O20.0343 (13)0.0406 (13)0.0530 (15)0.0033 (10)0.0137 (11)0.0121 (11)
O1W0.106 (3)0.127 (4)0.059 (2)0.051 (3)0.002 (2)0.014 (2)
Geometric parameters (Å, °) top
Ni1—N11.968 (3)C3—N21.395 (5)
Ni1—N1i1.968 (3)C3—H30.9300
Ni1—O1i2.054 (2)C4—C51.378 (5)
Ni1—O12.054 (2)C4—N21.481 (5)
C1—O11.319 (4)C4—H40.9300
C1—O21.326 (4)C5—N11.355 (4)
C1—C21.519 (4)C5—H50.9300
C2—C31.390 (5)O1W—H1W0.84 (2)
C2—N11.421 (4)O1W—H2W0.83 (5)
N1—Ni1—N1i180.00 (14)N2—C3—H3122.6
N1—Ni1—O1i99.06 (9)C5—C4—N2121.5 (3)
N1i—Ni1—O1i80.94 (9)C5—C4—H4119.3
N1—Ni1—O180.94 (9)N2—C4—H4119.3
N1i—Ni1—O199.06 (9)N1—C5—C4117.8 (3)
O1i—Ni1—O1180.0N1—C5—H5121.1
O1—C1—O2127.9 (3)C4—C5—H5121.1
O1—C1—C2111.3 (2)C5—N1—C2120.9 (3)
O2—C1—C2120.8 (3)C5—N1—Ni1124.8 (2)
C3—C2—N1124.7 (3)C2—N1—Ni1114.3 (2)
C3—C2—C1120.0 (3)C3—N2—C4120.5 (3)
N1—C2—C1115.3 (3)C1—O1—Ni1117.65 (19)
C2—C3—N2114.7 (3)H1W—O1W—H2W110 (3)
C2—C3—H3122.6
Symmetry codes: (i) −x+2, −y, −z+2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O1Wii0.83 (5)2.52 (6)3.071 (9)125 (6)
O1W—H1W···O2iii0.84 (2)2.11 (3)2.941 (4)167 (7)
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, y, z−1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O1Wi0.83 (5)2.52 (6)3.071 (9)125 (6)
O1W—H1W···O2ii0.84 (2)2.11 (3)2.941 (4)167 (7)
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1.
references
References top

Bruker (2001). SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469–475.

Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.

Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.

Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045–2049.

Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.

Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–658.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.