Download citation
Download citation
link to html
In the title mononuclear complex, [Cu(C11H7O2)(NO3)(C10H8N2)], the CuII atom is five-coordinated in a distorted square-pyramidal environment by two N atoms of 2,2′-bipyridine, two O atoms of 1-formyl-2-naphtholate and a nitrate O atom. Mol­ecules are stacked by π–π inter­actions [the dihedral angle, interplanar average distance and ring-centroid separation involved in stacking are 0.000 (1), 3.3504 (2) and 4.0800 (7) Å for stronger inter­actions, and 2.505 (1), 3.5373 (2) and 4.2048 (9) Å for weaker inter­actions] into a one-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039669/kp2125sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039669/kp2125Isup2.hkl
Contains datablock I

CCDC reference: 660118

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.034
  • wR factor = 0.093
  • Data-to-parameter ratio = 12.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for O3 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N3
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.65 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu - O3 .. 5.79 su
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.655 Tmax scaled 0.645 Tmin scaled 0.503 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu (2) 2.28
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In the previously published papers, the crystal structures of 2-hydroxy-1-naphthaldehyde (Maniukiewicz & Bukowska-Strzyzewska, 1992) and its three copper(II) complexes (Yu et al., 2006; Xiu-Jian et al., 2005; Elmali & Elerman, 2002) have been determined. In this paper, we report a new compound containing naphthaldehyde as a ligand (Fig.1). The CuII atom is five-coordinated by two N atoms of bipy and two O atoms of naph in the equatorial plane with an axial nitrate O—Cu bond to form square-pyramidal coordination geometry (Table 1). The Cu atom is shifted from from the least-squares plane N1/N2/O2/O1 by 0.2103 (3)Å towards O3. The presented structure comprises the same cation as [Cu(C10H8N2)(C11H7O2)(ClO4)] (Elmali & Elerman, 2002) but anions are different: nitrate and perchlorate. In the crystal structure of (I), there are two kinds of π-π stacking interactions: strong one between naphthalene rings (symmetry codes: -x + 1, y - 1/2, -z + 1/2; x, -y + 3/2, z + 1/2) and the weak one between naphthalene ring and pyridine ring (symmetry codes: -x + 1, y - 1/2, -z + 1/2; x, y - 1/2, z + 1/2). The dihedral angle, interplanar average distance and ring-centroid separation distance are: 0.000 (1)°, 3.3504 (2) Å, 4.0800 (7)Å for the former ones and 2.505 (1)°, 3.5373 (2) Å, 4.2048 (9)Å for the latter ones, respectively. The title molecules are connected into dimers through the first kind of stacking and further linked into a one-dimensional skeleton via the second π-π stacking along c axis (Fig. 2).

Related literature top

For related literature, see: Elmali & Elerman (2002); Maniukiewicz & Bukowska-Strzyzewska (1992); Xiu-Jian et al. (2005); Yu et al. (2006).

Experimental top

A 10 ml me thanol solution of Cu(NO3)2.3H2O (0.242 g,1 mmol) was dropped into 10 ml me thanol solution of 2, 2'-bipyridine(0.156 g,1 mmol) and 2-hydroxy-1-naphthaldehyde (0.16 g,1 mmol) to be stirred for 5 h at 323 K. By an evaporation of the filtrate for about 10 days green block-shaped crystals were obtained. Analysis, found (%): C, 55.60; H, 3.35; N, 9.21. C21H15CuN3O5 required (%):C, 55.64; H, 3.31; N, 9.27.

Refinement top

H atoms were positioned geometrically with C—H distance of 0.93 Å, and treated as riding atoms, with Uiso(H)=1.2Ueq(C).

Structure description top

In the previously published papers, the crystal structures of 2-hydroxy-1-naphthaldehyde (Maniukiewicz & Bukowska-Strzyzewska, 1992) and its three copper(II) complexes (Yu et al., 2006; Xiu-Jian et al., 2005; Elmali & Elerman, 2002) have been determined. In this paper, we report a new compound containing naphthaldehyde as a ligand (Fig.1). The CuII atom is five-coordinated by two N atoms of bipy and two O atoms of naph in the equatorial plane with an axial nitrate O—Cu bond to form square-pyramidal coordination geometry (Table 1). The Cu atom is shifted from from the least-squares plane N1/N2/O2/O1 by 0.2103 (3)Å towards O3. The presented structure comprises the same cation as [Cu(C10H8N2)(C11H7O2)(ClO4)] (Elmali & Elerman, 2002) but anions are different: nitrate and perchlorate. In the crystal structure of (I), there are two kinds of π-π stacking interactions: strong one between naphthalene rings (symmetry codes: -x + 1, y - 1/2, -z + 1/2; x, -y + 3/2, z + 1/2) and the weak one between naphthalene ring and pyridine ring (symmetry codes: -x + 1, y - 1/2, -z + 1/2; x, y - 1/2, z + 1/2). The dihedral angle, interplanar average distance and ring-centroid separation distance are: 0.000 (1)°, 3.3504 (2) Å, 4.0800 (7)Å for the former ones and 2.505 (1)°, 3.5373 (2) Å, 4.2048 (9)Å for the latter ones, respectively. The title molecules are connected into dimers through the first kind of stacking and further linked into a one-dimensional skeleton via the second π-π stacking along c axis (Fig. 2).

For related literature, see: Elmali & Elerman (2002); Maniukiewicz & Bukowska-Strzyzewska (1992); Xiu-Jian et al. (2005); Yu et al. (2006).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1994).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and displacement parameters scaled at the 30% probability.
[Figure 2] Fig. 2. Packing of (I) showing the one-dimensional structure in the ab plane, linked π-π stacking (dashed lines). H atoms have been omitted.
(2,2'-Bipyridine-κ2N,N')(1-formyl-2-naphtholato-κ2O,O')(nitrato-\ κO)copper(II) top
Crystal data top
[Cu(C11H7O2)(NO3)(C10H8N2)]F(000) = 924
Mr = 452.90Dx = 1.618 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 38 reflections
a = 12.428 (3) Åθ = 4.6–15.2°
b = 9.167 (2) ŵ = 1.22 mm1
c = 17.245 (6) ÅT = 296 K
β = 108.85 (1)°Block, green
V = 1859.3 (9) Å30.56 × 0.48 × 0.36 mm
Z = 4
Data collection top
Siemens P4
diffractometer
2552 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω scansh = 014
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 010
Tmin = 0.767, Tmax = 0.985l = 2019
3797 measured reflections3 standard reflections every 97 reflections
3261 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0639P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3261 reflectionsΔρmax = 0.36 e Å3
272 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00014 (4)
Crystal data top
[Cu(C11H7O2)(NO3)(C10H8N2)]V = 1859.3 (9) Å3
Mr = 452.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.428 (3) ŵ = 1.22 mm1
b = 9.167 (2) ÅT = 296 K
c = 17.245 (6) Å0.56 × 0.48 × 0.36 mm
β = 108.85 (1)°
Data collection top
Siemens P4
diffractometer
2552 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Rint = 0.017
Tmin = 0.767, Tmax = 0.9853 standard reflections every 97 reflections
3797 measured reflections intensity decay: 1.4%
3261 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
3261 reflectionsΔρmin = 0.39 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.69710 (3)0.56548 (4)0.01255 (2)0.04165 (14)
O10.57130 (15)0.6902 (2)0.03875 (11)0.0465 (5)
O20.64002 (17)0.5217 (2)0.10181 (12)0.0488 (5)
O30.8122 (2)0.7602 (3)0.05872 (16)0.0885 (9)
O40.8697 (3)0.6778 (3)0.18001 (17)0.1045 (10)
O50.9546 (2)0.8586 (3)0.14903 (16)0.0751 (7)
N10.73773 (19)0.5505 (3)0.08999 (14)0.0424 (5)
N20.81823 (18)0.4139 (2)0.04854 (14)0.0412 (5)
N30.8786 (2)0.7689 (3)0.12895 (18)0.0549 (7)
C10.5021 (2)0.7470 (3)0.00535 (17)0.0408 (6)
C20.4219 (2)0.8518 (3)0.05254 (18)0.0473 (7)
H20.41950.87220.10590.057*
C30.3493 (2)0.9216 (3)0.02088 (19)0.0488 (7)
H30.29820.98860.05340.059*
C40.3487 (2)0.8958 (3)0.06057 (18)0.0448 (7)
C50.2758 (3)0.9761 (4)0.0928 (2)0.0590 (9)
H50.22811.04690.06090.071*
C60.2749 (3)0.9502 (4)0.1705 (2)0.0664 (10)
H60.22721.00380.19150.080*
C70.3455 (3)0.8437 (4)0.2182 (2)0.0573 (8)
H70.34380.82520.27080.069*
C80.4175 (2)0.7658 (3)0.18808 (18)0.0492 (7)
H80.46470.69590.22120.059*
C90.4220 (2)0.7884 (3)0.10894 (17)0.0413 (6)
C100.4987 (2)0.7101 (3)0.07414 (17)0.0390 (6)
C110.5631 (2)0.5932 (3)0.11747 (18)0.0445 (7)
H110.54670.56450.16420.053*
C120.6931 (3)0.6285 (4)0.15859 (19)0.0550 (8)
H120.63640.69590.16060.066*
C130.7278 (3)0.6129 (4)0.2256 (2)0.0678 (10)
H130.69470.66840.27240.081*
C140.8112 (3)0.5152 (4)0.2232 (2)0.0660 (10)
H140.83620.50420.26820.079*
C150.8582 (3)0.4327 (3)0.1540 (2)0.0563 (8)
H150.91470.36470.15180.068*
C160.8204 (2)0.4523 (3)0.08780 (17)0.0401 (6)
C170.8641 (2)0.3727 (3)0.00911 (17)0.0418 (6)
C180.9466 (2)0.2650 (3)0.0066 (2)0.0554 (8)
H180.97690.23640.03380.066*
C190.9828 (3)0.2011 (4)0.0830 (2)0.0625 (9)
H191.03780.12820.09450.075*
C200.9380 (3)0.2448 (4)0.1418 (2)0.0585 (8)
H200.96260.20310.19370.070*
C210.8559 (2)0.3514 (3)0.12283 (18)0.0506 (7)
H210.82530.38140.16290.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0377 (2)0.0452 (2)0.0434 (2)0.00772 (16)0.01494 (15)0.00289 (17)
O10.0394 (10)0.0579 (12)0.0442 (11)0.0120 (9)0.0163 (9)0.0046 (10)
O20.0461 (11)0.0510 (12)0.0537 (12)0.0101 (10)0.0222 (10)0.0094 (10)
O30.0918 (19)0.0642 (16)0.0767 (18)0.0083 (15)0.0184 (15)0.0074 (14)
O40.133 (3)0.104 (2)0.0666 (18)0.047 (2)0.0194 (18)0.0145 (17)
O50.0671 (15)0.0790 (17)0.0836 (17)0.0268 (14)0.0306 (14)0.0271 (15)
N10.0400 (12)0.0448 (13)0.0423 (13)0.0051 (11)0.0131 (11)0.0022 (11)
N20.0367 (12)0.0435 (14)0.0430 (13)0.0038 (10)0.0122 (10)0.0043 (11)
N30.0523 (16)0.0560 (17)0.0592 (18)0.0004 (14)0.0217 (14)0.0173 (15)
C10.0320 (13)0.0392 (14)0.0479 (16)0.0014 (12)0.0084 (12)0.0052 (13)
C20.0453 (16)0.0486 (17)0.0450 (17)0.0040 (14)0.0104 (14)0.0001 (14)
C30.0379 (15)0.0451 (17)0.0575 (19)0.0083 (13)0.0072 (14)0.0026 (15)
C40.0382 (15)0.0439 (16)0.0508 (18)0.0013 (12)0.0122 (13)0.0083 (13)
C50.0515 (19)0.058 (2)0.067 (2)0.0163 (15)0.0185 (17)0.0033 (17)
C60.061 (2)0.070 (2)0.078 (2)0.0111 (18)0.0358 (19)0.013 (2)
C70.0594 (19)0.064 (2)0.0532 (19)0.0018 (17)0.0253 (16)0.0111 (17)
C80.0470 (17)0.0502 (18)0.0515 (18)0.0001 (14)0.0173 (15)0.0072 (15)
C90.0349 (14)0.0403 (15)0.0474 (16)0.0061 (12)0.0114 (12)0.0090 (13)
C100.0331 (13)0.0406 (15)0.0434 (15)0.0020 (12)0.0127 (12)0.0040 (12)
C110.0423 (16)0.0475 (17)0.0467 (17)0.0011 (13)0.0185 (13)0.0009 (13)
C120.0528 (18)0.0598 (19)0.0525 (19)0.0175 (16)0.0172 (15)0.0110 (16)
C130.073 (2)0.081 (2)0.055 (2)0.024 (2)0.0279 (18)0.0241 (18)
C140.071 (2)0.080 (2)0.059 (2)0.015 (2)0.0382 (19)0.0156 (19)
C150.0525 (18)0.062 (2)0.062 (2)0.0147 (16)0.0302 (16)0.0096 (17)
C160.0323 (13)0.0416 (15)0.0449 (16)0.0011 (12)0.0103 (12)0.0019 (13)
C170.0328 (14)0.0429 (15)0.0497 (17)0.0019 (12)0.0132 (13)0.0026 (13)
C180.0474 (17)0.0566 (19)0.067 (2)0.0157 (15)0.0246 (16)0.0078 (17)
C190.0501 (19)0.063 (2)0.074 (2)0.0231 (16)0.0193 (17)0.0189 (18)
C200.0518 (18)0.063 (2)0.0549 (19)0.0085 (17)0.0093 (16)0.0190 (17)
C210.0472 (17)0.0568 (19)0.0474 (18)0.0032 (15)0.0149 (14)0.0057 (15)
Geometric parameters (Å, º) top
Cu—O11.9082 (18)C6—H60.9300
Cu—O21.934 (2)C7—C81.372 (4)
Cu—N11.994 (2)C7—H70.9300
Cu—N21.995 (2)C8—C91.399 (4)
Cu—O32.265 (3)C8—H80.9300
O1—C11.289 (3)C9—C101.468 (4)
O2—C111.259 (3)C10—C111.400 (4)
O3—N31.228 (3)C11—H110.9300
O4—N31.244 (4)C12—C131.365 (4)
O5—N31.215 (3)C12—H120.9300
N1—C121.339 (4)C13—C141.360 (4)
N1—C161.357 (3)C13—H130.9300
N2—C211.342 (4)C14—C151.374 (4)
N2—C171.350 (3)C14—H140.9300
C1—C101.426 (4)C15—C161.379 (4)
C1—C21.434 (4)C15—H150.9300
C2—C31.356 (4)C16—C171.481 (4)
C2—H20.9300C17—C181.385 (4)
C3—C41.427 (4)C18—C191.378 (4)
C3—H30.9300C18—H180.9300
C4—C51.414 (4)C19—C201.365 (4)
C4—C91.415 (4)C19—H190.9300
C5—C61.363 (5)C20—C211.375 (4)
C5—H50.9300C20—H200.9300
C6—C71.390 (5)C21—H210.9300
O1—Cu—O292.12 (8)C7—C8—C9121.9 (3)
O1—Cu—N191.97 (9)C7—C8—H8119.1
O2—Cu—N1162.68 (9)C9—C8—H8119.1
O1—Cu—N2169.98 (9)C8—C9—C4117.2 (3)
O2—Cu—N292.40 (9)C8—C9—C10124.2 (3)
N1—Cu—N281.15 (9)C4—C9—C10118.6 (3)
O1—Cu—O391.16 (9)C11—C10—C1120.3 (2)
O2—Cu—O3103.65 (10)C11—C10—C9119.4 (3)
N1—Cu—O393.08 (10)C1—C10—C9120.2 (2)
N2—Cu—O396.45 (10)O2—C11—C10128.8 (3)
C1—O1—Cu126.84 (18)O2—C11—H11115.6
C11—O2—Cu124.22 (19)C10—C11—H11115.6
N3—O3—Cu123.0 (2)N1—C12—C13122.6 (3)
C12—N1—C16118.2 (2)N1—C12—H12118.7
C12—N1—Cu126.5 (2)C13—C12—H12118.7
C16—N1—Cu115.28 (18)C14—C13—C12119.3 (3)
C21—N2—C17119.0 (2)C14—C13—H13120.4
C21—N2—Cu126.1 (2)C12—C13—H13120.4
C17—N2—Cu114.94 (18)C13—C14—C15119.6 (3)
O5—N3—O3122.5 (3)C13—C14—H14120.2
O5—N3—O4119.4 (3)C15—C14—H14120.2
O3—N3—O4118.0 (3)C14—C15—C16119.0 (3)
O1—C1—C10124.4 (2)C14—C15—H15120.5
O1—C1—C2117.3 (3)C16—C15—H15120.5
C10—C1—C2118.2 (2)N1—C16—C15121.4 (3)
C3—C2—C1121.3 (3)N1—C16—C17113.8 (2)
C3—C2—H2119.4C15—C16—C17124.9 (3)
C1—C2—H2119.4N2—C17—C18121.2 (3)
C2—C3—C4122.3 (3)N2—C17—C16114.8 (2)
C2—C3—H3118.9C18—C17—C16124.0 (3)
C4—C3—H3118.9C19—C18—C17118.8 (3)
C5—C4—C9120.2 (3)C19—C18—H18120.6
C5—C4—C3120.6 (3)C17—C18—H18120.6
C9—C4—C3119.2 (3)C20—C19—C18120.0 (3)
C6—C5—C4120.4 (3)C20—C19—H19120.0
C6—C5—H5119.8C18—C19—H19120.0
C4—C5—H5119.8C19—C20—C21118.8 (3)
C5—C6—C7120.0 (3)C19—C20—H20120.6
C5—C6—H6120.0C21—C20—H20120.6
C7—C6—H6120.0N2—C21—C20122.2 (3)
C8—C7—C6120.4 (3)N2—C21—H21118.9
C8—C7—H7119.8C20—C21—H21118.9
C6—C7—H7119.8
O2—Cu—O1—C117.3 (2)C7—C8—C9—C10178.9 (3)
N1—Cu—O1—C1179.5 (2)C5—C4—C9—C80.6 (4)
N2—Cu—O1—C1134.1 (4)C3—C4—C9—C8179.3 (3)
O3—Cu—O1—C186.4 (2)C5—C4—C9—C10178.3 (3)
O1—Cu—O2—C1114.7 (2)C3—C4—C9—C101.7 (4)
N1—Cu—O2—C11118.3 (3)O1—C1—C10—C118.3 (4)
N2—Cu—O2—C11174.2 (2)C2—C1—C10—C11170.3 (2)
O3—Cu—O2—C1177.0 (2)O1—C1—C10—C9175.7 (2)
O1—Cu—O3—N3135.3 (3)C2—C1—C10—C95.7 (4)
O2—Cu—O3—N342.8 (3)C8—C9—C10—C117.8 (4)
N1—Cu—O3—N3132.7 (3)C4—C9—C10—C11173.3 (2)
N2—Cu—O3—N351.3 (3)C8—C9—C10—C1176.1 (3)
O1—Cu—N1—C129.0 (3)C4—C9—C10—C12.7 (4)
O2—Cu—N1—C12112.6 (3)Cu—O2—C11—C103.8 (4)
N2—Cu—N1—C12178.3 (3)C1—C10—C11—O211.0 (4)
O3—Cu—N1—C1282.3 (3)C9—C10—C11—O2173.0 (3)
O1—Cu—N1—C16172.13 (19)C16—N1—C12—C130.1 (5)
O2—Cu—N1—C1668.5 (4)Cu—N1—C12—C13178.7 (3)
N2—Cu—N1—C160.55 (19)N1—C12—C13—C140.3 (6)
O3—Cu—N1—C1696.6 (2)C12—C13—C14—C150.7 (6)
O1—Cu—N2—C21134.5 (4)C13—C14—C15—C160.7 (5)
O2—Cu—N2—C2117.7 (2)C12—N1—C16—C150.1 (4)
N1—Cu—N2—C21178.5 (2)Cu—N1—C16—C15178.8 (2)
O3—Cu—N2—C2186.3 (2)C12—N1—C16—C17179.7 (3)
O1—Cu—N2—C1745.2 (6)Cu—N1—C16—C170.7 (3)
O2—Cu—N2—C17161.98 (19)C14—C15—C16—N10.3 (5)
N1—Cu—N2—C171.86 (18)C14—C15—C16—C17179.2 (3)
O3—Cu—N2—C1794.0 (2)C21—N2—C17—C181.8 (4)
Cu—O3—N3—O5165.6 (2)Cu—N2—C17—C18177.9 (2)
Cu—O3—N3—O411.3 (4)C21—N2—C17—C16177.5 (2)
Cu—O1—C1—C108.8 (4)Cu—N2—C17—C162.8 (3)
Cu—O1—C1—C2172.60 (18)N1—C16—C17—N22.3 (3)
O1—C1—C2—C3177.1 (3)C15—C16—C17—N2177.2 (3)
C10—C1—C2—C34.3 (4)N1—C16—C17—C18178.4 (3)
C1—C2—C3—C40.2 (4)C15—C16—C17—C182.1 (5)
C2—C3—C4—C5176.8 (3)N2—C17—C18—C190.9 (5)
C2—C3—C4—C93.3 (4)C16—C17—C18—C19178.3 (3)
C9—C4—C5—C60.4 (5)C17—C18—C19—C200.4 (5)
C3—C4—C5—C6179.5 (3)C18—C19—C20—C210.8 (5)
C4—C5—C6—C70.5 (5)C17—N2—C21—C201.3 (4)
C5—C6—C7—C81.1 (5)Cu—N2—C21—C20178.3 (2)
C6—C7—C8—C90.8 (5)C19—C20—C21—N20.1 (5)
C7—C8—C9—C40.0 (4)

Experimental details

Crystal data
Chemical formula[Cu(C11H7O2)(NO3)(C10H8N2)]
Mr452.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.428 (3), 9.167 (2), 17.245 (6)
β (°) 108.85 (1)
V3)1859.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.56 × 0.48 × 0.36
Data collection
DiffractometerSiemens P4
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.767, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
3797, 3261, 2552
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.05
No. of reflections3261
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: XSCANS (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Cu—O11.9082 (18)Cu—N21.995 (2)
Cu—O21.934 (2)Cu—O32.265 (3)
Cu—N11.994 (2)
O1—Cu—O292.12 (8)N1—Cu—N281.15 (9)
O1—Cu—N191.97 (9)O1—Cu—O391.16 (9)
O1—Cu—N2169.98 (9)N2—Cu—O396.45 (10)
O2—Cu—N292.40 (9)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds