Download citation
Download citation
link to html
The title crystal structure, [Ni3(C19H24N2O2)2(CHO2)2(C3H7NO)2], consists of discrete centrosymmetric homo­trinuclear nickel complex mol­ecules. In each mol­ecule, the central NiII ion is in a distorted octa­hedral coordination environment, formed by four O atoms from two chelating DML2− ligands [DMLH2 = N,N′-bis­(salicyl­idene)-2,2′-dimethyl-1,3-propane­diamine] in the equatorial plane and two O atoms of two symmetry-related formate ligands in the axial positions. The terminal NiII ions also have distorted octa­hedral coordination environments and these are formed by two O and N atoms from chelating DML2− ligands in the equatorial plane; the axial positions are occupied by O atoms from a dimethyl­formamide ligand and a formate ligand. The overall result is three edge-shared octa­hedra in which the closest Ni...Ni distance is 3.0857 (14) Å. The crystal structure is stabilized by weak C—H...O hydrogen bonds (agnostic interactions).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807040184/lh2472sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807040184/lh2472Isup2.hkl
Contains datablock I

CCDC reference: 660154

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.056
  • wR factor = 0.150
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 46 Perc. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 10 PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.52 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT245_ALERT_2_C U(iso) H8A Smaller than U(eq) C8 by ... 0.01 AngSq PLAT245_ALERT_2_C U(iso) H21 Smaller than U(eq) C21 by ... 0.01 AngSq PLAT245_ALERT_2_C U(iso) H23B Smaller than U(eq) C23 by ... 0.03 AngSq PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C22 PLAT390_ALERT_3_C Deviating Methyl C23 X-C-H Bond Angle ...... 119.00 Deg. PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1N ... ? PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2N ... ? PLAT731_ALERT_1_C Bond Calc 0.89(4), Rep 0.892(19) ...... 2.11 su-Ra N2 -H2N 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.88(5), Rep 0.890(19) ...... 2.63 su-Ra N1 -H1N 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.89(4), Rep 0.886(19) ...... 2.11 su-Ra C20 -H20 1.555 1.555 PLAT751_ALERT_4_C Bond Calc 0.96000, Rep 0.957(7) ...... Senseless su C23 -H23B 1.555 1.555 PLAT751_ALERT_4_C Bond Calc 1.01000, Rep 1.014(8) ...... Senseless su C23 -H23C 1.555 1.555 PLAT751_ALERT_4_C Bond Calc 1.00000, Rep 0.996(7) ...... Senseless su C23 -H23A 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 119.00, Rep 118.9(7) ...... Senseless su N3 -C23 -H23B 1.555 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 106.00, Rep 105.7(6) ...... Senseless su N3 -C23 -H23C 1.555 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 102.00, Rep 102.5(6) ...... Senseless su H23B -C23 -H23C 1.555 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 110.00, Rep 110.0(6) ...... Senseless su N3 -C23 -H23A 1.555 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 108.00, Rep 107.9(7) ...... Senseless su H23B -C23 -H23A 1.555 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 112.00, Rep 111.6(8) ...... Senseless su H23C -C23 -H23A 1.555 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of N1 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of N2 = ... S PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 1.79 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 26 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 11 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

ONNO type Schiff base ligands have been known since as early as 1946 (Barkelew & Calvin, 1946; Martell et al., 1958). Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metals (Drew et al., 1985; Fukuhara et al., 1990). Oxygen-bridged polynuclear complexes of the transition series are of interest because of their magnetic properties (Barandika et al., 1999; Ribas et al., 1999; Du et al., 2005). The ONNO type ligand stereochemistry around the metal ions and the structure of the O-atom bridges influence the magnetic exchange interactions. These complexes may be homo or heteronuclear. Polynuclear metal complexes of Schiff-base ligands have been the subject on considerable interest in our laboratory, e.g. [NiZnI2(LH2)(dmf)] (Tatar, 2002), [Ni{Ni(LH2)(O2CMe)(dmf)}2] (Tatar & Atakol, 2002), [Ni(LH2)N3(dmf)H2O and Ni(DMLH2)N3(dmf)] (Durmuş et al., 2005). Where LH2 is N,N'-bis(salicylidene)-1,3-propanediamine.

In this study, bis-N,N'(salicylidene)-2,2'-dimethyl-1,3-propanediamine was reduced by using NaBH4 in MeOH and we obtained an ONNO type ligand. The title molecule was prepared by initating a reaction between the ONNO ligand and nickel(II)-formato in dmf. The crystal and molecular structure of the title homotrinuclear complex has been determined. Recently details of a similar complex were reported literature (Reglinski et al., 2006).

In the title complex (Fig. 1), the central Ni1 atom, which is located on an inversion centre, has a distorted octahedral coordination environment, formed by four O atoms from two DMLH2 ligands in the equatorial plane [Ni1—O1 = 2.075 (3), Ni1—O2 = 2.076 (3) Å] and two O atoms of two –O2CH groups located at the axial positions [Ni1—O4 = 2.160 (3) Å]. The bond angles around Ni1 angles range between 99.66 (12) and 80.34 (12)°.

The terminal Ni2 atoms also have distorted octahedral coordination environments formed by two O and two N atoms from DMLH2 ligands in the equatorial plane and bond distances ranging between 2.037 (3) - 2.098 (4) Å. The distance of atom Ni2 from the O1/O2/N1/N2 mean plane is 0.0546 (8) Å. The dihedral angle between the planes O1—Ni2—O2 and N1—Ni2—N2 is 4.3 (2)°. The axial positions are occupied by atoms O3 and O5i [symmetry code: (i) -x, -y, -z] from a dmf molecule and an –O2CH group, respectively. This coordination involves a fairly long axial Ni2—O3 bond of 2.147 (3) Å. The Ni2 coordination involves bond angles ranging between 81.85 (12) and 93.54 (16)°.

The conformation of the rings in the title molecule were analyzed using PLATON (Spek, 2003). The Cremer & Pople puckering parameter (Cremer & Pople, 1975) of Q(2) = 0.262 (2) Å is for the Ni1—O1—Ni2—O2 ring and the dihedral angle between the planes O1—Ni1—O2 and O1—Ni2—O2 is 19.36 (12)°. The six-membered Ni2/N1/C8/C9/C12/N2 ring is in a (C) chair form (Q = 0.607 (6) Å, θ = 3.1 (5)° and φ = 168 (10)°). The Cremer & Pople puckering parameters of the Ni1—O1—Ni2—O5i—C20i—O4i (symmetry code: (i) -x, -y, -z) ring are Q = 1.045 (3) Å, θ = 128.4 (2), φ = 239.7 (3) °, showing this six-membered ring is an E (envelope) form. The crystal structure is stabilized by weak C—H···O hydrogen bonds.

Related literature top

For general background, see: Martell & Calvin (1958); Drew et al. (1985); Fukuhara et al. (1990); Barandika et al. (1999). For related literature, see: Tatar (2002); Tatar & Atakol (2002); Durmuş et al. (2005). For related literature, see: Barkelew & Calvin (1946); Cremer & Pople (1975); Du et al. (2005); Reglinski et al. (2006); Ribas et al. (1999); Spek (2003).

Experimental top

Bis-N,N'(salicylidene)-2,2'-dimethyl-1,3-propanediamine was synthesized from salicylaldehyde and 2,2'-dimethyl-1,3-propanediamine in EtOH. This compound was reduced using NaBH4 in MeOH resulting in the formation of bis-N,N'(2-hydroxybenzyl)-2,2'-dimethyl-1,3-propanediamine. 0.628 g (2 mmol) bis-N,N'(2-hydroxybenzyl)-2,2'-dimethyl-1,3-propanediamine was dissolved in 50 ml dmf and heated to 383 K. To this solution were added a solution of 0.712 g (3 mmol) NiCl2.6H2O in 20 ml hot MeOH and a solution of 0.408 g (6 mmol) NaHCOO in 5 ml hot water. This final mixture was left to stand for 2–3 days. After this period, light green crystals were filtered and dried in air. [C46H64N6O10Ni3] Element Analysis results: Ni, found %: 16.24 (calculated %:16.65); N found %: 7.53 (calculated %: 7.94). The measured dmf mass using thermogravimetrie: % 13.69 (calculated: %13.80).

Refinement top

The H atoms of the phenyl rings were positioned geometrically using riding model Uiso(H) = 1.2Ueq(C). The H atoms on all methyl groups excluding C23 were positioned geometrically using a riding-model with Uiso(H) = 1.5Ueq(C). All other hydrogen atoms were located in a difference map and refined isotropically.

Structure description top

ONNO type Schiff base ligands have been known since as early as 1946 (Barkelew & Calvin, 1946; Martell et al., 1958). Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metals (Drew et al., 1985; Fukuhara et al., 1990). Oxygen-bridged polynuclear complexes of the transition series are of interest because of their magnetic properties (Barandika et al., 1999; Ribas et al., 1999; Du et al., 2005). The ONNO type ligand stereochemistry around the metal ions and the structure of the O-atom bridges influence the magnetic exchange interactions. These complexes may be homo or heteronuclear. Polynuclear metal complexes of Schiff-base ligands have been the subject on considerable interest in our laboratory, e.g. [NiZnI2(LH2)(dmf)] (Tatar, 2002), [Ni{Ni(LH2)(O2CMe)(dmf)}2] (Tatar & Atakol, 2002), [Ni(LH2)N3(dmf)H2O and Ni(DMLH2)N3(dmf)] (Durmuş et al., 2005). Where LH2 is N,N'-bis(salicylidene)-1,3-propanediamine.

In this study, bis-N,N'(salicylidene)-2,2'-dimethyl-1,3-propanediamine was reduced by using NaBH4 in MeOH and we obtained an ONNO type ligand. The title molecule was prepared by initating a reaction between the ONNO ligand and nickel(II)-formato in dmf. The crystal and molecular structure of the title homotrinuclear complex has been determined. Recently details of a similar complex were reported literature (Reglinski et al., 2006).

In the title complex (Fig. 1), the central Ni1 atom, which is located on an inversion centre, has a distorted octahedral coordination environment, formed by four O atoms from two DMLH2 ligands in the equatorial plane [Ni1—O1 = 2.075 (3), Ni1—O2 = 2.076 (3) Å] and two O atoms of two –O2CH groups located at the axial positions [Ni1—O4 = 2.160 (3) Å]. The bond angles around Ni1 angles range between 99.66 (12) and 80.34 (12)°.

The terminal Ni2 atoms also have distorted octahedral coordination environments formed by two O and two N atoms from DMLH2 ligands in the equatorial plane and bond distances ranging between 2.037 (3) - 2.098 (4) Å. The distance of atom Ni2 from the O1/O2/N1/N2 mean plane is 0.0546 (8) Å. The dihedral angle between the planes O1—Ni2—O2 and N1—Ni2—N2 is 4.3 (2)°. The axial positions are occupied by atoms O3 and O5i [symmetry code: (i) -x, -y, -z] from a dmf molecule and an –O2CH group, respectively. This coordination involves a fairly long axial Ni2—O3 bond of 2.147 (3) Å. The Ni2 coordination involves bond angles ranging between 81.85 (12) and 93.54 (16)°.

The conformation of the rings in the title molecule were analyzed using PLATON (Spek, 2003). The Cremer & Pople puckering parameter (Cremer & Pople, 1975) of Q(2) = 0.262 (2) Å is for the Ni1—O1—Ni2—O2 ring and the dihedral angle between the planes O1—Ni1—O2 and O1—Ni2—O2 is 19.36 (12)°. The six-membered Ni2/N1/C8/C9/C12/N2 ring is in a (C) chair form (Q = 0.607 (6) Å, θ = 3.1 (5)° and φ = 168 (10)°). The Cremer & Pople puckering parameters of the Ni1—O1—Ni2—O5i—C20i—O4i (symmetry code: (i) -x, -y, -z) ring are Q = 1.045 (3) Å, θ = 128.4 (2), φ = 239.7 (3) °, showing this six-membered ring is an E (envelope) form. The crystal structure is stabilized by weak C—H···O hydrogen bonds.

For general background, see: Martell & Calvin (1958); Drew et al. (1985); Fukuhara et al. (1990); Barandika et al. (1999). For related literature, see: Tatar (2002); Tatar & Atakol (2002); Durmuş et al. (2005). For related literature, see: Barkelew & Calvin (1946); Cremer & Pople (1975); Du et al. (2005); Reglinski et al. (2006); Ribas et al. (1999); Spek (2003).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (symmetry code (i): -x, -y, -z).
Bis[µ2-2,2'-dimethyl-N,N'-bis(2-oxidobenzyl)propane-1,3-diamine]- 1κ4O,N,N',O':2κ2O,O';2κ2O,O':3κ4O,N,N',O'-bis(N,N'- dimethylformamide)-1κO,3κO-di-µ2-formato-1:2κ2O:O';2:3κ2O:O'- trinickel(II) top
Crystal data top
[Ni3(C19H24N2O2)2(CHO2)2(C3H7NO)2]F(000) = 1092
Mr = 1037.10Dx = 1.440 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 15 reflections
a = 10.289 (2) Åθ = 19.0–23.9°
b = 14.054 (5) ŵ = 1.88 mm1
c = 17.005 (4) ÅT = 293 K
β = 103.433 (19)°Prism, light green
V = 2391.7 (11) Å30.2 × 0.2 × 0.1 mm
Z = 2
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2200 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 73.9°, θmin = 4.1°
non–profiled ω scansh = 120
Absorption correction: ψ scan
(North et al., 1968)
k = 170
Tmin = 0.720, Tmax = 0.828l = 2021
5007 measured reflections3 standard reflections every 120 min
4740 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3344P]
where P = (Fo2 + 2Fc2)/3
4740 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.43 e Å3
6 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni3(C19H24N2O2)2(CHO2)2(C3H7NO)2]V = 2391.7 (11) Å3
Mr = 1037.10Z = 2
Monoclinic, P21/nCu Kα radiation
a = 10.289 (2) ŵ = 1.88 mm1
b = 14.054 (5) ÅT = 293 K
c = 17.005 (4) Å0.2 × 0.2 × 0.1 mm
β = 103.433 (19)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2200 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.720, Tmax = 0.8283 standard reflections every 120 min
5007 measured reflections intensity decay: 2%
4740 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0566 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.43 e Å3
4740 reflectionsΔρmin = 0.49 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10000.0447 (3)
Ni20.00481 (8)0.08187 (5)0.16902 (5)0.0439 (3)
O10.1113 (3)0.0124 (2)0.11806 (18)0.0470 (9)
O30.1641 (3)0.1840 (2)0.1868 (2)0.0510 (9)
O20.0683 (3)0.1191 (2)0.05036 (17)0.0443 (9)
N20.1059 (4)0.1871 (3)0.2102 (2)0.0436 (11)
N10.0996 (5)0.0405 (3)0.2869 (3)0.0537 (12)
O40.1491 (3)0.0798 (2)0.0429 (2)0.0526 (10)
C120.1609 (7)0.1579 (5)0.2788 (4)0.0598 (17)
C70.1727 (8)0.0507 (4)0.2844 (4)0.0646 (19)
C10.2388 (6)0.0303 (3)0.1530 (3)0.0480 (14)
C50.4122 (7)0.0612 (4)0.2736 (4)0.078 (2)
H50.43710.07230.3290.093*
C20.3375 (6)0.0313 (4)0.1086 (4)0.0641 (16)
H20.31480.02280.05290.077*
C60.2769 (6)0.0465 (4)0.2373 (3)0.0568 (15)
C180.0554 (5)0.2520 (4)0.0358 (3)0.0610 (16)
H180.01560.21550.06930.073*
C150.1814 (6)0.3629 (4)0.0580 (3)0.0604 (16)
H150.22430.40020.08940.072*
C140.1610 (5)0.2665 (4)0.0757 (3)0.0477 (14)
C170.0766 (6)0.3480 (4)0.0512 (3)0.0668 (17)
H170.04770.37570.09380.08*
C190.0936 (5)0.2091 (4)0.0301 (3)0.0427 (13)
C90.0597 (6)0.1276 (4)0.3550 (3)0.0614 (16)
O50.1429 (4)0.0182 (3)0.1667 (2)0.0607 (11)
N30.3568 (5)0.2094 (3)0.1475 (3)0.0568 (12)
C210.2270 (6)0.1944 (4)0.1348 (4)0.0522 (15)
C220.4387 (6)0.2064 (4)0.2286 (3)0.080 (2)
H22A0.530.21850.22740.12*
H22B0.40880.2540.26080.12*
H22C0.43170.14470.25150.12*
C130.2127 (5)0.2229 (4)0.1423 (4)0.0529 (15)
C100.0391 (6)0.2081 (4)0.3851 (3)0.0689 (18)
H10A0.10260.18790.4330.103*
H10B0.08530.22420.3440.103*
H10C0.00840.26280.39740.103*
C110.1416 (7)0.1071 (4)0.4189 (4)0.099 (2)
H11A0.08240.08780.46870.148*
H11B0.18840.16370.42790.148*
H11C0.20480.05730.39980.148*
C30.4713 (6)0.0452 (4)0.1494 (5)0.078 (2)
H30.53670.04440.11970.094*
C80.0105 (7)0.0342 (5)0.3429 (3)0.0639 (17)
C160.1395 (6)0.4034 (4)0.0046 (4)0.0730 (19)
H160.15340.46780.01570.088*
C40.5093 (7)0.0599 (4)0.2304 (5)0.084 (2)
H40.59870.06880.25590.101*
C230.4236 (7)0.2142 (6)0.0815 (4)0.089 (2)
C200.1795 (6)0.0748 (4)0.1089 (4)0.0565 (15)
H12B0.208 (5)0.207 (3)0.295 (3)0.061*
H13B0.274 (4)0.273 (3)0.163 (2)0.052*
H12A0.221 (5)0.099 (4)0.262 (3)0.067 (17)*
H8A0.066 (4)0.011 (3)0.321 (3)0.052*
H7A0.097 (5)0.092 (4)0.259 (3)0.070 (19)*
H8B0.064 (4)0.021 (3)0.3945 (17)0.067 (18)*
H210.188 (4)0.190 (3)0.0823 (13)0.042 (15)*
H7B0.206 (5)0.073 (4)0.342 (3)0.09 (2)*
H13A0.261 (4)0.166 (2)0.121 (3)0.075 (19)*
H23B0.48460.26530.08030.057 (16)*
H23C0.48410.15630.08780.09 (2)*
H23A0.35650.21360.02880.12 (3)*
H200.246 (4)0.114 (3)0.113 (3)0.067 (19)*
H2N0.042 (3)0.230 (3)0.227 (3)0.051 (16)*
H1N0.153 (5)0.090 (3)0.300 (3)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0489 (8)0.0389 (7)0.0441 (7)0.0022 (6)0.0061 (6)0.0071 (6)
Ni20.0512 (5)0.0374 (5)0.0416 (5)0.0010 (4)0.0078 (4)0.0018 (4)
O10.049 (2)0.045 (2)0.043 (2)0.0099 (18)0.0016 (17)0.0045 (16)
O30.054 (2)0.045 (2)0.055 (2)0.0034 (18)0.0129 (19)0.0038 (18)
O20.058 (2)0.0333 (19)0.0393 (19)0.0065 (17)0.0076 (17)0.0044 (15)
N20.046 (3)0.045 (3)0.040 (3)0.004 (2)0.009 (2)0.004 (2)
N10.079 (4)0.035 (3)0.045 (3)0.002 (3)0.010 (3)0.000 (2)
O40.056 (2)0.051 (2)0.052 (2)0.0104 (19)0.0147 (19)0.0130 (19)
C120.079 (5)0.051 (4)0.058 (4)0.007 (4)0.034 (4)0.009 (3)
C70.100 (6)0.038 (3)0.047 (4)0.009 (4)0.000 (4)0.002 (3)
C10.054 (4)0.028 (3)0.057 (4)0.004 (3)0.003 (3)0.003 (3)
C50.085 (5)0.050 (4)0.075 (5)0.031 (4)0.029 (4)0.007 (3)
C20.055 (4)0.054 (4)0.078 (4)0.014 (3)0.006 (4)0.001 (3)
C60.076 (5)0.036 (3)0.052 (4)0.012 (3)0.002 (3)0.004 (3)
C180.072 (4)0.059 (4)0.050 (3)0.008 (3)0.009 (3)0.004 (3)
C150.069 (4)0.049 (4)0.051 (4)0.017 (3)0.010 (3)0.010 (3)
C140.053 (3)0.043 (3)0.041 (3)0.006 (3)0.002 (3)0.001 (3)
C170.085 (5)0.055 (4)0.057 (4)0.006 (4)0.010 (3)0.015 (3)
C190.041 (3)0.041 (3)0.040 (3)0.001 (3)0.004 (2)0.005 (3)
C90.088 (5)0.056 (4)0.047 (4)0.006 (4)0.029 (3)0.003 (3)
O50.074 (3)0.058 (3)0.056 (2)0.016 (2)0.027 (2)0.015 (2)
N30.053 (3)0.049 (3)0.062 (3)0.007 (2)0.000 (3)0.005 (2)
C210.057 (4)0.045 (3)0.049 (4)0.006 (3)0.001 (3)0.001 (3)
C220.067 (4)0.077 (5)0.081 (5)0.001 (4)0.016 (4)0.008 (4)
C130.042 (3)0.058 (4)0.057 (4)0.013 (3)0.007 (3)0.013 (3)
C100.095 (5)0.053 (4)0.049 (4)0.003 (4)0.003 (3)0.010 (3)
C110.175 (7)0.073 (5)0.073 (5)0.012 (5)0.076 (5)0.001 (4)
C30.059 (5)0.058 (4)0.114 (6)0.012 (3)0.014 (4)0.002 (4)
C80.101 (5)0.057 (4)0.034 (4)0.006 (4)0.016 (4)0.003 (3)
C160.101 (5)0.036 (4)0.066 (4)0.007 (3)0.012 (4)0.002 (3)
C40.064 (5)0.058 (5)0.113 (6)0.020 (4)0.016 (4)0.008 (4)
C230.059 (4)0.121 (7)0.090 (6)0.018 (5)0.025 (4)0.030 (4)
C200.046 (4)0.051 (4)0.075 (5)0.010 (3)0.021 (3)0.003 (4)
Geometric parameters (Å, º) top
Ni1—Ni23.0857 (14)C18—H180.93
Ni1—O1i2.075 (3)C15—C161.362 (7)
Ni1—O12.075 (3)C15—C141.392 (7)
Ni1—O22.076 (3)C15—H150.93
Ni1—O2i2.076 (3)C14—C191.409 (6)
Ni1—O42.160 (3)C14—C131.490 (7)
Ni1—O4i2.160 (3)C17—C161.375 (7)
Ni2—O12.037 (3)C17—H170.93
Ni2—O22.051 (3)C9—C101.529 (7)
Ni2—O5i2.064 (4)C9—C81.534 (8)
Ni2—N22.084 (4)C9—C111.550 (7)
Ni2—N12.098 (4)O5—C201.253 (6)
Ni2—O32.147 (3)O5—Ni2i2.064 (4)
O1—C11.332 (6)N3—C211.319 (7)
O3—C211.221 (6)N3—C221.440 (6)
O2—C191.321 (5)N3—C231.447 (7)
N2—C121.469 (7)C21—H210.892 (19)
N2—C131.485 (6)C22—H22A0.96
N2—H2N0.892 (19)C22—H22B0.96
N1—C81.470 (7)C22—H22C0.96
N1—C71.492 (7)C13—H13B1.06 (4)
N1—H1N0.890 (19)C13—H13A0.964 (19)
O4—C201.235 (6)C10—H10A0.96
C12—C91.523 (8)C10—H10B0.96
C12—H12B0.93 (5)C10—H10C0.96
C12—H12A1.03 (5)C11—H11A0.96
C7—C61.480 (8)C11—H11B0.96
C7—H7A0.98 (5)C11—H11C0.96
C7—H7B1.00 (5)C3—C41.357 (8)
C1—C21.398 (7)C3—H30.93
C1—C61.415 (7)C8—H8A1.01 (4)
C5—C41.370 (8)C8—H8B0.937 (19)
C5—C61.402 (8)C16—H160.93
C5—H50.93C4—H40.93
C2—C31.404 (7)C23—H23B0.957 (7)
C2—H20.93C23—H23C1.014 (8)
C18—C171.382 (7)C23—H23A0.996 (7)
C18—C191.406 (7)C20—H200.886 (19)
O1i—Ni1—O1180.00 (19)C17—C18—H18119.7
O1i—Ni1—O299.66 (12)C19—C18—H18119.7
O1—Ni1—O280.34 (12)C16—C15—C14121.1 (5)
O1i—Ni1—O2i80.34 (12)C16—C15—H15119.5
O1—Ni1—O2i99.66 (12)C14—C15—H15119.5
O2—Ni1—O2i180.00 (17)C15—C14—C19120.4 (5)
O1i—Ni1—O484.56 (13)C15—C14—C13120.1 (5)
O1—Ni1—O495.44 (13)C19—C14—C13119.5 (5)
O2—Ni1—O493.19 (13)C16—C17—C18121.2 (6)
O2i—Ni1—O486.81 (13)C16—C17—H17119.4
O1i—Ni1—O4i95.44 (13)C18—C17—H17119.4
O1—Ni1—O4i84.56 (13)O2—C19—C18123.0 (5)
O2—Ni1—O4i86.81 (13)O2—C19—C14119.8 (5)
O2i—Ni1—O4i93.19 (13)C18—C19—C14117.2 (5)
O4—Ni1—O4i180.0 (2)C12—C9—C10110.4 (5)
O1—Ni2—O281.85 (12)C12—C9—C8112.1 (5)
O1—Ni2—O5i90.88 (14)C10—C9—C8112.4 (5)
O2—Ni2—O5i93.16 (14)C12—C9—C11105.8 (5)
O1—Ni2—N2173.93 (15)C10—C9—C11109.3 (5)
O2—Ni2—N292.58 (14)C8—C9—C11106.6 (5)
O5i—Ni2—N291.84 (16)C20—O5—Ni2i122.2 (4)
O1—Ni2—N192.84 (16)C21—N3—C22119.8 (5)
O2—Ni2—N1173.67 (17)C21—N3—C23121.7 (5)
O5i—Ni2—N190.35 (18)C22—N3—C23117.8 (5)
N2—Ni2—N192.58 (17)O3—C21—N3126.0 (6)
O1—Ni2—O391.51 (13)O3—C21—H21122 (3)
O2—Ni2—O393.54 (13)N3—C21—H21112 (3)
O5i—Ni2—O3173.15 (14)N3—C22—H22A109.5
N2—Ni2—O386.41 (16)N3—C22—H22B109.5
N1—Ni2—O383.12 (17)H22A—C22—H22B109.5
C1—O1—Ni2120.3 (3)N3—C22—H22C109.5
C1—O1—Ni1135.4 (3)H22A—C22—H22C109.5
Ni2—O1—Ni197.26 (13)H22B—C22—H22C109.5
C21—O3—Ni2119.6 (4)N2—C13—C14113.5 (4)
C19—O2—Ni2120.4 (3)N2—C13—H13B111 (2)
C19—O2—Ni1136.8 (3)C14—C13—H13B109 (2)
Ni2—O2—Ni196.77 (13)N2—C13—H13A104 (3)
C12—N2—C13111.1 (4)C14—C13—H13A108 (3)
C12—N2—Ni2114.2 (3)H13B—C13—H13A112 (4)
C13—N2—Ni2110.1 (3)C9—C10—H10A109.5
C12—N2—H2N109 (3)C9—C10—H10B109.5
C13—N2—H2N112 (3)H10A—C10—H10B109.5
Ni2—N2—H2N100 (3)C9—C10—H10C109.5
C8—N1—C7111.2 (5)H10A—C10—H10C109.5
C8—N1—Ni2114.5 (4)H10B—C10—H10C109.5
C7—N1—Ni2109.7 (3)C9—C11—H11A109.5
C8—N1—H1N110 (4)C9—C11—H11B109.5
C7—N1—H1N113 (4)H11A—C11—H11B109.5
Ni2—N1—H1N98 (4)C9—C11—H11C109.5
C20—O4—Ni1128.8 (4)H11A—C11—H11C109.5
N2—C12—C9116.1 (5)H11B—C11—H11C109.5
N2—C12—H12B111 (3)C4—C3—C2122.7 (6)
C9—C12—H12B104 (3)C4—C3—H3118.6
N2—C12—H12A108 (3)C2—C3—H3118.6
C9—C12—H12A105 (3)N1—C8—C9114.8 (5)
H12B—C12—H12A111 (4)N1—C8—H8A110 (3)
C6—C7—N1114.5 (5)C9—C8—H8A104 (3)
C6—C7—H7A113 (3)N1—C8—H8B108 (3)
N1—C7—H7A100 (3)C9—C8—H8B104 (3)
C6—C7—H7B114 (3)H8A—C8—H8B117 (4)
N1—C7—H7B107 (3)C15—C16—C17119.4 (5)
H7A—C7—H7B108 (4)C15—C16—H16120.3
O1—C1—C2121.7 (5)C17—C16—H16120.3
O1—C1—C6119.6 (5)C3—C4—C5118.2 (6)
C2—C1—C6118.7 (5)C3—C4—H4120.9
C4—C5—C6122.3 (6)C5—C4—H4120.9
C4—C5—H5118.8N3—C23—H23B118.9 (7)
C6—C5—H5118.8N3—C23—H23C105.7 (6)
C1—C2—C3119.1 (6)H23B—C23—H23C102.5 (6)
C1—C2—H2120.4N3—C23—H23A110.0 (6)
C3—C2—H2120.4H23B—C23—H23A107.9 (7)
C5—C6—C1118.9 (6)H23C—C23—H23A111.6 (8)
C5—C6—C7121.7 (6)O4—C20—O5131.0 (6)
C1—C6—C7119.4 (5)O4—C20—H20113 (3)
C17—C18—C19120.6 (5)O5—C20—H20116 (3)
O2—Ni2—O1—C1140.1 (4)Ni1—O1—C1—C210.3 (7)
O5i—Ni2—O1—C1126.8 (4)Ni2—O1—C1—C645.5 (6)
N1—Ni2—O1—C136.4 (4)Ni1—O1—C1—C6171.2 (3)
O3—Ni2—O1—C146.8 (4)O1—C1—C2—C3176.5 (5)
O2—Ni1—O1—C1133.9 (4)C6—C1—C2—C32.1 (8)
O2i—Ni1—O1—C146.1 (4)C4—C5—C6—C10.4 (9)
O4—Ni1—O1—C141.6 (4)C4—C5—C6—C7178.3 (6)
O4i—Ni1—O1—C1138.4 (4)O1—C1—C6—C5177.3 (5)
O1—Ni2—O3—C2139.4 (4)C2—C1—C6—C51.2 (8)
O2—Ni2—O3—C2142.5 (4)O1—C1—C6—C74.7 (7)
N2—Ni2—O3—C21134.9 (4)C2—C1—C6—C7176.8 (5)
N1—Ni2—O3—C21132.1 (4)N1—C7—C6—C5117.1 (6)
O1—Ni2—O2—C19142.4 (4)N1—C7—C6—C165.0 (7)
O5i—Ni2—O2—C19127.1 (4)C16—C15—C14—C191.4 (8)
N2—Ni2—O2—C1935.1 (4)C16—C15—C14—C13177.4 (5)
O3—Ni2—O2—C1951.4 (4)C19—C18—C17—C162.4 (9)
O1i—Ni1—O2—C1943.8 (4)Ni2—O2—C19—C18134.9 (4)
O1—Ni1—O2—C19136.2 (4)Ni1—O2—C19—C1810.8 (7)
O4—Ni1—O2—C1941.2 (4)Ni2—O2—C19—C1444.6 (6)
O4i—Ni1—O2—C19138.8 (4)Ni1—O2—C19—C14169.6 (3)
O1i—Ni1—O2—Ni2165.45 (13)C17—C18—C19—O2175.7 (5)
O1—Ni1—O2—Ni214.55 (13)C17—C18—C19—C143.9 (8)
O4—Ni1—O2—Ni2109.53 (14)C15—C14—C19—O2176.2 (4)
O4i—Ni1—O2—Ni270.47 (14)C13—C14—C19—O25.0 (7)
O2—Ni2—N2—C12141.5 (4)C15—C14—C19—C183.4 (7)
O5i—Ni2—N2—C1248.3 (4)C13—C14—C19—C18175.4 (5)
N1—Ni2—N2—C1242.1 (4)N2—C12—C9—C1058.2 (7)
O3—Ni2—N2—C12125.1 (4)N2—C12—C9—C867.9 (7)
O2—Ni2—N2—C1315.8 (4)N2—C12—C9—C11176.3 (5)
O5i—Ni2—N2—C1377.5 (4)Ni2—O3—C21—N3141.5 (5)
N1—Ni2—N2—C13167.9 (4)C22—N3—C21—O35.4 (9)
O3—Ni2—N2—C13109.2 (4)C23—N3—C21—O3175.5 (6)
O1—Ni2—N1—C8139.8 (4)C12—N2—C13—C14171.7 (5)
O5i—Ni2—N1—C848.9 (4)Ni2—N2—C13—C1460.8 (5)
N2—Ni2—N1—C842.9 (4)C15—C14—C13—N2115.8 (5)
O3—Ni2—N1—C8129.0 (4)C19—C14—C13—N265.4 (6)
O1—Ni2—N1—C714.0 (4)C1—C2—C3—C41.4 (9)
O5i—Ni2—N1—C776.9 (4)C7—N1—C8—C9174.9 (5)
N2—Ni2—N1—C7168.7 (4)Ni2—N1—C8—C960.1 (6)
O3—Ni2—N1—C7105.2 (4)C12—C9—C8—N167.7 (7)
O1i—Ni1—O4—C2037.4 (5)C10—C9—C8—N157.3 (7)
O1—Ni1—O4—C20142.6 (5)C11—C9—C8—N1177.0 (5)
O2—Ni1—O4—C20136.8 (5)C14—C15—C16—C170.2 (9)
O2i—Ni1—O4—C2043.2 (5)C18—C17—C16—C150.2 (9)
C13—N2—C12—C9175.0 (5)C2—C3—C4—C50.1 (10)
Ni2—N2—C12—C959.7 (6)C6—C5—C4—C31.1 (10)
C8—N1—C7—C6172.7 (5)Ni1—O4—C20—O57.0 (10)
Ni2—N1—C7—C659.6 (6)Ni2i—O5—C20—O46.5 (9)
Ni2—O1—C1—C2133.0 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O40.932.523.242 (7)135
C8—H8A···O5i1.01 (5)2.56 (5)3.133 (6)116 (3)
C12—H12A···O5i1.04 (6)2.56 (5)3.156 (8)116 (4)
C18—H18···O40.932.523.228 (6)133
C21—H21···O40.89 (2)2.59 (3)3.353 (7)144 (4)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni3(C19H24N2O2)2(CHO2)2(C3H7NO)2]
Mr1037.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.289 (2), 14.054 (5), 17.005 (4)
β (°) 103.433 (19)
V3)2391.7 (11)
Z2
Radiation typeCu Kα
µ (mm1)1.88
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.720, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
5007, 4740, 2200
Rint0.048
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.150, 1.03
No. of reflections4740
No. of parameters343
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.49

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O40.932.523.242 (7)135
C8—H8A···O5i1.01 (5)2.56 (5)3.133 (6)116 (3)
C12—H12A···O5i1.04 (6)2.56 (5)3.156 (8)116 (4)
C18—H18···O40.932.523.228 (6)133
C21—H21···O40.89 (2)2.59 (3)3.353 (7)144 (4)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds