Download citation
Download citation
link to html
In the title mol­ecule, C17H14O4, all non-H atoms are essentially coplanar. The crystal structure is stabilized by weak inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041116/lh2479sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041116/lh2479Isup2.hkl
Contains datablock I

CCDC reference: 660364

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.049
  • wR factor = 0.096
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 41 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phenanthroindolizidine alkaloids are extensively present in various plants of the Asclepiadaceae family (Gellert, 1982; Staerk et al., 2000). These natural products exhibit interesting biological properties, such as emetic and vesicant properties, unusual cardiovascular and immunological efects, nerve growth stimulation and probable anti-inflammatory, especially anti-tumor activity. Since the first isolation of (-)-tylophorine in 1935 (Ratnagiriswaran & Venkatachalam, 1935), phenanthroindolizidine alkaloids have engendered a great deal of synthetic work. To further evaluate the antitumor potential of these analogs (Gao et al., 2004; Wu et al., 2002), we plan to synthesize some tylophorine analogs that have a mode of action different from known antitumor drugs. 2,3-Dimethoxy-6,7-methylenedioxyphenanthrene is an important intermediate in the synthesis of phenanthroindolizidine alkaloid analogs. Here we report the synthesis and structure of the title compound. In the title molecule all non-hydrogen atoms are essentially coplanar, with the mean deviation of 0.0432 Å. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For related literature, see: Cragg et al. (1982); Gao et al. (2004); Gellert (1982); Nordlander & Njoroge (1987); Pausacker (1953); Ratnagiriswaran & Venkatachalam (1935); Staerk et al. (2000); Wu et al. (2002).

Experimental top

The title compound was synthesized by the route depicted in Fig. 3 (Pausacker, 1953; Cragg et al., 1982, Nordlander & Njoroge, 1987) and recrystallized from chloroform–anhydrous ethanol (1:3, v/v) to give 1.5 g (56.4%) of block-shaped light yellow crystals.

Refinement top

All H atoms were positioned geometrically and treated as riding (C—H = 0.96 Å for methyl; C—H = 0.93 Å for phenyl and C—H = 0.97 Å for methylene). Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

Phenanthroindolizidine alkaloids are extensively present in various plants of the Asclepiadaceae family (Gellert, 1982; Staerk et al., 2000). These natural products exhibit interesting biological properties, such as emetic and vesicant properties, unusual cardiovascular and immunological efects, nerve growth stimulation and probable anti-inflammatory, especially anti-tumor activity. Since the first isolation of (-)-tylophorine in 1935 (Ratnagiriswaran & Venkatachalam, 1935), phenanthroindolizidine alkaloids have engendered a great deal of synthetic work. To further evaluate the antitumor potential of these analogs (Gao et al., 2004; Wu et al., 2002), we plan to synthesize some tylophorine analogs that have a mode of action different from known antitumor drugs. 2,3-Dimethoxy-6,7-methylenedioxyphenanthrene is an important intermediate in the synthesis of phenanthroindolizidine alkaloid analogs. Here we report the synthesis and structure of the title compound. In the title molecule all non-hydrogen atoms are essentially coplanar, with the mean deviation of 0.0432 Å. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

For related literature, see: Cragg et al. (1982); Gao et al. (2004); Gellert (1982); Nordlander & Njoroge (1987); Pausacker (1953); Ratnagiriswaran & Venkatachalam (1935); Staerk et al. (2000); Wu et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the title compound along the a axis, H-bonds are shown as dashed lines.
[Figure 3] Fig. 3. Reaction Scheme
2,3-Dimethoxy-6,7-methylenedioxyphenanthrene top
Crystal data top
C17H14O4F(000) = 592
Mr = 282.28Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 476 reflections
a = 7.370 (2) Åθ = 2.4–19.8°
b = 18.375 (5) ŵ = 0.10 mm1
c = 9.840 (3) ÅT = 293 K
β = 96.363 (4)°Block, yellow
V = 1324.3 (6) Å30.20 × 0.15 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2452 independent reflections
Radiation source: fine-focus sealed tube1011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.980, Tmax = 0.994k = 2222
8248 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0197P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2452 reflectionsΔρmax = 0.15 e Å3
193 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (7)
Crystal data top
C17H14O4V = 1324.3 (6) Å3
Mr = 282.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.370 (2) ŵ = 0.10 mm1
b = 18.375 (5) ÅT = 293 K
c = 9.840 (3) Å0.20 × 0.15 × 0.06 mm
β = 96.363 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2452 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1011 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.994Rint = 0.078
8248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2452 reflectionsΔρmin = 0.21 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.5050 (3)0.57314 (11)0.3802 (2)0.0700 (7)
O21.4596 (3)0.67949 (12)0.2522 (2)0.0791 (7)
O30.8424 (3)0.47117 (11)0.8618 (2)0.0606 (6)
O40.5699 (3)0.55533 (11)0.8808 (2)0.0654 (7)
C11.3541 (4)0.60954 (18)0.4156 (3)0.0528 (8)
C21.3279 (4)0.67320 (18)0.3401 (3)0.0568 (9)
C31.1868 (4)0.71875 (16)0.3549 (3)0.0610 (9)
H31.17130.76150.30450.073*
C41.0630 (4)0.69895 (17)0.4501 (3)0.0517 (9)
C50.9111 (4)0.74388 (16)0.4666 (3)0.0587 (9)
H50.89700.78720.41770.070*
C60.7854 (4)0.72569 (16)0.5513 (3)0.0561 (9)
H60.68670.75630.55920.067*
C70.8033 (4)0.65989 (16)0.6287 (3)0.0471 (8)
C80.6715 (4)0.64073 (16)0.7161 (3)0.0529 (9)
H80.57150.67100.72170.063*
C90.6883 (4)0.57893 (17)0.7920 (3)0.0513 (9)
C100.8390 (4)0.53238 (16)0.7810 (3)0.0489 (8)
C110.9687 (4)0.54971 (15)0.6972 (3)0.0499 (8)
H111.06760.51870.69240.060*
C120.9550 (4)0.61436 (16)0.6173 (3)0.0448 (8)
C131.0876 (4)0.63338 (16)0.5259 (3)0.0455 (8)
C141.2392 (4)0.58828 (15)0.5059 (3)0.0523 (8)
H141.25890.54490.55410.063*
C151.5719 (4)0.61577 (19)0.2752 (3)0.0749 (11)
H15A1.56820.58750.19160.090*
H15B1.69750.62990.30250.090*
C160.9977 (4)0.42465 (15)0.8652 (3)0.0643 (10)
H16A1.01010.40760.77450.096*
H16B0.98220.38390.92380.096*
H16C1.10530.45120.89960.096*
C170.4168 (4)0.60052 (16)0.8973 (3)0.0728 (10)
H17A0.45870.64670.93390.109*
H17B0.34210.57760.95890.109*
H17C0.34660.60770.81010.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0601 (15)0.0798 (17)0.0734 (17)0.0039 (13)0.0226 (13)0.0136 (13)
O20.0748 (18)0.0823 (18)0.0852 (18)0.0120 (15)0.0314 (14)0.0148 (14)
O30.0691 (15)0.0549 (14)0.0609 (15)0.0081 (12)0.0219 (11)0.0117 (12)
O40.0588 (15)0.0665 (15)0.0747 (17)0.0039 (12)0.0239 (13)0.0043 (12)
C10.048 (2)0.056 (2)0.053 (2)0.0010 (18)0.0043 (18)0.0028 (18)
C20.056 (2)0.058 (2)0.056 (2)0.012 (2)0.0074 (19)0.0065 (19)
C30.071 (3)0.045 (2)0.066 (3)0.0108 (19)0.002 (2)0.0063 (17)
C40.059 (2)0.045 (2)0.052 (2)0.0040 (18)0.0047 (18)0.0012 (17)
C50.074 (3)0.045 (2)0.056 (2)0.0018 (19)0.002 (2)0.0056 (17)
C60.069 (2)0.045 (2)0.053 (2)0.0078 (18)0.0018 (19)0.0018 (17)
C70.052 (2)0.043 (2)0.045 (2)0.0002 (17)0.0004 (17)0.0057 (16)
C80.054 (2)0.054 (2)0.051 (2)0.0064 (17)0.0051 (18)0.0061 (17)
C90.047 (2)0.056 (2)0.051 (2)0.0041 (19)0.0080 (18)0.0055 (18)
C100.053 (2)0.044 (2)0.048 (2)0.0002 (18)0.0027 (17)0.0017 (17)
C110.051 (2)0.044 (2)0.055 (2)0.0008 (16)0.0060 (17)0.0027 (17)
C120.050 (2)0.042 (2)0.042 (2)0.0026 (16)0.0017 (16)0.0026 (16)
C130.052 (2)0.044 (2)0.041 (2)0.0021 (16)0.0037 (16)0.0045 (16)
C140.057 (2)0.048 (2)0.053 (2)0.0011 (17)0.0072 (18)0.0035 (16)
C150.070 (3)0.083 (3)0.075 (3)0.010 (2)0.023 (2)0.002 (2)
C160.072 (2)0.053 (2)0.069 (2)0.0160 (19)0.0116 (19)0.0119 (17)
C170.057 (2)0.088 (3)0.075 (3)0.008 (2)0.0192 (19)0.009 (2)
Geometric parameters (Å, º) top
O1—C11.375 (3)C7—C121.410 (3)
O1—C151.428 (3)C7—C81.411 (4)
O2—C21.375 (3)C8—C91.357 (3)
O2—C151.437 (3)C8—H80.9300
O3—C101.376 (3)C9—C101.416 (4)
O3—C161.426 (3)C10—C111.367 (3)
O4—C91.372 (3)C11—C121.422 (3)
O4—C171.424 (3)C11—H110.9300
C1—C141.351 (4)C12—C131.443 (4)
C1—C21.387 (4)C13—C141.422 (3)
C2—C31.355 (4)C14—H140.9300
C3—C41.426 (4)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.415 (4)C16—H16A0.9600
C4—C131.418 (4)C16—H16B0.9600
C5—C61.355 (4)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C6—C71.427 (3)C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C1—O1—C15105.7 (2)C11—C10—C9120.8 (3)
C2—O2—C15105.5 (2)O3—C10—C9114.5 (3)
C10—O3—C16117.8 (2)C10—C11—C12121.1 (3)
C9—O4—C17117.1 (2)C10—C11—H11119.5
C14—C1—O1127.5 (3)C12—C11—H11119.5
C14—C1—C2122.4 (3)C7—C12—C11117.4 (3)
O1—C1—C2110.1 (3)C7—C12—C13120.2 (3)
C3—C2—O2128.2 (3)C11—C12—C13122.4 (3)
C3—C2—C1121.8 (3)C4—C13—C14118.6 (3)
O2—C2—C1110.0 (3)C4—C13—C12118.6 (3)
C2—C3—C4117.9 (3)C14—C13—C12122.8 (3)
C2—C3—H3121.1C1—C14—C13118.8 (3)
C4—C3—H3121.1C1—C14—H14120.6
C5—C4—C13119.5 (3)C13—C14—H14120.6
C5—C4—C3119.9 (3)O1—C15—O2108.8 (2)
C13—C4—C3120.6 (3)O1—C15—H15A109.9
C6—C5—C4122.0 (3)O2—C15—H15A109.9
C6—C5—H5119.0O1—C15—H15B109.9
C4—C5—H5119.0O2—C15—H15B109.9
C5—C6—C7120.5 (3)H15A—C15—H15B108.3
C5—C6—H6119.7O3—C16—H16A109.5
C7—C6—H6119.7O3—C16—H16B109.5
C12—C7—C8120.3 (3)H16A—C16—H16B109.5
C12—C7—C6119.2 (3)O3—C16—H16C109.5
C8—C7—C6120.5 (3)H16A—C16—H16C109.5
C9—C8—C7121.1 (3)H16B—C16—H16C109.5
C9—C8—H8119.4O4—C17—H17A109.5
C7—C8—H8119.4O4—C17—H17B109.5
C8—C9—O4126.1 (3)H17A—C17—H17B109.5
C8—C9—C10119.2 (3)O4—C17—H17C109.5
O4—C9—C10114.7 (3)H17A—C17—H17C109.5
C11—C10—O3124.7 (3)H17B—C17—H17C109.5
C15—O1—C1—C14176.3 (3)O4—C9—C10—C11179.3 (2)
C15—O1—C1—C21.5 (3)C8—C9—C10—O3179.7 (2)
C15—O2—C2—C3178.2 (3)O4—C9—C10—O30.3 (4)
C15—O2—C2—C10.3 (3)O3—C10—C11—C12179.8 (2)
C14—C1—C2—C31.4 (5)C9—C10—C11—C120.9 (4)
O1—C1—C2—C3179.4 (3)C8—C7—C12—C110.3 (4)
C14—C1—C2—O2177.2 (3)C6—C7—C12—C11179.3 (2)
O1—C1—C2—O20.8 (4)C8—C7—C12—C13178.8 (3)
O2—C2—C3—C4177.6 (3)C6—C7—C12—C131.6 (4)
C1—C2—C3—C40.7 (5)C10—C11—C12—C70.4 (4)
C2—C3—C4—C5178.5 (3)C10—C11—C12—C13178.7 (3)
C2—C3—C4—C130.3 (4)C5—C4—C13—C14178.8 (3)
C13—C4—C5—C61.1 (4)C3—C4—C13—C140.6 (4)
C3—C4—C5—C6177.1 (3)C5—C4—C13—C120.4 (4)
C4—C5—C6—C70.5 (5)C3—C4—C13—C12177.8 (3)
C5—C6—C7—C120.9 (4)C7—C12—C13—C40.9 (4)
C5—C6—C7—C8179.5 (3)C11—C12—C13—C4180.0 (3)
C12—C7—C8—C90.8 (4)C7—C12—C13—C14177.4 (3)
C6—C7—C8—C9178.9 (3)C11—C12—C13—C141.6 (4)
C7—C8—C9—O4179.4 (3)O1—C1—C14—C13178.6 (3)
C7—C8—C9—C101.2 (4)C2—C1—C14—C131.0 (4)
C17—O4—C9—C81.4 (4)C4—C13—C14—C10.0 (4)
C17—O4—C9—C10179.2 (2)C12—C13—C14—C1178.4 (3)
C16—O3—C10—C114.1 (4)C1—O1—C15—O21.7 (3)
C16—O3—C10—C9174.9 (2)C2—O2—C15—O11.2 (3)
C8—C9—C10—C111.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O3i0.962.513.465 (3)174
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H14O4
Mr282.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.370 (2), 18.375 (5), 9.840 (3)
β (°) 96.363 (4)
V3)1324.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
8248, 2452, 1011
Rint0.078
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.096, 1.04
No. of reflections2452
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O3i0.962.513.465 (3)174
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds