supplementary materials


Acta Cryst. (2007). E63, m2343    [ doi:10.1107/S1600536807039657 ]

Tetraaqualithium(I) bis(tropolonato-[kappa]2O,O')lithate(I)

G. Steyl

Abstract top

The title salt, [Li(H2O)4][Li(C7H5O2)2], which was synthesized by reacting equimolar quantities of lithium hydroxide and tropolone in water, consists of a hydrated lithium cation whose charge is balanced by a ditropolonatolithate. Both Li atoms exist in a tetrahedral geometry (the cation and anion lie on different sites of 222 symmetry). Hydrogen bonds link the cation and anion into a layer structure; [pi]-[pi] stacking [centroid-centroid distance 3.313 (2) Å] is observed with the tropolonate rings, the stacking allowing the formation of channels that facilitate the packing of the cations within them.

Comment top

The title compound, (I), is a novel example of a diketonato and lithium atom complex. To date very little data exist with lithium cation interactions with α- or β-diketones (Filatov et al., 2006; Gonçalves et al., 1996; Teixidor et al., 1985). The title compound is particularly interesting since the expected 1:1 ratio of an anion to cation as observed for the sodium derivative (Shiono, 1961) has been disrupted. This effect might be due to the smaller ionic radius of the lithium ion. The Li···O bond distances in both the independent units are nearly similar, with the Li···O(H2) and Li···O(trop), 1.9356 (12) and 1.9278 (12) Å, respectively.

The cationic and anionic parts of the title compound are linked together through O—H···O hydrogen bonds, see Table 2. The effect of this hydrogen bond in ordering the solid state can be observed as sheets perpendicular to the c axis, Figure 2. The tropolonato moieties form π-π stacking units (3.313 (2) Å) in the solid state creating channels in which the solvated lithium cations can pack.

Related literature top

Diketonato–lithium compounds have only one diketonate group for each lithium. See, for example: Filatov et al. (2006); Gonçalves et al. (1996); Teixidor et al. (1985); Shiono (1961).

Experimental top

The title compound was obtained by mixing Tropolone (100 mg, 0.8 mmol) and LiOH (19 mg, 0.8 mmol) in 10 ml of water. The solution was stored at 4 ° C for 2 weeks, during which crystals grew suitable for X-ray crystallography. (Yield: 132 mg, 50%) NMR data: 1H 6.83 (t, 9 Hz); 7.06 (d, 11 Hz); 7.31 (t, 11 Hz); 7Li 0.344 (s).

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) Å, and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the c-axis, showing one layer of molecules connected by O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
Tetraaqualithium(I) bis(tropolonato-κ2O,O')lithate(I) top
Crystal data top
[Li(H2O)4][Li(C7H5O2)2]F000 = 1376
Mr = 328.16Dx = 1.415 Mg m3
Orthorhombic, FdddMo Kα radiation
λ = 0.71073 Å
Hall symbol: -F 2uv 2vwCell parameters from 2008 reflections
a = 9.4452 (7) Åθ = 2.5–28.0º
b = 10.0151 (7) ŵ = 0.11 mm1
c = 32.566 (2) ÅT = 100 (2) K
V = 3080.6 (4) Å3Cuboid, white
Z = 80.13 × 0.08 × 0.06 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
844 independent reflections
Radiation source: fine-focus sealed tube715 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.078
Detector resolution: 512 pixels mm-1θmax = 27.0º
T = 100(2) Kθmin = 2.5º
φ and ω scansh = 12→12
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 12→12
Tmin = 0.985, Tmax = 0.993l = 41→41
6210 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.157  w = 1/[σ2(Fo2) + (0.1125P)2 + 2.5701P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
844 reflectionsΔρmax = 0.51 e Å3
65 parametersΔρmin = 0.25 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
[Li(H2O)4][Li(C7H5O2)2]V = 3080.6 (4) Å3
Mr = 328.16Z = 8
Orthorhombic, FdddMo Kα
a = 9.4452 (7) ŵ = 0.11 mm1
b = 10.0151 (7) ÅT = 100 (2) K
c = 32.566 (2) Å0.13 × 0.08 × 0.06 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
844 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
715 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.993Rint = 0.078
6210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.157H atoms treated by a mixture of
independent and constrained refinement
S = 1.06Δρmax = 0.51 e Å3
844 reflectionsΔρmin = 0.25 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.50030 (13)0.24879 (12)0.15285 (4)0.0186 (4)
Li20.62500.12500.12500.0170 (11)
H0110.520 (3)0.3295 (18)0.1582 (7)0.036 (7)*
H0120.4138 (19)0.241 (2)0.1578 (8)0.039 (7)*
O10.54310 (12)0.52151 (11)0.16890 (4)0.0150 (4)
C20.54144 (18)0.49237 (18)0.23993 (5)0.0176 (5)
H20.49360.41100.23430.021*
C10.58113 (16)0.56432 (16)0.20457 (5)0.0130 (4)
C30.5595 (2)0.5186 (2)0.28138 (5)0.0231 (5)
H30.52090.45350.29940.028*
C40.62500.62500.30048 (7)0.0254 (7)
H40.62500.62500.32960.030*
Li10.62500.62500.12500.0175 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0155 (7)0.0139 (7)0.0264 (7)0.0014 (5)0.0042 (5)0.0034 (5)
Li20.013 (2)0.017 (3)0.021 (3)0.0000.0000.000
O10.0148 (7)0.0154 (7)0.0147 (7)0.0023 (5)0.0014 (4)0.0006 (4)
C20.0144 (9)0.0183 (9)0.0201 (10)0.0029 (6)0.0033 (6)0.0053 (7)
C10.0104 (7)0.0156 (9)0.0130 (8)0.0036 (6)0.0003 (5)0.0003 (6)
C30.0213 (10)0.0304 (11)0.0175 (9)0.0113 (8)0.0056 (7)0.0092 (7)
C40.0275 (13)0.0371 (16)0.0116 (11)0.0182 (12)0.0000.000
Li10.022 (3)0.014 (3)0.016 (3)0.0000.0000.000
Geometric parameters (Å, °) top
O01—Li21.9356 (12)C1—Li12.6938 (15)
O01—H0110.847 (17)C3—C41.380 (2)
O01—H0120.837 (17)C3—H30.9500
Li2—O01i1.9356 (12)C4—C3iv1.380 (2)
Li2—O01ii1.9356 (12)C4—H40.9500
Li2—O01iii1.9356 (12)Li1—O1iv1.9278 (12)
O1—C11.2894 (19)Li1—O1v1.9278 (12)
O1—Li11.9278 (12)Li1—O1ii1.9278 (12)
C2—C31.386 (2)Li1—C1iv2.6938 (15)
C2—C11.409 (2)Li1—C1v2.6938 (15)
C2—H20.9500Li1—C1ii2.6938 (15)
C1—C1iv1.471 (3)
Li2—O01—H011125.2 (17)O1iv—Li1—O1v114.95 (7)
Li2—O01—H012128.4 (17)O1—Li1—O1ii114.95 (7)
H011—O01—H012105 (2)O1iv—Li1—O1ii132.68 (7)
O01i—Li2—O01105.04 (8)O1v—Li1—O1ii84.27 (7)
O01i—Li2—O01ii124.13 (8)O1—Li1—C126.31 (5)
O01—Li2—O01ii100.34 (7)O1iv—Li1—C157.97 (5)
O01i—Li2—O01iii100.34 (7)O1v—Li1—C1140.62 (5)
O01—Li2—O01iii124.13 (8)O1ii—Li1—C1130.83 (5)
O01ii—Li2—O01iii105.04 (8)O1—Li1—C1iv57.97 (5)
C1—O1—Li1112.18 (10)O1iv—Li1—C1iv26.31 (5)
C3—C2—C1131.78 (17)O1v—Li1—C1iv130.83 (5)
C3—C2—H2114.1O1ii—Li1—C1iv140.62 (5)
C1—C2—H2114.1C1—Li1—C1iv31.69 (7)
O1—C1—C2119.48 (15)O1—Li1—C1v140.62 (5)
O1—C1—C1iv115.57 (9)O1iv—Li1—C1v130.83 (5)
C2—C1—C1iv124.91 (10)O1v—Li1—C1v26.31 (5)
C2—C1—Li1160.46 (13)O1ii—Li1—C1v57.97 (5)
C1iv—C1—Li174.15 (3)C1—Li1—C1v162.30 (7)
C4—C3—C2129.83 (18)C1iv—Li1—C1v153.92 (7)
C4—C3—H3115.1O1—Li1—C1ii130.83 (5)
C2—C3—H3115.1O1iv—Li1—C1ii140.62 (5)
C3—C4—C3iv126.4 (2)O1v—Li1—C1ii57.97 (5)
C3—C4—H4116.8O1ii—Li1—C1ii26.31 (5)
C3iv—C4—H4116.8C1—Li1—C1ii153.92 (7)
O1—Li1—O1iv84.27 (7)C1iv—Li1—C1ii162.30 (7)
O1—Li1—O1v132.68 (7)C1v—Li1—C1ii31.69 (7)
Li1—O1—C1—C2174.11 (12)C2—C1—Li1—O1iv166.3 (4)
Li1—O1—C1—C1iv4.0 (2)C1iv—C1—Li1—O1iv1.94 (10)
C3—C2—C1—O1175.48 (17)O1—C1—Li1—O1v86.96 (15)
C3—C2—C1—C1iv6.7 (3)C2—C1—Li1—O1v102.4 (4)
C3—C2—C1—Li1172.8 (2)C1iv—C1—Li1—O1v89.34 (13)
C1—C2—C3—C41.0 (3)O1—C1—Li1—O1ii60.69 (15)
C2—C3—C4—C3iv0.82 (15)C2—C1—Li1—O1ii45.2 (4)
C1—O1—Li1—O1iv1.51 (8)C1iv—C1—Li1—O1ii123.02 (11)
C1—O1—Li1—O1v120.47 (11)O1—C1—Li1—C1iv176.3 (2)
C1—O1—Li1—O1ii133.31 (11)C2—C1—Li1—C1iv168.2 (5)
C1—O1—Li1—C1iv2.30 (12)O1—C1—Li1—C1v53.03 (10)
C1—O1—Li1—C1v157.49 (10)C2—C1—Li1—C1v68.5 (4)
C1—O1—Li1—C1ii158.54 (8)C1iv—C1—Li1—C1v123.26 (12)
C2—C1—Li1—O115.5 (3)O1—C1—Li1—C1ii39.04 (10)
C1iv—C1—Li1—O1176.3 (2)C2—C1—Li1—C1ii23.5 (3)
O1—C1—Li1—O1iv178.23 (9)C1iv—C1—Li1—C1ii144.67 (12)
Symmetry codes: (i) x, −y+1/4, −z+1/4; (ii) −x+5/4, y, −z+1/4; (iii) −x+5/4, −y+1/4, z; (iv) −x+5/4, −y+5/4, z; (v) x, −y+5/4, −z+1/4.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O01—H011···O10.847 (17)1.967 (17)2.8101 (16)174 (2)
Table 1
Selected geometric parameters (Å, °)
top
O01—Li21.9356 (12)O1—Li11.9278 (12)
O1—C11.2894 (19)
O01i—Li2—O01105.04 (8)O1—Li1—O1iii84.27 (7)
O01i—Li2—O01ii124.13 (8)O1—Li1—O1iv132.68 (7)
O01—Li2—O01ii100.34 (7)O1—Li1—O1ii114.95 (7)
Symmetry codes: (i) x, −y+1/4, −z+1/4; (ii) −x+5/4, y, −z+1/4; (iii) −x+5/4, −y+5/4, z; (iv) x, −y+5/4, −z+1/4.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O01—H011···O10.847 (17)1.967 (17)2.8101 (16)174 (2)
Acknowledgements top

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L. Kirsten is acknowledged for the the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

references
References top

Brandenburg, K. & Putz, H. (2006). DIAMOND. Release 3.0e. Crystal Impact GbR, Bonn, Germany.

Bruker (1998). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA. Or SMART if diffractometer is correct?

Filatov, E. S., Baidina, I. A. & Igumenov, I. K. (2006). Zh. Strukt. Khim. 47, 498–500.

Gonçalves, N. S., Santos, P. S. & Vencato, I. (1996). Acta Cryst. C52, 622–624.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shiono, R. (1961). Acta Cryst. 14, 42–47.

Teixidor, F., Llobet, A., Casabo, J., Solans, X., Font-Altaba, M. & Aguilo, M. (1985). Inorg. Chem. 24, 2315–2320.