Download citation
Download citation
link to html
In the title compound, [Cu(C10H8N2)2(H2O)](BF4)2, the CuII atom is coordinated by four N atoms and one O atom in a distorted trigonal–bipyramidal geometry. The Cu—N bond lengths are in the range 1.982 (3)–2.124 (3) Å, while the Cu—O distance is 2.035 (4) Å. The structure is stabilized by O—H...F hydrogen bonds between the CuII complex and the tetra­fluoridoborate anion. The F atoms of one anion are disordered over two positions; the site occupancy ratio is ca 3:2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033557/pv2015sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033557/pv2015Isup2.hkl
Contains datablock I

CCDC reference: 660137

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.007 Å
  • Disorder in solvent or counterion
  • R factor = 0.048
  • wR factor = 0.136
  • Data-to-parameter ratio = 11.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B2 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 29.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 99
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Copper(II) coordination compounds have been investigated frequently, not only because of their interesting magnetic superexchange interactions, but also because of their relevance for bioinorganic model systems in copper enzymes (Sigman et al., 1979). Here, the synthesis and crystal structure of the title bis(tetrafluoridoborate) complex, are reported.

The crystal structure of (I) consists of copper(II) complex cations and bis(tetrafluoridoborate) anions, as shown in Fig. 1. The CuII atom assumes a CuN4O trigonal-bipyramidal coordination geometry formed by two N,N'-bidentate bpy ligands and one equatorial oxygen atom (Fig. 1). The Cu—N bond lengths are in the range 1.982 (3)–2.124 (3) Å, while the Cu—O bond distance is 2.035 (4) Å (Table 1). The Cu—N bond lengths in (I) are in agreement with those in previously characterized Cu—N bonds in [Cu(bpy)2]I or [Cu(phen)2]II(Tomislav, 2006; Xu et al., 2005; Şerb et al., 2007). The bite angles in (I) are smaller than 90 °, which is due to the rigid geometry of the bidentate bpy ligand.

The interligand dihedral angle of 67.3 (3) ° in (I) is much lower than that found in [Cu(bpy)2]I cited above (87.5 (11) °). The structure is stabilized by O—H···F type hydrogen bonds between the CuII complex and tetrafluoridoborate anion.

Related literature top

For related literature, see: Şerb et al. (2007); Sheldrick (1997); Sigman et al. (1979); Tomislav (2006); Xu et al. (2005).

Experimental top

A aqueous solution (15 ml) of Cu(BF4)2 (23.7 mg, 0.1 mmol) was added to the methanol solution (20 ml) of 1,10-phenanthroline (39.6 mg, 0.2 mmol) and stirred for a further 1 h. The solution was kept at room temperature and blue crystals were formed after a week (yield 35%).

Refinement top

The H atoms were placed in caculated positions with C—H = 0.93 Å and O—H = 0.85 Å and were included in the refinement with Uiso(H) = 1.2Ueq(C/O). One of the BF4 anions was found to be disordered oversites F1 - F4 and F1' - F4'. The site occupancies of F-atoms were determined using an isotropic model and the B—F distances were fixed at 1.36 (1) Å for both the anions in the subsequent refinement cycles.

Structure description top

Copper(II) coordination compounds have been investigated frequently, not only because of their interesting magnetic superexchange interactions, but also because of their relevance for bioinorganic model systems in copper enzymes (Sigman et al., 1979). Here, the synthesis and crystal structure of the title bis(tetrafluoridoborate) complex, are reported.

The crystal structure of (I) consists of copper(II) complex cations and bis(tetrafluoridoborate) anions, as shown in Fig. 1. The CuII atom assumes a CuN4O trigonal-bipyramidal coordination geometry formed by two N,N'-bidentate bpy ligands and one equatorial oxygen atom (Fig. 1). The Cu—N bond lengths are in the range 1.982 (3)–2.124 (3) Å, while the Cu—O bond distance is 2.035 (4) Å (Table 1). The Cu—N bond lengths in (I) are in agreement with those in previously characterized Cu—N bonds in [Cu(bpy)2]I or [Cu(phen)2]II(Tomislav, 2006; Xu et al., 2005; Şerb et al., 2007). The bite angles in (I) are smaller than 90 °, which is due to the rigid geometry of the bidentate bpy ligand.

The interligand dihedral angle of 67.3 (3) ° in (I) is much lower than that found in [Cu(bpy)2]I cited above (87.5 (11) °). The structure is stabilized by O—H···F type hydrogen bonds between the CuII complex and tetrafluoridoborate anion.

For related literature, see: Şerb et al. (2007); Sheldrick (1997); Sigman et al. (1979); Tomislav (2006); Xu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Aquabis(2,2'-bipyridine-κ2N,N')copper(II) bis(tetrafluoridoborate) top
Crystal data top
[Cu(C10H8N2)2(H2O)](BF4)2F(000) = 1140
Mr = 567.54Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2544 reflections
a = 9.0961 (16) Åθ = 2.3–23.3°
b = 13.571 (2) ŵ = 1.03 mm1
c = 19.338 (3) ÅT = 294 K
β = 103.507 (3)°Block, blue
V = 2321.1 (6) Å30.24 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4090 independent reflections
Radiation source: fine-focus sealed tube2549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.780, Tmax = 0.853k = 1612
11615 measured reflectionsl = 1822
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0615P)2 + 1.4025P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
4090 reflectionsΔρmax = 0.46 e Å3
363 parametersΔρmin = 0.37 e Å3
99 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (8)
Crystal data top
[Cu(C10H8N2)2(H2O)](BF4)2V = 2321.1 (6) Å3
Mr = 567.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0961 (16) ŵ = 1.03 mm1
b = 13.571 (2) ÅT = 294 K
c = 19.338 (3) Å0.24 × 0.20 × 0.16 mm
β = 103.507 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4090 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2549 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.853Rint = 0.049
11615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04899 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
4090 reflectionsΔρmin = 0.37 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.94520 (6)0.73629 (4)0.86050 (3)0.0429 (2)
O10.9400 (4)0.5864 (3)0.86045 (18)0.0758 (11)
H1A0.86850.56160.87750.091*
H1B1.02140.55160.86650.091*
N11.0849 (4)0.7371 (2)0.79494 (19)0.0451 (9)
N20.8180 (4)0.8221 (2)0.77547 (17)0.0419 (9)
N30.8064 (4)0.7459 (2)0.92541 (18)0.0398 (8)
N41.0677 (4)0.8328 (2)0.93734 (18)0.0432 (9)
C11.2179 (5)0.6899 (4)0.8075 (3)0.0615 (14)
H11.24880.65530.84990.074*
C21.3106 (6)0.6902 (4)0.7609 (3)0.0652 (14)
H21.40190.65630.77140.078*
C31.2659 (6)0.7414 (4)0.6989 (3)0.0596 (13)
H31.32710.74380.66660.072*
C41.1294 (6)0.7893 (3)0.6849 (2)0.0532 (12)
H41.09750.82420.64270.064*
C51.0392 (5)0.7859 (3)0.7329 (2)0.0384 (10)
C60.8878 (5)0.8317 (3)0.7217 (2)0.0389 (10)
C70.8180 (6)0.8806 (3)0.6600 (2)0.0500 (12)
H70.86800.88800.62350.060*
C80.6743 (6)0.9182 (3)0.6525 (3)0.0589 (13)
H80.62550.94980.61080.071*
C90.6046 (6)0.9080 (3)0.7084 (3)0.0587 (13)
H90.50790.93290.70500.070*
C100.6803 (5)0.8605 (3)0.7689 (2)0.0500 (12)
H100.63390.85490.80670.060*
C110.6722 (5)0.7006 (3)0.9144 (2)0.0514 (12)
H110.64070.66230.87380.062*
C120.5795 (5)0.7083 (4)0.9609 (3)0.0583 (13)
H120.48750.67530.95200.070*
C130.6240 (6)0.7651 (3)1.0202 (3)0.0568 (13)
H130.56160.77251.05170.068*
C140.7635 (5)0.8118 (3)1.0329 (2)0.0510 (12)
H140.79670.84991.07350.061*
C150.8525 (5)0.8009 (3)0.9845 (2)0.0384 (10)
C161.0044 (5)0.8465 (3)0.9928 (2)0.0401 (10)
C171.0767 (6)0.8993 (3)1.0525 (2)0.0536 (12)
H171.03080.90781.09030.064*
C181.2169 (6)0.9387 (4)1.0551 (3)0.0678 (15)
H181.26790.97361.09490.081*
C191.2808 (6)0.9257 (4)0.9976 (3)0.0685 (15)
H191.37550.95200.99830.082*
C201.2037 (5)0.8736 (3)0.9395 (3)0.0550 (12)
H201.24650.86650.90050.066*
B10.6694 (6)0.5485 (4)0.6935 (3)0.0659 (17)
F10.8178 (9)0.5433 (9)0.6902 (8)0.104 (4)0.595 (11)
F20.5891 (10)0.4695 (7)0.6616 (5)0.122 (4)0.595 (11)
F30.5912 (11)0.6298 (8)0.6588 (6)0.148 (4)0.595 (11)
F40.6459 (12)0.5574 (8)0.7600 (4)0.084 (3)0.595 (11)
F1'0.8079 (12)0.5843 (11)0.6883 (9)0.077 (4)0.405 (11)
F2'0.6878 (18)0.4499 (7)0.7132 (8)0.131 (5)0.405 (11)
F3'0.5836 (10)0.5514 (11)0.6293 (4)0.095 (4)0.405 (11)
F4'0.633 (2)0.5993 (11)0.7463 (8)0.101 (5)0.405 (11)
B20.2352 (6)0.5935 (4)0.0273 (2)0.0459 (13)
F50.0851 (3)0.6057 (2)0.02780 (15)0.0775 (9)
F60.3119 (4)0.6801 (2)0.04648 (19)0.0944 (11)
F70.2497 (4)0.5678 (3)0.03890 (15)0.0938 (11)
F80.2977 (4)0.5252 (3)0.07647 (19)0.1033 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0414 (3)0.0536 (4)0.0386 (3)0.0004 (3)0.0190 (2)0.0054 (3)
O10.070 (2)0.072 (2)0.090 (3)0.0009 (19)0.028 (2)0.006 (2)
N10.042 (2)0.053 (2)0.044 (2)0.0051 (18)0.0161 (17)0.0097 (18)
N20.044 (2)0.047 (2)0.035 (2)0.0001 (17)0.0100 (17)0.0040 (16)
N30.040 (2)0.048 (2)0.0344 (19)0.0024 (16)0.0143 (15)0.0015 (16)
N40.039 (2)0.043 (2)0.048 (2)0.0009 (16)0.0099 (18)0.0100 (17)
C10.050 (3)0.082 (4)0.056 (3)0.012 (3)0.020 (3)0.018 (3)
C20.047 (3)0.086 (4)0.070 (4)0.008 (3)0.028 (3)0.002 (3)
C30.053 (3)0.078 (4)0.056 (3)0.012 (3)0.030 (2)0.011 (3)
C40.062 (3)0.065 (3)0.039 (3)0.015 (3)0.024 (2)0.002 (2)
C50.045 (3)0.040 (2)0.032 (2)0.0089 (19)0.0120 (19)0.0009 (18)
C60.047 (3)0.036 (2)0.035 (2)0.0085 (19)0.012 (2)0.0006 (19)
C70.062 (3)0.051 (3)0.039 (3)0.008 (2)0.016 (2)0.005 (2)
C80.066 (4)0.056 (3)0.048 (3)0.000 (3)0.001 (3)0.016 (2)
C90.055 (3)0.050 (3)0.066 (3)0.009 (2)0.004 (3)0.006 (3)
C100.047 (3)0.057 (3)0.047 (3)0.007 (2)0.012 (2)0.003 (2)
C110.046 (3)0.064 (3)0.048 (3)0.011 (2)0.020 (2)0.005 (2)
C120.044 (3)0.072 (3)0.063 (3)0.010 (2)0.022 (2)0.005 (3)
C130.058 (3)0.066 (3)0.057 (3)0.007 (3)0.035 (3)0.007 (3)
C140.063 (3)0.054 (3)0.040 (3)0.003 (2)0.020 (2)0.003 (2)
C150.048 (3)0.036 (2)0.033 (2)0.0040 (19)0.014 (2)0.0077 (19)
C160.047 (3)0.030 (2)0.041 (3)0.0017 (19)0.005 (2)0.0058 (19)
C170.065 (3)0.043 (3)0.048 (3)0.005 (2)0.002 (2)0.002 (2)
C180.068 (4)0.049 (3)0.075 (4)0.008 (3)0.005 (3)0.007 (3)
C190.049 (3)0.052 (3)0.097 (5)0.011 (2)0.001 (3)0.007 (3)
C200.043 (3)0.055 (3)0.067 (3)0.008 (2)0.013 (3)0.008 (3)
B10.069 (5)0.082 (5)0.052 (4)0.006 (4)0.024 (4)0.015 (4)
F10.073 (5)0.133 (8)0.113 (6)0.009 (4)0.031 (4)0.023 (6)
F20.109 (6)0.148 (7)0.121 (7)0.030 (5)0.048 (5)0.068 (5)
F30.161 (7)0.160 (8)0.134 (7)0.027 (6)0.057 (5)0.061 (6)
F40.080 (5)0.124 (7)0.052 (4)0.020 (5)0.023 (3)0.001 (4)
F1'0.073 (7)0.109 (9)0.061 (6)0.009 (5)0.036 (5)0.009 (6)
F2'0.159 (9)0.102 (7)0.150 (9)0.033 (6)0.072 (7)0.056 (6)
F3'0.070 (6)0.139 (9)0.061 (6)0.016 (6)0.018 (4)0.010 (5)
F4'0.085 (7)0.103 (8)0.122 (9)0.016 (6)0.039 (7)0.043 (7)
B20.051 (3)0.053 (3)0.037 (3)0.007 (3)0.017 (3)0.001 (3)
F50.0545 (19)0.113 (2)0.068 (2)0.0087 (16)0.0209 (15)0.0189 (17)
F60.095 (2)0.080 (2)0.120 (3)0.0336 (19)0.049 (2)0.020 (2)
F70.082 (2)0.152 (3)0.0515 (19)0.003 (2)0.0243 (17)0.0254 (19)
F80.103 (3)0.102 (3)0.099 (3)0.004 (2)0.014 (2)0.049 (2)
Geometric parameters (Å, º) top
Cu1—N31.982 (3)C10—H100.9300
Cu1—N11.993 (3)C11—C121.372 (6)
Cu1—O12.035 (4)C11—H110.9300
Cu1—N42.095 (4)C12—C131.362 (7)
Cu1—N22.124 (3)C12—H120.9300
O1—H1A0.8635C13—C141.389 (6)
O1—H1B0.8629C13—H130.9300
N1—C11.340 (6)C14—C151.381 (6)
N1—C51.347 (5)C14—H140.9300
N2—C101.335 (5)C15—C161.488 (6)
N2—C61.345 (5)C16—C171.387 (6)
N3—C111.339 (5)C17—C181.373 (7)
N3—C151.347 (5)C17—H170.9300
N4—C161.344 (5)C18—C191.380 (7)
N4—C201.347 (5)C18—H180.9300
C1—C21.371 (6)C19—C201.374 (7)
C1—H10.9300C19—H190.9300
C2—C31.362 (7)C20—H200.9300
C2—H20.9300B1—F3'1.304 (7)
C3—C41.372 (7)B1—F4'1.339 (9)
C3—H30.9300B1—F41.359 (8)
C4—C51.376 (6)B1—F21.361 (7)
C4—H40.9300B1—F11.368 (8)
C5—C61.480 (6)B1—F1'1.375 (9)
C6—C71.383 (6)B1—F2'1.391 (8)
C7—C81.379 (6)B1—F31.397 (7)
C7—H70.9300B2—F81.355 (5)
C8—C91.381 (7)B2—F71.363 (5)
C8—H80.9300B2—F61.373 (5)
C9—C101.372 (6)B2—F51.378 (5)
C9—H90.9300
N3—Cu1—N1175.88 (14)C13—C12—H12120.4
N3—Cu1—O192.77 (14)C11—C12—H12120.4
N1—Cu1—O191.35 (14)C12—C13—C14119.1 (4)
N3—Cu1—N479.72 (14)C12—C13—H13120.4
N1—Cu1—N497.76 (14)C14—C13—H13120.4
O1—Cu1—N4129.30 (13)C15—C14—C13119.2 (4)
N3—Cu1—N298.15 (14)C15—C14—H14120.4
N1—Cu1—N279.47 (14)C13—C14—H14120.4
O1—Cu1—N2122.65 (14)N3—C15—C14121.2 (4)
N4—Cu1—N2108.05 (13)N3—C15—C16114.8 (4)
Cu1—O1—H1A114.1C14—C15—C16124.0 (4)
Cu1—O1—H1B121.9N4—C16—C17121.9 (4)
H1A—O1—H1B115.8N4—C16—C15114.6 (4)
C1—N1—C5118.3 (4)C17—C16—C15123.5 (4)
C1—N1—Cu1124.3 (3)C18—C17—C16119.1 (5)
C5—N1—Cu1117.3 (3)C18—C17—H17120.4
C10—N2—C6119.3 (4)C16—C17—H17120.4
C10—N2—Cu1128.2 (3)C17—C18—C19118.9 (5)
C6—N2—Cu1112.4 (3)C17—C18—H18120.5
C11—N3—C15118.8 (4)C19—C18—H18120.5
C11—N3—Cu1124.1 (3)C20—C19—C18119.6 (5)
C15—N3—Cu1117.1 (3)C20—C19—H19120.2
C16—N4—C20118.7 (4)C18—C19—H19120.2
C16—N4—Cu1113.4 (3)N4—C20—C19121.8 (5)
C20—N4—Cu1127.7 (3)N4—C20—H20119.1
N1—C1—C2123.1 (5)C19—C20—H20119.1
N1—C1—H1118.4F3'—B1—F4'120.7 (10)
C2—C1—H1118.4F3'—B1—F4135.1 (8)
C3—C2—C1118.5 (5)F3'—B1—F257.0 (6)
C3—C2—H2120.7F4'—B1—F2123.2 (9)
C1—C2—H2120.7F4—B1—F2108.2 (7)
C2—C3—C4119.0 (4)F3'—B1—F1109.6 (9)
C2—C3—H3120.5F4'—B1—F1119.1 (11)
C4—C3—H3120.5F4—B1—F1115.1 (9)
C3—C4—C5120.5 (4)F2—B1—F1111.7 (7)
C3—C4—H4119.8F3'—B1—F1'105.9 (9)
C5—C4—H4119.8F4'—B1—F1'105.6 (12)
N1—C5—C4120.5 (4)F4—B1—F1'112.8 (9)
N1—C5—C6114.9 (4)F2—B1—F1'130.5 (9)
C4—C5—C6124.6 (4)F3'—B1—F2'107.4 (9)
N2—C6—C7120.6 (4)F4'—B1—F2'108.7 (9)
N2—C6—C5115.9 (4)F4—B1—F2'82.0 (7)
C7—C6—C5123.5 (4)F2—B1—F2'52.0 (6)
C8—C7—C6120.0 (4)F1—B1—F2'84.6 (7)
C8—C7—H7120.0F1'—B1—F2'107.9 (9)
C6—C7—H7120.0F3'—B1—F352.7 (6)
C7—C8—C9118.6 (4)F4'—B1—F376.6 (8)
C7—C8—H8120.7F4—B1—F3102.0 (7)
C9—C8—H8120.7F2—B1—F3104.2 (7)
C10—C9—C8118.9 (5)F1—B1—F3114.6 (8)
C10—C9—H9120.6F1'—B1—F393.4 (8)
C8—C9—H9120.6F2'—B1—F3155.1 (9)
N2—C10—C9122.6 (4)F8—B2—F7111.5 (4)
N2—C10—H10118.7F8—B2—F6107.0 (4)
C9—C10—H10118.7F7—B2—F6108.6 (4)
N3—C11—C12122.5 (4)F8—B2—F5109.4 (4)
N3—C11—H11118.7F7—B2—F5110.5 (4)
C12—C11—H11118.7F6—B2—F5109.7 (4)
C13—C12—C11119.2 (4)
O1—Cu1—N1—C155.2 (4)Cu1—N2—C6—C7176.4 (3)
N4—Cu1—N1—C174.8 (4)C10—N2—C6—C5179.2 (4)
N2—Cu1—N1—C1178.2 (4)Cu1—N2—C6—C52.7 (4)
O1—Cu1—N1—C5122.5 (3)N1—C5—C6—N22.4 (5)
N4—Cu1—N1—C5107.5 (3)C4—C5—C6—N2178.8 (4)
N2—Cu1—N1—C50.5 (3)N1—C5—C6—C7176.6 (4)
N3—Cu1—N2—C105.5 (4)C4—C5—C6—C72.2 (7)
N1—Cu1—N2—C10177.9 (4)N2—C6—C7—C81.3 (6)
O1—Cu1—N2—C1093.1 (4)C5—C6—C7—C8177.6 (4)
N4—Cu1—N2—C1087.3 (4)C6—C7—C8—C91.5 (7)
N3—Cu1—N2—C6178.3 (3)C7—C8—C9—C100.3 (7)
N1—Cu1—N2—C61.8 (3)C6—N2—C10—C91.5 (6)
O1—Cu1—N2—C683.0 (3)Cu1—N2—C10—C9174.4 (3)
N4—Cu1—N2—C696.6 (3)C8—C9—C10—N21.3 (7)
O1—Cu1—N3—C1152.2 (4)C15—N3—C11—C120.4 (7)
N4—Cu1—N3—C11178.4 (4)Cu1—N3—C11—C12179.5 (3)
N2—Cu1—N3—C1171.4 (4)N3—C11—C12—C130.7 (7)
O1—Cu1—N3—C15127.0 (3)C11—C12—C13—C141.5 (7)
N4—Cu1—N3—C152.5 (3)C12—C13—C14—C151.2 (7)
N2—Cu1—N3—C15109.5 (3)C11—N3—C15—C140.7 (6)
N3—Cu1—N4—C165.4 (3)Cu1—N3—C15—C14179.9 (3)
N1—Cu1—N4—C16177.9 (3)C11—N3—C15—C16178.7 (4)
O1—Cu1—N4—C1679.8 (3)Cu1—N3—C15—C160.5 (4)
N2—Cu1—N4—C16100.7 (3)C13—C14—C15—N30.1 (6)
N3—Cu1—N4—C20179.4 (4)C13—C14—C15—C16179.4 (4)
N1—Cu1—N4—C203.9 (4)C20—N4—C16—C171.6 (6)
O1—Cu1—N4—C2094.3 (4)Cu1—N4—C16—C17173.0 (3)
N2—Cu1—N4—C2085.3 (4)C20—N4—C16—C15178.3 (4)
C5—N1—C1—C21.1 (7)Cu1—N4—C16—C157.1 (4)
Cu1—N1—C1—C2178.8 (4)N3—C15—C16—N45.2 (5)
N1—C1—C2—C30.3 (8)C14—C15—C16—N4175.4 (4)
C1—C2—C3—C41.0 (8)N3—C15—C16—C17174.8 (4)
C2—C3—C4—C50.2 (7)C14—C15—C16—C174.5 (6)
C1—N1—C5—C41.9 (6)N4—C16—C17—C180.1 (6)
Cu1—N1—C5—C4179.7 (3)C15—C16—C17—C18179.9 (4)
C1—N1—C5—C6177.0 (4)C16—C17—C18—C190.9 (7)
Cu1—N1—C5—C60.8 (5)C17—C18—C19—C200.2 (8)
C3—C4—C5—N11.2 (7)C16—N4—C20—C192.3 (6)
C3—C4—C5—C6177.5 (4)Cu1—N4—C20—C19171.4 (3)
C10—N2—C6—C70.2 (6)C18—C19—C20—N41.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F8i0.862.263.113 (4)171
O1—H1B···F7ii0.862.443.038 (4)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)2(H2O)](BF4)2
Mr567.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.0961 (16), 13.571 (2), 19.338 (3)
β (°) 103.507 (3)
V3)2321.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.780, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
11615, 4090, 2549
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.02
No. of reflections4090
No. of parameters363
No. of restraints99
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N31.982 (3)Cu1—N42.095 (4)
Cu1—N11.993 (3)Cu1—N22.124 (3)
Cu1—O12.035 (4)
N3—Cu1—N479.72 (14)N1—Cu1—N279.47 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F8i0.8642.2573.113 (4)171.1
O1—H1B···F7ii0.8632.4363.038 (4)127.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds