Download citation
Download citation
link to html
The crystal structure of the title compound, C17H20N2O5, is stabilized by C—H...O and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037890/pv2022sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037890/pv2022Isup2.hkl
Contains datablock I

CCDC reference: 660236

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.058
  • wR factor = 0.121
  • Data-to-parameter ratio = 11.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.54 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.93 Ratio PLAT735_ALERT_1_B D-H Calc 0.93(3), Rep 0.929(4) ...... 7.50 su-Ra C17 -H17B 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.91(4), Rep 0.911(5) ...... 8.00 su-Ra C15 -H15B 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.89(3), Rep 0.892(6) ...... 5.00 su-Ra N1 -H1N 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.98(3), Rep 0.979(6) ...... 5.00 su-Ra C4 -H4 1.555 1.555 PLAT736_ALERT_1_B H...A Calc 2.52(3), Rep 2.515(4) ...... 7.50 su-Ra H17B -O3 1.555 3.665 PLAT736_ALERT_1_B H...A Calc 2.79(4), Rep 2.794(7) ...... 5.71 su-Ra H15B -O4 1.555 3.565 PLAT736_ALERT_1_B H...A Calc 2.02(3), Rep 2.024(6) ...... 5.00 su-Ra H1N -O4 1.555 3.565
Alert level C ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied. From the CIF: _exptl_absorpt_correction_T_min 1.000 From the CIF: _exptl_absorpt_correction_T_max 1.000 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT391_ALERT_3_C Deviating Methyl C15 H-C-H Bond Angle ...... 101.00 Deg. PLAT480_ALERT_4_C Long H...A H-Bond Reported H15B .. O4 .. 2.79 Ang. PLAT736_ALERT_1_C H...A Calc 2.58(2), Rep 2.572(6) ...... 3.33 su-Ra H4 -O1 1.555 4.576 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C17 H20 N2 O5
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... R
0 ALERT level A = In general: serious problem 9 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 12 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

4-Aryldihydropyrimidines (DHPMs) represent a heterocyclic system of remarkable pharmacological efficiency. They have recently emerged as important target molecules due to their therapeutic and medicinal properties (Kappe, 2000) such as antiviral (Hurst et al., 1961), antimitotic (Mayer et al., 1999), and antihypertensive (Atwal et al., 1991). They are also the most studied class of organic calcium channel modulators (Kappe, 1998; Jauk et al., 2000) and since their introduction into clinical medicine in 1975, they have become almost indispensable for the treatment of cardiovascular diseases such as hypertension, cardiac arrhythmias, or angina (Janis et al., 1987). These inherently asymmetric compounds have been studied extensively to expand the existing structure-activity relationships and to get further insight into molecular interactions at the receptor-site level (Cho et al., 1989; Atwal et al., 1990; Rovnyak et al., 1992 and Grover et al., 1995).

The title compound (I) is a calcium antagonist and belongs to dihydropyrimidine heterocycles. In this molecule (Fig. 1) the substituted aryl ring is positioned axially, perpendicular to, and nearly bisects the boat-like dihydropyrimidine ring. This is evident as the dihedral angle between the planes of both ring systems is 84.92 (7)°. The 4-aryl substitutent (methoxy group) adopts a synperiplanar position. These features have been found mandatory for optimum calcium channel modulatory activity according to the recently proposed new binding-site model for this class of cardiovascular drugs (Rovnyak et al., 1995; Triggle et al., 1995). The exocyclic ester at C8 adopts a trans orientation with respect to C8—C9 double bond. DHPM's of this type are known to show conformational flexibility, where, the aryl ring and the ester group can rotate and the conformation of dihydropyrimidine ring can change (Kappe et al., 1997; Shishkin et al., 1997). The crystal structure is stabilized by intermolecular C—H···O and N—H···O hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Atwal et al. (1990, 1991); Cho et al. (1989); Grover et al. (1995); Hurst & Hull (1961); Janis et al. (1987); Jauk et al. (2000); Kappe (1998, 2000); Kappe et al. (1997); Mayer et al. (1999); Rovnyak et al. (1992, 1995); Shishkin et al. (1997); Triggle & Padmanabhan (1995).

Experimental top

5-Ethoxycarbonyl-6-methyl-4-(4-methoxyphynyl)- 3,4-dihydropyrimidine-2(1H)-one was prepared by refluxing a mixture of ethyl acetoacetate solution (3.12 g, 24 mM), acetaldehyde (2.72 g, 20 mM) and lithium bromide (0.175 g, 2 mM) in acetonitrile (25 ml) for 5 h, in a 100 ml round bottom flask. After cooling, the reaction mixture was poured in to crushed ice and stirred for several minutes. The solid product was filtered, washed with cold water, dried and recrystallized from ethanol (yield = 5.17 g, 89.1% and the melting point = 474 K). To prepare the acetyl derivative (title compound), 2 g of this product was mixed with 10 ml of acetic anhydride and refluxed for 4 h in a 25 ml round bottom flask. The reaction mixture was cooled and diluted by adding 20 ml of water·The acetyl derivative seperated out as an oil. The mixture was vigorously stirred and was allowed to solidify. It was filtered, washed thoroughly with water and crystallized from an acetone-water mixture. The yield was 1.94 g (85.0%) and the melting point was 413 K. X-ray diffraction quality single crystals were grown from a solution of chloroform by slow evaporation.

Refinement top

All H atoms were located from Fourier difference maps and refined with isotropic thermal displacement parameters; the H-atoms bonded to C13 were included in the refinement at geometrically idealized positions with C—H = 0.96 A° and Uiso = 1.5xUeq C13.

Structure description top

4-Aryldihydropyrimidines (DHPMs) represent a heterocyclic system of remarkable pharmacological efficiency. They have recently emerged as important target molecules due to their therapeutic and medicinal properties (Kappe, 2000) such as antiviral (Hurst et al., 1961), antimitotic (Mayer et al., 1999), and antihypertensive (Atwal et al., 1991). They are also the most studied class of organic calcium channel modulators (Kappe, 1998; Jauk et al., 2000) and since their introduction into clinical medicine in 1975, they have become almost indispensable for the treatment of cardiovascular diseases such as hypertension, cardiac arrhythmias, or angina (Janis et al., 1987). These inherently asymmetric compounds have been studied extensively to expand the existing structure-activity relationships and to get further insight into molecular interactions at the receptor-site level (Cho et al., 1989; Atwal et al., 1990; Rovnyak et al., 1992 and Grover et al., 1995).

The title compound (I) is a calcium antagonist and belongs to dihydropyrimidine heterocycles. In this molecule (Fig. 1) the substituted aryl ring is positioned axially, perpendicular to, and nearly bisects the boat-like dihydropyrimidine ring. This is evident as the dihedral angle between the planes of both ring systems is 84.92 (7)°. The 4-aryl substitutent (methoxy group) adopts a synperiplanar position. These features have been found mandatory for optimum calcium channel modulatory activity according to the recently proposed new binding-site model for this class of cardiovascular drugs (Rovnyak et al., 1995; Triggle et al., 1995). The exocyclic ester at C8 adopts a trans orientation with respect to C8—C9 double bond. DHPM's of this type are known to show conformational flexibility, where, the aryl ring and the ester group can rotate and the conformation of dihydropyrimidine ring can change (Kappe et al., 1997; Shishkin et al., 1997). The crystal structure is stabilized by intermolecular C—H···O and N—H···O hydrogen bonds (Fig. 2).

For related literature, see: Atwal et al. (1990, 1991); Cho et al. (1989); Grover et al. (1995); Hurst & Hull (1961); Janis et al. (1987); Jauk et al. (2000); Kappe (1998, 2000); Kappe et al. (1997); Mayer et al. (1999); Rovnyak et al. (1992, 1995); Shishkin et al. (1997); Triggle & Padmanabhan (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the unit cell showing intermolecular C—H···O and N—H···O hydrogen bonding interactions.
Ethyl 3-acetyl-6-methyl-4-(4-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C17H20N2O5F(000) = 704
Mr = 332.35Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.8387 (8) ÅCell parameters from 500 reflections
b = 20.2043 (18) Åθ = 1.0–25.0°
c = 10.0232 (9) ŵ = 0.10 mm1
β = 107.839 (2)°T = 293 K
V = 1703.9 (3) Å3Rectangular, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2369 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ω/2θ scansh = 1010
17507 measured reflectionsk = 2424
3343 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.4822P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.20 e Å3
3343 reflectionsΔρmin = 0.17 e Å3
286 parameters
Crystal data top
C17H20N2O5V = 1703.9 (3) Å3
Mr = 332.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8387 (8) ŵ = 0.10 mm1
b = 20.2043 (18) ÅT = 293 K
c = 10.0232 (9) Å0.3 × 0.2 × 0.1 mm
β = 107.839 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2369 reflections with I > 2σ(I)
17507 measured reflectionsRint = 0.045
3343 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.20 e Å3
3343 reflectionsΔρmin = 0.17 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1807 (3)0.62671 (14)0.4147 (3)0.0578 (7)
H10.258 (3)0.5977 (12)0.434 (2)0.064 (7)*
C20.0648 (3)0.65191 (14)0.5284 (3)0.0610 (7)
H20.062 (3)0.6393 (12)0.620 (3)0.067 (8)*
C30.0503 (3)0.69434 (11)0.5095 (2)0.0467 (6)
C40.0447 (3)0.71195 (11)0.3757 (3)0.0468 (6)
H40.122 (3)0.7428 (12)0.358 (2)0.063 (7)*
C50.0738 (3)0.68632 (11)0.2623 (3)0.0440 (6)
H50.070 (2)0.6976 (10)0.169 (2)0.046 (6)*
C60.1872 (2)0.64294 (10)0.2785 (2)0.0392 (5)
C70.3185 (3)0.61621 (11)0.1535 (2)0.0397 (5)
H70.409 (2)0.6440 (10)0.140 (2)0.041 (6)*
C80.3650 (2)0.54550 (10)0.1719 (2)0.0381 (5)
C90.2724 (2)0.49805 (11)0.1439 (2)0.0399 (5)
C100.1584 (3)0.57494 (10)0.0123 (2)0.0407 (5)
C110.2841 (4)0.75841 (19)0.6132 (4)0.0755 (9)
H11A0.228 (4)0.8003 (16)0.564 (3)0.097 (11)*
H11B0.348 (4)0.7666 (15)0.709 (3)0.089 (10)*
H11C0.340 (4)0.7379 (17)0.553 (4)0.113 (13)*
C120.7234 (4)0.5743 (2)0.2778 (4)0.0732 (9)
H12A0.787 (4)0.6143 (18)0.245 (3)0.110 (12)*
H12B0.785 (5)0.533 (2)0.233 (4)0.135 (15)*
C130.6866 (5)0.5672 (2)0.4278 (4)0.1348 (18)
H13A0.62450.52780.45780.202*
H13B0.78350.5640.45180.202*
H13C0.62720.6050.47350.202*
C140.5045 (3)0.52967 (12)0.2155 (2)0.0438 (5)
C150.2798 (4)0.42479 (13)0.1633 (4)0.0560 (7)
H15A0.297 (4)0.4137 (17)0.246 (4)0.113 (13)*
H15B0.189 (4)0.4038 (15)0.162 (3)0.094 (11)*
H15C0.353 (5)0.4051 (18)0.088 (4)0.130 (15)*
C160.3369 (3)0.67056 (11)0.0735 (2)0.0471 (6)
C170.3006 (4)0.67190 (17)0.2084 (3)0.0591 (7)
H17A0.191 (4)0.6850 (15)0.193 (3)0.098 (11)*
H17B0.308 (4)0.6307 (17)0.251 (3)0.094 (11)*
H17C0.361 (3)0.7043 (15)0.268 (3)0.084 (10)*
O10.1630 (2)0.71530 (9)0.62888 (17)0.0611 (5)
O20.57984 (19)0.58430 (8)0.2372 (2)0.0627 (5)
O30.5508 (2)0.47512 (9)0.2308 (2)0.0711 (6)
O40.06853 (18)0.58291 (8)0.05764 (17)0.0536 (4)
O50.4247 (2)0.71030 (9)0.04514 (19)0.0704 (6)
N10.1531 (2)0.51820 (9)0.0891 (2)0.0438 (5)
H1N0.089 (3)0.4869 (12)0.074 (2)0.059 (7)*
N20.2716 (2)0.62013 (8)0.02432 (18)0.0388 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0586 (16)0.0689 (18)0.0530 (16)0.0169 (14)0.0274 (14)0.0014 (13)
C20.0663 (17)0.080 (2)0.0411 (15)0.0147 (15)0.0236 (14)0.0033 (14)
C30.0484 (14)0.0458 (13)0.0492 (14)0.0001 (11)0.0200 (12)0.0091 (11)
C40.0495 (14)0.0383 (13)0.0563 (16)0.0046 (11)0.0218 (13)0.0014 (11)
C50.0484 (14)0.0408 (13)0.0459 (14)0.0027 (11)0.0190 (12)0.0020 (11)
C60.0405 (12)0.0353 (12)0.0453 (13)0.0049 (10)0.0182 (10)0.0023 (10)
C70.0378 (12)0.0381 (12)0.0475 (14)0.0060 (10)0.0195 (11)0.0030 (10)
C80.0357 (12)0.0391 (12)0.0406 (12)0.0013 (9)0.0134 (10)0.0006 (10)
C90.0364 (12)0.0409 (12)0.0417 (13)0.0002 (10)0.0108 (10)0.0016 (10)
C100.0385 (12)0.0392 (13)0.0461 (13)0.0007 (10)0.0155 (11)0.0017 (10)
C110.066 (2)0.081 (2)0.074 (2)0.0226 (18)0.0129 (19)0.016 (2)
C120.0596 (18)0.082 (2)0.095 (2)0.0158 (18)0.0481 (18)0.017 (2)
C130.137 (4)0.194 (5)0.097 (3)0.079 (3)0.070 (3)0.032 (3)
C140.0412 (13)0.0463 (14)0.0452 (14)0.0026 (11)0.0150 (11)0.0006 (11)
C150.0632 (18)0.0417 (15)0.069 (2)0.0047 (14)0.0292 (17)0.0047 (14)
C160.0428 (13)0.0403 (13)0.0579 (15)0.0024 (11)0.0152 (12)0.0052 (11)
C170.068 (2)0.0549 (18)0.0590 (18)0.0015 (15)0.0254 (16)0.0141 (15)
O10.0598 (11)0.0713 (12)0.0508 (10)0.0136 (9)0.0147 (9)0.0134 (9)
O20.0525 (10)0.0545 (10)0.0973 (14)0.0090 (8)0.0468 (10)0.0080 (10)
O30.0733 (13)0.0509 (11)0.1076 (16)0.0149 (9)0.0551 (12)0.0059 (10)
O40.0513 (10)0.0548 (10)0.0666 (11)0.0061 (8)0.0357 (9)0.0072 (8)
O50.0779 (13)0.0593 (11)0.0818 (13)0.0300 (10)0.0360 (11)0.0210 (10)
N10.0406 (11)0.0401 (11)0.0563 (12)0.0084 (9)0.0231 (10)0.0038 (9)
N20.0385 (10)0.0369 (10)0.0445 (11)0.0051 (8)0.0178 (8)0.0042 (8)
Geometric parameters (Å, º) top
C1—C21.375 (4)C11—H11A1.02 (3)
C1—C61.387 (3)C11—H11B0.97 (3)
C1—H10.96 (2)C11—H11C0.98 (4)
C2—C31.387 (3)C12—C131.444 (5)
C2—H20.95 (3)C12—O21.460 (3)
C3—O11.369 (3)C12—H12A0.98 (4)
C3—C41.374 (3)C12—H12B1.02 (4)
C4—C51.389 (3)C13—H13A0.96
C4—H40.98 (2)C13—H13B0.96
C5—C61.378 (3)C13—H13C0.96
C5—H50.97 (2)C14—O31.201 (3)
C6—C71.523 (3)C14—O21.341 (3)
C7—N21.478 (3)C15—H15A0.91 (4)
C7—C81.513 (3)C15—H15B0.91 (3)
C7—H70.95 (2)C15—H15C0.92 (4)
C8—C91.345 (3)C16—O51.210 (3)
C8—C141.464 (3)C16—N21.409 (3)
C9—N11.391 (3)C16—C171.483 (4)
C9—C151.497 (3)C17—H17A0.97 (3)
C10—O41.221 (2)C17—H17B0.93 (3)
C10—N11.373 (3)C17—H17C0.94 (3)
C10—N21.387 (3)N1—H1N0.89 (3)
C11—O11.426 (3)
C2—C1—C6121.6 (2)C13—C12—O2111.5 (3)
C2—C1—H1117.0 (14)C13—C12—H12A110.8 (19)
C6—C1—H1121.4 (15)O2—C12—H12A104.3 (19)
C1—C2—C3120.5 (2)C13—C12—H12B107 (2)
C1—C2—H2119.7 (15)O2—C12—H12B113 (2)
C3—C2—H2119.8 (15)H12A—C12—H12B111 (3)
O1—C3—C4124.9 (2)C12—C13—H13A109.5
O1—C3—C2116.1 (2)C12—C13—H13B109.5
C4—C3—C2119.0 (2)H13A—C13—H13B109.5
C3—C4—C5119.7 (2)C12—C13—H13C109.5
C3—C4—H4121.8 (14)H13A—C13—H13C109.5
C5—C4—H4118.5 (14)H13B—C13—H13C109.5
C6—C5—C4122.3 (2)O3—C14—O2121.9 (2)
C6—C5—H5120.1 (13)O3—C14—C8126.1 (2)
C4—C5—H5117.5 (13)O2—C14—C8111.97 (19)
C5—C6—C1117.0 (2)C9—C15—H15A113 (2)
C5—C6—C7121.8 (2)C9—C15—H15B112.7 (19)
C1—C6—C7121.2 (2)H15A—C15—H15B107 (3)
N2—C7—C8108.50 (17)C9—C15—H15C112 (2)
N2—C7—C6110.76 (17)H15A—C15—H15C111 (3)
C8—C7—C6113.64 (18)H15B—C15—H15C101 (3)
N2—C7—H7107.0 (12)O5—C16—N2118.2 (2)
C8—C7—H7109.2 (12)O5—C16—C17122.4 (2)
C6—C7—H7107.5 (12)N2—C16—C17119.4 (2)
C9—C8—C14121.9 (2)C16—C17—H17A110.3 (18)
C9—C8—C7116.22 (19)C16—C17—H17B113.6 (19)
C14—C8—C7121.85 (19)H17A—C17—H17B104 (3)
C8—C9—N1117.23 (19)C16—C17—H17C110.7 (17)
C8—C9—C15128.6 (2)H17A—C17—H17C105 (2)
N1—C9—C15114.2 (2)H17B—C17—H17C113 (3)
O4—C10—N1121.0 (2)C3—O1—C11117.6 (2)
O4—C10—N2125.2 (2)C14—O2—C12116.6 (2)
N1—C10—N2113.75 (19)C10—N1—C9124.47 (19)
O1—C11—H11A106.9 (18)C10—N1—H1N114.2 (15)
O1—C11—H11B103.1 (18)C9—N1—H1N117.2 (15)
H11A—C11—H11B112 (3)C10—N2—C16124.65 (18)
O1—C11—H11C110 (2)C10—N2—C7116.39 (17)
H11A—C11—H11C108 (3)C16—N2—C7118.87 (17)
H11B—C11—H11C115 (3)
C6—C1—C2—C30.4 (4)C9—C8—C14—O2179.7 (2)
C1—C2—C3—O1178.3 (2)C7—C8—C14—O20.8 (3)
C1—C2—C3—C41.4 (4)C4—C3—O1—C110.3 (4)
O1—C3—C4—C5178.6 (2)C2—C3—O1—C11179.4 (3)
C2—C3—C4—C51.0 (3)O3—C14—O2—C121.2 (4)
C3—C4—C5—C60.4 (3)C8—C14—O2—C12178.5 (2)
C4—C5—C6—C11.4 (3)C13—C12—O2—C1487.1 (4)
C4—C5—C6—C7178.8 (2)O4—C10—N1—C9164.1 (2)
C2—C1—C6—C51.0 (4)N2—C10—N1—C916.4 (3)
C2—C1—C6—C7178.4 (2)C8—C9—N1—C1026.6 (3)
C5—C6—C7—N222.6 (3)C15—C9—N1—C10153.2 (2)
C1—C6—C7—N2160.2 (2)O4—C10—N2—C1622.0 (3)
C5—C6—C7—C8145.0 (2)N1—C10—N2—C16158.49 (19)
C1—C6—C7—C837.7 (3)O4—C10—N2—C7154.6 (2)
N2—C7—C8—C941.5 (3)N1—C10—N2—C724.9 (3)
C6—C7—C8—C982.2 (2)O5—C16—N2—C10173.8 (2)
N2—C7—C8—C14137.50 (19)C17—C16—N2—C108.2 (3)
C6—C7—C8—C1498.8 (2)O5—C16—N2—C72.7 (3)
C14—C8—C9—N1173.31 (19)C17—C16—N2—C7175.3 (2)
C7—C8—C9—N15.7 (3)C8—C7—N2—C1052.1 (2)
C14—C8—C9—C156.4 (4)C6—C7—N2—C1073.3 (2)
C7—C8—C9—C15174.6 (2)C8—C7—N2—C16131.08 (19)
C9—C8—C14—O30.0 (4)C6—C7—N2—C16103.5 (2)
C7—C8—C14—O3178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O3i0.929 (4)2.515 (4)3.228 (4)133 (2)
C15—H15B···O4ii0.911 (5)2.794 (7)3.553 (4)141 (2)
N1—H1N···O4ii0.892 (6)2.024 (6)2.913 (3)174 (2)
C4—H4···O1iii0.979 (6)2.572 (6)3.310 (3)132 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H20N2O5
Mr332.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8387 (8), 20.2043 (18), 10.0232 (9)
β (°) 107.839 (2)
V3)1703.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17507, 3343, 2369
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.121, 1.10
No. of reflections3343
No. of parameters286
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O3i0.929 (4)2.515 (4)3.228 (4)133 (2)
C15—H15B···O4ii0.911 (5)2.794 (7)3.553 (4)141 (2)
N1—H1N···O4ii0.892 (6)2.024 (6)2.913 (3)174 (2)
C4—H4···O1iii0.979 (6)2.572 (6)3.310 (3)132 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds