Download citation
Download citation
link to html
In the title compound, C22H12N2O4, the two isoindolinyl groups are twisted with respect to the benzene ring, with dihedral angles of 58.15 (7) and 61.32 (7)°; the dihedral angle between the two isoindolinyl groups is 39.45 (6)°. The mol­ecules are linked together by weak C—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037038/xu2298sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037038/xu2298Isup2.hkl
Contains datablock I

CCDC reference: 651058

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.094
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Isoindolinones and their derivatives have been investigated widely due to their profound physiological and chemotherapeutic properties. Many compounds containing the isoindolinone skeleton have shown antiviral, antileukemic, antiinflammatory, antipsychotic and antiulcer properties (Pendrak et al., 1994; De Clerck, 1995). Isoindolinones are useful for the synthesis of various drugs and naturally occurring compounds (Stowers, 1996; Heaney & Shuhaibar, 1995). In this paper, we report the crystal structure of the title compound.

As shown in Fig. 1, the structure determination indicates that the molecule is non-centrosymmetric. Due to steric encumbering, two isoindolinyl moieties are twisted to the benzene ring with dihedral angles of 58.15 (7) and 61.32 (7)°, respectively, similar to 62.31 (6)° found in 2-(2-pyridyl)isoindoline-1,3-dione (Liang & Li, 2007). The dihedral angle between the two isoindolinyl moieties is 39.45 (6)°. The molecules are linked together by weak C—H···O hydrogen bonding (Table 1).

Related literature top

For general background, see: Pendrak et al. (1994); De Clerck (1995); Stowers (1996); Heaney & Shuhaibar (1995). For a related structure, see: Liang & Li (2007).

Experimental top

O-Phenylenediamine (0.11 g, 1 mmol) was dissolved in 5 ml glacial acetic acid, and a solution of phthalic anhydride (0.148 g, 1 mmol) in 10 ml of glacial acetic acid was added. After 30 min, the mixture was diluted with cool water, and then the grey precipitate was separated and then refluxed in dry benzene (20 ml) for 4 h using Dean and Stark apparatus. After solvent was removed under reduced pressure the solid product was obtained. The colorless single crystals of the title compound were obtained by recrystallization from an ethanol solution at room temperature after 2 d.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Isoindolinones and their derivatives have been investigated widely due to their profound physiological and chemotherapeutic properties. Many compounds containing the isoindolinone skeleton have shown antiviral, antileukemic, antiinflammatory, antipsychotic and antiulcer properties (Pendrak et al., 1994; De Clerck, 1995). Isoindolinones are useful for the synthesis of various drugs and naturally occurring compounds (Stowers, 1996; Heaney & Shuhaibar, 1995). In this paper, we report the crystal structure of the title compound.

As shown in Fig. 1, the structure determination indicates that the molecule is non-centrosymmetric. Due to steric encumbering, two isoindolinyl moieties are twisted to the benzene ring with dihedral angles of 58.15 (7) and 61.32 (7)°, respectively, similar to 62.31 (6)° found in 2-(2-pyridyl)isoindoline-1,3-dione (Liang & Li, 2007). The dihedral angle between the two isoindolinyl moieties is 39.45 (6)°. The molecules are linked together by weak C—H···O hydrogen bonding (Table 1).

For general background, see: Pendrak et al. (1994); De Clerck (1995); Stowers (1996); Heaney & Shuhaibar (1995). For a related structure, see: Liang & Li (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXTL-Plus.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level.
2-[2-(1,3-Dioxoisoindolin-2-yl)phenyl]isoindoline-1,3-dione top
Crystal data top
C22H12N2O4F(000) = 760
Mr = 368.34Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9771 reflections
a = 10.7765 (10) Åθ = 2.2–26.0°
b = 16.9259 (17) ŵ = 0.10 mm1
c = 10.8518 (10) ÅT = 293 K
β = 116.780 (1)°Block, colourless
V = 1767.1 (3) Å30.35 × 0.33 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2553 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
φ and ω scansh = 913
9771 measured reflectionsk = 1620
3476 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
3476 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H12N2O4V = 1767.1 (3) Å3
Mr = 368.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7765 (10) ŵ = 0.10 mm1
b = 16.9259 (17) ÅT = 293 K
c = 10.8518 (10) Å0.35 × 0.33 × 0.28 mm
β = 116.780 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2553 reflections with I > 2σ(I)
9771 measured reflectionsRint = 0.050
3476 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.95Δρmax = 0.20 e Å3
3476 reflectionsΔρmin = 0.19 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45581 (11)0.01749 (7)0.14315 (11)0.0365 (3)
O20.07744 (11)0.13152 (8)0.15937 (12)0.0437 (4)
O30.74820 (11)0.10013 (7)0.38688 (11)0.0322 (3)
O40.34849 (12)0.24241 (7)0.14859 (13)0.0411 (3)
N10.28632 (13)0.07596 (8)0.18964 (12)0.0264 (3)
N20.53713 (12)0.16715 (8)0.29363 (13)0.0257 (3)
C10.34000 (17)0.04363 (10)0.10366 (16)0.0277 (4)
C20.14769 (16)0.10141 (10)0.11178 (16)0.0296 (4)
C30.66539 (16)0.14316 (10)0.29978 (16)0.0252 (4)
C40.46318 (17)0.21605 (10)0.17971 (16)0.0296 (4)
C110.36534 (16)0.09109 (10)0.33430 (15)0.0250 (4)
C120.48509 (16)0.13677 (10)0.38461 (16)0.0251 (4)
C130.55851 (17)0.15123 (10)0.52504 (16)0.0312 (4)
H13A0.63890.18170.55870.037*
C140.51259 (18)0.12054 (11)0.61507 (17)0.0339 (4)
H14A0.56190.13040.70920.041*
C150.39354 (18)0.07529 (11)0.56535 (16)0.0336 (4)
H15A0.36290.05440.62610.040*
C160.31966 (17)0.06088 (10)0.42531 (16)0.0301 (4)
H16A0.23890.03070.39210.036*
C210.22647 (16)0.05014 (10)0.03928 (15)0.0268 (4)
C220.11188 (16)0.08397 (10)0.03443 (16)0.0283 (4)
C230.00825 (18)0.09885 (11)0.15363 (17)0.0352 (4)
H23A0.08560.12110.15050.042*
C240.00952 (18)0.07944 (11)0.27824 (17)0.0374 (4)
H24A0.08900.08920.36020.045*
C250.10523 (18)0.04581 (11)0.28296 (17)0.0388 (5)
H25A0.10150.03320.36800.047*
C260.22624 (18)0.03050 (11)0.16251 (16)0.0347 (4)
H26A0.30370.00790.16520.042*
C310.67265 (16)0.18160 (10)0.18068 (15)0.0270 (4)
C320.55298 (16)0.22536 (10)0.10967 (16)0.0295 (4)
C330.53101 (18)0.26772 (11)0.00715 (18)0.0392 (5)
H33A0.45050.29730.05460.047*
C340.63355 (19)0.26451 (12)0.05105 (18)0.0429 (5)
H34A0.62140.29210.12980.051*
C350.75357 (19)0.22099 (11)0.02044 (18)0.0388 (5)
H35A0.82110.22030.01070.047*
C360.77526 (17)0.17830 (11)0.13755 (17)0.0327 (4)
H36A0.85560.14870.18510.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0277 (7)0.0500 (8)0.0315 (6)0.0109 (6)0.0132 (5)0.0002 (6)
O20.0273 (7)0.0680 (10)0.0370 (7)0.0069 (6)0.0156 (6)0.0122 (6)
O30.0240 (6)0.0402 (8)0.0282 (6)0.0050 (6)0.0082 (5)0.0051 (5)
O40.0267 (7)0.0422 (8)0.0558 (8)0.0104 (6)0.0199 (6)0.0156 (6)
N10.0210 (7)0.0358 (8)0.0233 (7)0.0002 (6)0.0107 (6)0.0034 (6)
N20.0197 (7)0.0312 (8)0.0268 (7)0.0019 (6)0.0112 (6)0.0054 (6)
C10.0277 (9)0.0297 (10)0.0280 (9)0.0000 (8)0.0145 (8)0.0010 (7)
C20.0228 (9)0.0361 (11)0.0305 (9)0.0017 (8)0.0124 (8)0.0034 (8)
C30.0198 (8)0.0288 (10)0.0254 (8)0.0027 (7)0.0087 (7)0.0018 (7)
C40.0247 (9)0.0293 (10)0.0339 (9)0.0008 (8)0.0123 (8)0.0039 (8)
C110.0224 (9)0.0304 (10)0.0223 (8)0.0031 (7)0.0101 (7)0.0011 (7)
C120.0225 (8)0.0281 (9)0.0260 (8)0.0024 (7)0.0122 (7)0.0019 (7)
C130.0247 (9)0.0353 (11)0.0299 (9)0.0026 (8)0.0090 (8)0.0035 (8)
C140.0342 (10)0.0432 (12)0.0220 (8)0.0019 (9)0.0107 (8)0.0014 (8)
C150.0367 (10)0.0413 (11)0.0286 (9)0.0010 (9)0.0197 (8)0.0039 (8)
C160.0267 (9)0.0343 (11)0.0331 (9)0.0029 (8)0.0168 (8)0.0006 (8)
C210.0251 (9)0.0294 (10)0.0252 (8)0.0009 (7)0.0108 (7)0.0002 (7)
C220.0244 (9)0.0328 (10)0.0273 (9)0.0019 (8)0.0113 (7)0.0035 (7)
C230.0247 (9)0.0423 (12)0.0329 (9)0.0027 (8)0.0080 (8)0.0035 (8)
C240.0338 (10)0.0401 (11)0.0276 (9)0.0002 (9)0.0043 (8)0.0007 (8)
C250.0441 (11)0.0454 (12)0.0243 (9)0.0004 (9)0.0131 (9)0.0043 (8)
C260.0366 (10)0.0402 (11)0.0294 (9)0.0046 (9)0.0167 (8)0.0024 (8)
C310.0240 (9)0.0300 (10)0.0271 (8)0.0024 (7)0.0117 (7)0.0002 (7)
C320.0245 (9)0.0335 (10)0.0309 (9)0.0004 (8)0.0127 (8)0.0041 (8)
C330.0325 (10)0.0434 (12)0.0395 (10)0.0044 (9)0.0143 (9)0.0137 (9)
C340.0461 (12)0.0509 (13)0.0350 (10)0.0047 (10)0.0214 (9)0.0104 (9)
C350.0397 (11)0.0485 (13)0.0373 (10)0.0071 (9)0.0253 (9)0.0013 (9)
C360.0278 (9)0.0378 (11)0.0340 (9)0.0005 (8)0.0152 (8)0.0010 (8)
Geometric parameters (Å, º) top
O1—C11.2063 (18)C15—H15A0.9300
O2—C21.2050 (18)C16—H16A0.9300
O3—C31.2083 (18)C21—C261.377 (2)
O4—C41.2101 (18)C21—C221.384 (2)
N1—C11.4110 (19)C22—C231.380 (2)
N1—C21.412 (2)C23—C241.386 (2)
N1—C111.4320 (18)C23—H23A0.9300
N2—C41.400 (2)C24—C251.383 (2)
N2—C31.4131 (19)C24—H24A0.9300
N2—C121.4328 (19)C25—C261.393 (2)
C1—C211.485 (2)C25—H25A0.9300
C2—C221.484 (2)C26—H26A0.9300
C3—C311.480 (2)C31—C321.382 (2)
C4—C321.484 (2)C31—C361.383 (2)
C11—C161.385 (2)C32—C331.381 (2)
C11—C121.388 (2)C33—C341.388 (2)
C12—C131.386 (2)C33—H33A0.9300
C13—C141.380 (2)C34—C351.383 (2)
C13—H13A0.9300C34—H34A0.9300
C14—C151.378 (2)C35—C361.387 (2)
C14—H14A0.9300C35—H35A0.9300
C15—C161.383 (2)C36—H36A0.9300
C1—N1—C2111.16 (13)C26—C21—C22121.72 (15)
C1—N1—C11125.16 (13)C26—C21—C1129.55 (15)
C2—N1—C11123.21 (12)C22—C21—C1108.68 (13)
C4—N2—C3111.54 (12)C23—C22—C21121.09 (15)
C4—N2—C12125.22 (12)C23—C22—C2130.42 (15)
C3—N2—C12122.86 (13)C21—C22—C2108.45 (14)
O1—C1—N1125.04 (14)C22—C23—C24117.67 (16)
O1—C1—C21129.19 (15)C22—C23—H23A121.2
N1—C1—C21105.77 (13)C24—C23—H23A121.2
O2—C2—N1124.91 (15)C25—C24—C23121.19 (16)
O2—C2—C22129.15 (15)C25—C24—H24A119.4
N1—C2—C22105.93 (13)C23—C24—H24A119.4
O3—C3—N2124.90 (14)C24—C25—C26121.09 (16)
O3—C3—C31129.57 (14)C24—C25—H25A119.5
N2—C3—C31105.53 (13)C26—C25—H25A119.5
O4—C4—N2124.59 (15)C21—C26—C25117.24 (16)
O4—C4—C32129.63 (15)C21—C26—H26A121.4
N2—C4—C32105.77 (13)C25—C26—H26A121.4
C16—C11—C12119.44 (14)C32—C31—C36121.38 (15)
C16—C11—N1119.27 (14)C32—C31—C3108.62 (13)
C12—C11—N1121.28 (13)C36—C31—C3130.00 (15)
C13—C12—C11119.99 (14)C33—C32—C31121.41 (15)
C13—C12—N2119.17 (14)C33—C32—C4130.07 (15)
C11—C12—N2120.81 (13)C31—C32—C4108.52 (14)
C14—C13—C12120.17 (15)C32—C33—C34117.47 (16)
C14—C13—H13A119.9C32—C33—H33A121.3
C12—C13—H13A119.9C34—C33—H33A121.3
C15—C14—C13119.96 (15)C35—C34—C33121.09 (16)
C15—C14—H14A120.0C35—C34—H34A119.5
C13—C14—H14A120.0C33—C34—H34A119.5
C14—C15—C16120.11 (15)C34—C35—C36121.35 (16)
C14—C15—H15A119.9C34—C35—H35A119.3
C16—C15—H15A119.9C36—C35—H35A119.3
C15—C16—C11120.33 (15)C31—C36—C35117.31 (16)
C15—C16—H16A119.8C31—C36—H36A121.3
C11—C16—H16A119.8C35—C36—H36A121.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O4i0.932.393.321 (2)179
C24—H24A···O3ii0.932.513.405 (2)161
C26—H26A···O1iii0.932.533.434 (2)164
C34—H34A···O2iv0.932.483.410 (2)177
C36—H36A···O2v0.932.553.255 (2)133
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1, y, z1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H12N2O4
Mr368.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.7765 (10), 16.9259 (17), 10.8518 (10)
β (°) 116.780 (1)
V3)1767.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.33 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9771, 3476, 2553
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 0.95
No. of reflections3476
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXTL-Plus.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O4i0.932.393.321 (2)179
C24—H24A···O3ii0.932.513.405 (2)161
C26—H26A···O1iii0.932.533.434 (2)164
C34—H34A···O2iv0.932.483.410 (2)177
C36—H36A···O2v0.932.553.255 (2)133
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1, y, z1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds