Download citation
Download citation
link to html
In the title compound, C14H17NO4, the cyclo­hexane ring displays a chair conformation. The crystal packing is stabilized by O—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039943/xu2309sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039943/xu2309Isup2.hkl
Contains datablock I

CCDC reference: 660305

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.069
  • wR factor = 0.205
  • Data-to-parameter ratio = 7.6

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.124 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.12 PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.59 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 300 Ang. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.20 From the CIF: _reflns_number_total 1321 Count of symmetry unique reflns 1344 Completeness (_total/calc) 98.29% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C12 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Beta-hydroxy ketone can be transferred to a large variety of important product. The title compound, (I), is an very important intermediate for the construction of α,β-unsaturated carbonyl compound, which are important synthetic building blocks for the construction of many natural products (Basavaiah et al., 1996). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The benzene ring and nitro group is slightly non-planar, with a dihedral angle of 4.14 (8)°. The dihedral angle between the benzene and O4/C8/C9/C10 planes is 11.1 (3)°. The crystal packing is stabilized by O—H···O hydrogen bonding (Table 1).

Related literature top

For general background, see: Basavaiah et al. (1996).

Experimental top

To a solution of 4-nitrobenzaldehyde (0.5 mmol) and 4-methylcyclohexanone (5 mmol) in anhydrous dicloromethane (2 ml) was added LN-phenylpyrrolidine-2-carboxamide (19 mg, 0.1 mmol). The resulting mixture was stirred at 273 K for 24 h. The reaction mixture was treated with saturated ammonium chloride solution and the aqueous layer was extracted with ethyl acetate, dried over anhydrous MgSO4. After filtration and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel to give the title compound. Colourless single crystals of the title compound were obtained by recrystallization from an ethanol solution.

Refinement top

Hydroxy and methyl H atoms were placed in calculated positions with O—H = 0.82 and C—H = 0.96 Å, and torsion angles were refined, Uiso(H) = 1.5Ueq(O,C). Other H atoms were placed in calculated positions with C—H = 0.93 to 0.98 Å and refined using a riding model with Uiso(H) =1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Structure description top

Beta-hydroxy ketone can be transferred to a large variety of important product. The title compound, (I), is an very important intermediate for the construction of α,β-unsaturated carbonyl compound, which are important synthetic building blocks for the construction of many natural products (Basavaiah et al., 1996). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The benzene ring and nitro group is slightly non-planar, with a dihedral angle of 4.14 (8)°. The dihedral angle between the benzene and O4/C8/C9/C10 planes is 11.1 (3)°. The crystal packing is stabilized by O—H···O hydrogen bonding (Table 1).

For general background, see: Basavaiah et al. (1996).

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
2-[Hydroxy(4-nitrophenyl)methyl]-4-methylcyclohexanone top
Crystal data top
C14H17NO4F(000) = 280
Mr = 263.29Dx = 1.283 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 28 reflections
a = 9.917 (3) Åθ = 4.9–9.2°
b = 6.927 (3) ŵ = 0.09 mm1
c = 10.518 (3) ÅT = 293 K
β = 109.35 (3)°Block, colourless
V = 681.7 (4) Å30.25 × 0.20 × 0.18 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.124
Radiation source: fine-focus sealed tubeθmax = 25.2°, θmin = 2.0°
Graphite monochromatorh = 110
ω/2θ scansk = 88
2439 measured reflectionsl = 1112
1321 independent reflections3 standard reflections every 300 reflections
773 reflections with I > 2σ(I) intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1226P)2]
where P = (Fo2 + 2Fc2)/3
1321 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C14H17NO4V = 681.7 (4) Å3
Mr = 263.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.917 (3) ŵ = 0.09 mm1
b = 6.927 (3) ÅT = 293 K
c = 10.518 (3) Å0.25 × 0.20 × 0.18 mm
β = 109.35 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.124
2439 measured reflections3 standard reflections every 300 reflections
1321 independent reflections intensity decay: 0.6%
773 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.205H-atom parameters constrained
S = 0.97Δρmax = 0.28 e Å3
1321 reflectionsΔρmin = 0.22 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3277 (6)0.0005 (10)0.9818 (5)0.0900 (17)
O20.2949 (8)0.2523 (11)1.0846 (6)0.112 (2)
O30.4801 (5)0.7878 (7)0.6164 (5)0.0666 (12)
H30.55620.73800.66050.100*
O40.2824 (6)1.0356 (8)0.3885 (5)0.0797 (15)
N0.3154 (6)0.1751 (11)0.9901 (5)0.0728 (19)
C10.3416 (7)0.6009 (11)0.7890 (6)0.0640 (18)
H10.34130.73480.79570.077*
C20.3250 (7)0.4906 (10)0.8923 (6)0.0621 (17)
H20.31140.54780.96710.075*
C30.3294 (6)0.2947 (11)0.8807 (6)0.0546 (15)
C40.3480 (7)0.2079 (9)0.7711 (6)0.0615 (18)
H40.35240.07410.76640.074*
C50.3602 (7)0.3203 (10)0.6679 (6)0.0581 (16)
H50.36960.26160.59170.070*
C60.3587 (6)0.5168 (9)0.6757 (5)0.0493 (14)
C70.3760 (6)0.6408 (9)0.5629 (6)0.0491 (14)
H70.40630.55940.50110.059*
C80.2362 (6)0.7441 (9)0.4842 (6)0.0562 (16)
H80.21120.83090.54650.067*
C90.2614 (6)0.8666 (10)0.3738 (6)0.0573 (16)
C100.2588 (9)0.7609 (13)0.2488 (7)0.078 (2)
H10A0.34510.68420.26800.094*
H10B0.25810.85390.17970.094*
C110.1309 (8)0.6310 (13)0.1962 (6)0.0726 (19)
H11A0.13760.55920.11940.087*
H11B0.04490.70900.16600.087*
C120.1203 (6)0.4908 (11)0.3032 (6)0.0654 (17)
H120.20880.41520.33320.078*
C130.1114 (6)0.6068 (11)0.4240 (6)0.0636 (17)
H13A0.02350.68100.39620.076*
H13B0.10670.51750.49350.076*
C140.0036 (9)0.3504 (14)0.2514 (9)0.093 (3)
H14A0.00540.28060.17570.140*
H14B0.09210.42060.22400.140*
H14C0.00250.26130.32160.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.120 (4)0.083 (4)0.070 (3)0.017 (3)0.035 (3)0.020 (3)
O20.166 (6)0.118 (5)0.080 (4)0.025 (5)0.078 (4)0.025 (4)
O30.065 (2)0.069 (3)0.067 (3)0.009 (2)0.025 (2)0.009 (2)
O40.104 (4)0.053 (3)0.078 (3)0.001 (3)0.024 (3)0.013 (3)
N0.086 (4)0.089 (6)0.050 (3)0.005 (3)0.031 (3)0.022 (3)
C10.080 (4)0.063 (4)0.055 (4)0.017 (3)0.031 (3)0.007 (3)
C20.084 (4)0.066 (5)0.045 (3)0.008 (4)0.032 (3)0.008 (3)
C30.053 (3)0.068 (5)0.044 (3)0.004 (3)0.018 (3)0.012 (3)
C40.076 (4)0.051 (4)0.057 (4)0.005 (3)0.022 (3)0.008 (3)
C50.080 (4)0.054 (4)0.047 (3)0.007 (3)0.031 (3)0.002 (3)
C60.054 (3)0.051 (4)0.048 (3)0.002 (3)0.023 (3)0.004 (3)
C70.059 (3)0.045 (3)0.049 (3)0.004 (3)0.026 (3)0.005 (3)
C80.073 (4)0.053 (4)0.051 (3)0.009 (3)0.033 (3)0.005 (3)
C90.066 (4)0.059 (5)0.050 (3)0.009 (3)0.023 (3)0.015 (3)
C100.106 (5)0.090 (6)0.054 (4)0.017 (5)0.047 (4)0.006 (4)
C110.081 (4)0.085 (5)0.052 (4)0.006 (4)0.022 (3)0.005 (4)
C120.062 (3)0.070 (5)0.062 (4)0.006 (4)0.020 (3)0.003 (3)
C130.063 (4)0.073 (5)0.059 (4)0.006 (3)0.027 (3)0.017 (3)
C140.083 (5)0.085 (6)0.105 (6)0.022 (4)0.022 (4)0.009 (5)
Geometric parameters (Å, º) top
O1—N1.229 (8)C8—C131.523 (9)
O2—N1.204 (8)C8—C91.524 (8)
O3—C71.426 (8)C8—H80.9800
O3—H30.8200C9—C101.498 (9)
O4—C91.190 (9)C10—C111.503 (11)
N—C31.461 (8)C10—H10A0.9700
C1—C21.382 (9)C10—H10B0.9700
C1—C61.387 (8)C11—C121.516 (9)
C1—H10.9300C11—H11A0.9700
C2—C31.364 (10)C11—H11B0.9700
C2—H20.9300C12—C141.519 (10)
C3—C41.366 (9)C12—C131.531 (9)
C4—C51.373 (9)C12—H120.9800
C4—H40.9300C13—H13A0.9700
C5—C61.365 (9)C13—H13B0.9700
C5—H50.9300C14—H14A0.9600
C6—C71.520 (7)C14—H14B0.9600
C7—C81.535 (8)C14—H14C0.9600
C7—H70.9800
C7—O3—H3109.5O4—C9—C10123.1 (6)
O2—N—O1123.1 (6)O4—C9—C8120.9 (6)
O2—N—C3119.0 (7)C10—C9—C8116.0 (6)
O1—N—C3117.9 (6)C9—C10—C11112.5 (5)
C2—C1—C6121.6 (7)C9—C10—H10A109.1
C2—C1—H1119.2C11—C10—H10A109.1
C6—C1—H1119.2C9—C10—H10B109.1
C3—C2—C1117.7 (6)C11—C10—H10B109.1
C3—C2—H2121.2H10A—C10—H10B107.8
C1—C2—H2121.2C10—C11—C12111.6 (5)
C2—C3—C4122.0 (6)C10—C11—H11A109.3
C2—C3—N118.6 (6)C12—C11—H11A109.3
C4—C3—N119.4 (6)C10—C11—H11B109.3
C3—C4—C5119.4 (6)C12—C11—H11B109.3
C3—C4—H4120.3H11A—C11—H11B108.0
C5—C4—H4120.3C11—C12—C14113.0 (6)
C6—C5—C4120.8 (6)C11—C12—C13108.5 (6)
C6—C5—H5119.6C14—C12—C13111.9 (5)
C4—C5—H5119.6C11—C12—H12107.8
C5—C6—C1118.6 (6)C14—C12—H12107.8
C5—C6—C7120.7 (5)C13—C12—H12107.8
C1—C6—C7120.8 (6)C8—C13—C12114.3 (4)
O3—C7—C6110.5 (5)C8—C13—H13A108.7
O3—C7—C8106.6 (5)C12—C13—H13A108.7
C6—C7—C8111.6 (4)C8—C13—H13B108.7
O3—C7—H7109.4C12—C13—H13B108.7
C6—C7—H7109.4H13A—C13—H13B107.6
C8—C7—H7109.4C12—C14—H14A109.5
C13—C8—C9110.3 (5)C12—C14—H14B109.5
C13—C8—C7113.4 (5)H14A—C14—H14B109.5
C9—C8—C7108.9 (4)C12—C14—H14C109.5
C13—C8—H8108.0H14A—C14—H14C109.5
C9—C8—H8108.0H14B—C14—H14C109.5
C7—C8—H8108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.822.312.947 (7)135
O3—H3···O2ii0.822.603.206 (8)132
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC14H17NO4
Mr263.29
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.917 (3), 6.927 (3), 10.518 (3)
β (°) 109.35 (3)
V3)681.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2439, 1321, 773
Rint0.124
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.205, 0.97
No. of reflections1321
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.822.312.947 (7)135
O3—H3···O2ii0.822.603.206 (8)132
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds