Download citation
Download citation
link to html
The FeII atom in the title complex, [Fe(NCS)2(C10H8N2)2], is coordinated by four N atoms of two 2,2′-bipyridine ligands and two N atoms of two SCN ligands. This mononuclear complex is further extended into a supra­molecular network structure via nonclassical hydrogen bonds between C—H groups of 2,2′-bipyridine and N and S atoms of neighbouring SCN ligands and π–π stacking inter­actions with a centroid-to-centroid distance of 3.619 (7) Å (symmetry code: 1 − x, 2 − y, 2 − z).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043486/at2391sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043486/at2391Isup2.hkl
Contains datablock I

CCDC reference: 1296492

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.028
  • wR factor = 0.104
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for S1 - C21 .. 7.46 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Fe1 - N6 .. 10.39 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S2 - C22 .. 5.44 su PLAT230_ALERT_2_C Hirshfeld Test Diff for N5 - C21 .. 5.73 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Fe1 - N1 .. 6.72 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Fe1 - N2 .. 6.79 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Fe1 - N4 .. 5.65 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Fe1 - N5 .. 7.22 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N5 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C21 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C22
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (2) 2.24
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Research on organic-inorganic hybrid materials has attracted much attention owing to their applications in areas including catalysis, materials chemistry and biochemistry (Hill, 1998; Banglin et al., 2001; Ferey, 2001). Weak interactions play an important role in these compounds and many frameworks are linked by different kinds of weak interactions, such as hydrogen bonds and π-π stacking. Several reported crystal structures of metal complexes incorporating the phenanthroline, quinoline and pyridyl ligand have shown the existence of π-π stacking between neighbouring aromatic rings in these structures (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I), and the crystal struture is similar with the structures recently reported (Zhong et al., 2007a,b,c).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six-coordinate environment of the Fe atom is completed by the four N atoms of two 2,2'-bipyridyl ligands and two N atoms of two SCN- ligands (Table 1). The Fe—N bonds [average 2.1654 (15) Å] for the 2,2'-bipyridyl ligands are somewhat greater than the Fe—N bonds [average 2.0769 (18) Å] for the SCN- ligands. The two 2,2'-bipyridyl ligands are nearly perpendicular to each other, with a dihedral angle of 105.4 (3) °.

In the crystal structure, C—H···S and C—H···N non-classical hydrogen bonds between C—H groups of 2,2'-bipyridyl and N and S atoms of neighbouring SCN- ligands, with one C···S and two C···N distances of 3.736 (2), 3.146 (3) and 3.158 (3) Å, respectively, generate a layered hydrogen-bonded network (Table 2). The non-classical hydrogen-bonding interactions and π-π stacking interactions with centroid-centroid distance of 3.619 (7) Å [symmetry code: 1 - x, 2 - y, 2 - z] link the mononuclear complex into a supramolecular network structure (Fig. 2).

Related literature top

For general background, see: Banglin et al. (2001); Ferey (2001); Hill (1998); Li et al. (2005); Liu et al. (2004); Pan & Xu (2004); Wu et al. (2003); Zhong et al. (2007a,b,c). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound (I) were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Potassium ferrocyanide trihydrate (84.5 mg, 0.2 mmol), 2,2'-bipyridyl (62.4 mg, 0.4 mmol), potassium thiocyanate (38.9 mg, 0.4 mmol) and distilled water (3 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 423 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colourless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Research on organic-inorganic hybrid materials has attracted much attention owing to their applications in areas including catalysis, materials chemistry and biochemistry (Hill, 1998; Banglin et al., 2001; Ferey, 2001). Weak interactions play an important role in these compounds and many frameworks are linked by different kinds of weak interactions, such as hydrogen bonds and π-π stacking. Several reported crystal structures of metal complexes incorporating the phenanthroline, quinoline and pyridyl ligand have shown the existence of π-π stacking between neighbouring aromatic rings in these structures (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I), and the crystal struture is similar with the structures recently reported (Zhong et al., 2007a,b,c).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six-coordinate environment of the Fe atom is completed by the four N atoms of two 2,2'-bipyridyl ligands and two N atoms of two SCN- ligands (Table 1). The Fe—N bonds [average 2.1654 (15) Å] for the 2,2'-bipyridyl ligands are somewhat greater than the Fe—N bonds [average 2.0769 (18) Å] for the SCN- ligands. The two 2,2'-bipyridyl ligands are nearly perpendicular to each other, with a dihedral angle of 105.4 (3) °.

In the crystal structure, C—H···S and C—H···N non-classical hydrogen bonds between C—H groups of 2,2'-bipyridyl and N and S atoms of neighbouring SCN- ligands, with one C···S and two C···N distances of 3.736 (2), 3.146 (3) and 3.158 (3) Å, respectively, generate a layered hydrogen-bonded network (Table 2). The non-classical hydrogen-bonding interactions and π-π stacking interactions with centroid-centroid distance of 3.619 (7) Å [symmetry code: 1 - x, 2 - y, 2 - z] link the mononuclear complex into a supramolecular network structure (Fig. 2).

For general background, see: Banglin et al. (2001); Ferey (2001); Hill (1998); Li et al. (2005); Liu et al. (2004); Pan & Xu (2004); Wu et al. (2003); Zhong et al. (2007a,b,c). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Bis(2,2'-bipyridine-κN,N')bis(thiocyanato-κN)iron(II) top
Crystal data top
[Fe(NCS)2(C10H8N2)2]F(000) = 1984
Mr = 484.38Dx = 1.463 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11611 reflections
a = 16.087 (3) Åθ = 2.4–27.5°
b = 16.0117 (11) ŵ = 0.90 mm1
c = 17.0781 (12) ÅT = 273 K
V = 4399.1 (9) Å3Block, colourless
Z = 80.36 × 0.34 × 0.22 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4607 independent reflections
Radiation source: fine-focus sealed tube3440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.738, Tmax = 0.827k = 2020
28231 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.3898P]
where P = (Fo2 + 2Fc2)/3
4607 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe(NCS)2(C10H8N2)2]V = 4399.1 (9) Å3
Mr = 484.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.087 (3) ŵ = 0.90 mm1
b = 16.0117 (11) ÅT = 273 K
c = 17.0781 (12) Å0.36 × 0.34 × 0.22 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4607 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3440 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.827Rint = 0.023
28231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
4607 reflectionsΔρmin = 0.31 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.702218 (14)0.384015 (15)0.000737 (13)0.04495 (11)
S10.57506 (4)0.51147 (5)0.22505 (4)0.0891 (2)
S20.51114 (4)0.22577 (4)0.15958 (4)0.08023 (19)
N10.80962 (9)0.46072 (9)0.02958 (10)0.0536 (4)
N20.69900 (9)0.48321 (9)0.08364 (9)0.0541 (4)
N30.79903 (8)0.30887 (10)0.05481 (9)0.0542 (4)
N40.72299 (9)0.28352 (9)0.08241 (9)0.0513 (3)
N50.62928 (11)0.44614 (11)0.08248 (11)0.0705 (5)
N60.60985 (10)0.31801 (10)0.05743 (11)0.0667 (4)
C10.86327 (13)0.44587 (14)0.08809 (12)0.0700 (5)
H10.85450.39920.11940.084*
C20.93059 (14)0.49603 (17)0.10431 (14)0.0861 (7)
H20.96650.48370.14540.103*
C30.94281 (14)0.56411 (17)0.05820 (16)0.0880 (7)
H30.98750.59960.06780.106*
C40.88890 (15)0.58084 (16)0.00311 (13)0.0759 (6)
H40.89680.62760.03460.091*
C50.82295 (12)0.52690 (11)0.01694 (11)0.0544 (4)
C60.76284 (11)0.53793 (11)0.08202 (10)0.0526 (4)
C70.77061 (13)0.59913 (14)0.13863 (12)0.0693 (5)
H70.81580.63530.13790.083*
C80.71093 (15)0.60623 (16)0.19610 (14)0.0821 (7)
H80.71620.64660.23490.098*
C90.64395 (15)0.55372 (15)0.19585 (13)0.0786 (6)
H90.60190.55930.23290.094*
C100.64025 (13)0.49220 (13)0.13928 (12)0.0653 (5)
H100.59540.45550.13960.078*
C110.83790 (13)0.32758 (13)0.12300 (12)0.0674 (5)
H110.81680.37090.15330.081*
C120.90694 (15)0.28565 (16)0.14962 (15)0.0832 (7)
H120.93170.29970.19700.100*
C130.93838 (14)0.22198 (17)0.10378 (18)0.0909 (8)
H130.98540.19270.11970.109*
C140.89971 (13)0.20211 (15)0.03439 (16)0.0756 (6)
H140.92070.15960.00290.091*
C150.82893 (11)0.24598 (12)0.01150 (11)0.0550 (4)
C160.78122 (11)0.22718 (11)0.06158 (12)0.0545 (4)
C170.79405 (13)0.15627 (14)0.10565 (14)0.0735 (6)
H170.83490.11810.09140.088*
C180.74578 (17)0.14220 (15)0.17115 (14)0.0812 (7)
H180.75370.09420.20080.097*
C190.68650 (14)0.19881 (14)0.19234 (14)0.0723 (6)
H190.65340.19020.23630.087*
C200.67727 (12)0.26850 (12)0.14697 (12)0.0607 (5)
H200.63740.30760.16140.073*
C210.60591 (11)0.47321 (11)0.14205 (13)0.0589 (5)
C220.56819 (11)0.28039 (11)0.10015 (12)0.0540 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.04535 (16)0.04334 (17)0.04615 (18)0.00323 (10)0.00046 (9)0.00113 (10)
S10.0815 (4)0.1094 (5)0.0763 (4)0.0105 (3)0.0249 (3)0.0132 (3)
S20.0866 (4)0.0743 (4)0.0797 (4)0.0121 (3)0.0266 (3)0.0007 (3)
N10.0555 (8)0.0551 (9)0.0501 (8)0.0065 (7)0.0031 (7)0.0005 (7)
N20.0557 (8)0.0530 (8)0.0535 (9)0.0036 (7)0.0025 (7)0.0036 (7)
N30.0517 (8)0.0587 (9)0.0523 (9)0.0046 (6)0.0025 (7)0.0072 (7)
N40.0515 (8)0.0495 (8)0.0528 (9)0.0019 (6)0.0016 (7)0.0019 (6)
N50.0783 (11)0.0576 (10)0.0756 (12)0.0020 (8)0.0177 (9)0.0028 (9)
N60.0614 (9)0.0605 (9)0.0781 (11)0.0086 (8)0.0105 (9)0.0036 (8)
C10.0714 (12)0.0796 (14)0.0588 (12)0.0141 (11)0.0133 (10)0.0054 (10)
C20.0759 (14)0.114 (2)0.0682 (15)0.0253 (14)0.0221 (12)0.0036 (14)
C30.0738 (14)0.0989 (18)0.0913 (17)0.0338 (13)0.0144 (13)0.0035 (14)
C40.0699 (14)0.0731 (14)0.0848 (17)0.0226 (12)0.0003 (11)0.0058 (11)
C50.0526 (10)0.0528 (10)0.0578 (11)0.0057 (8)0.0061 (8)0.0040 (8)
C60.0529 (9)0.0526 (10)0.0524 (10)0.0002 (8)0.0086 (8)0.0007 (8)
C70.0687 (12)0.0690 (13)0.0704 (14)0.0076 (10)0.0090 (11)0.0145 (11)
C80.0902 (17)0.0883 (17)0.0677 (15)0.0053 (13)0.0026 (12)0.0289 (13)
C90.0847 (15)0.0872 (15)0.0640 (13)0.0010 (13)0.0134 (11)0.0174 (12)
C100.0684 (12)0.0655 (12)0.0620 (12)0.0058 (10)0.0105 (10)0.0081 (9)
C110.0722 (12)0.0690 (13)0.0611 (12)0.0089 (10)0.0102 (10)0.0084 (10)
C120.0768 (14)0.0893 (17)0.0836 (17)0.0152 (13)0.0283 (13)0.0204 (14)
C130.0591 (13)0.0988 (19)0.115 (2)0.0037 (12)0.0204 (14)0.0276 (17)
C140.0565 (11)0.0773 (14)0.0929 (17)0.0088 (10)0.0021 (12)0.0125 (13)
C150.0467 (9)0.0546 (10)0.0638 (12)0.0002 (8)0.0078 (8)0.0097 (8)
C160.0532 (9)0.0533 (10)0.0569 (11)0.0000 (8)0.0102 (8)0.0007 (8)
C170.0804 (14)0.0623 (12)0.0779 (15)0.0136 (10)0.0085 (11)0.0067 (11)
C180.1001 (18)0.0680 (14)0.0754 (16)0.0067 (13)0.0120 (14)0.0194 (11)
C190.0844 (14)0.0712 (13)0.0613 (13)0.0083 (11)0.0001 (11)0.0125 (10)
C200.0624 (10)0.0608 (11)0.0587 (12)0.0039 (9)0.0014 (9)0.0042 (9)
C210.0508 (9)0.0505 (10)0.0753 (14)0.0006 (8)0.0090 (9)0.0096 (9)
C220.0496 (9)0.0500 (9)0.0623 (12)0.0004 (8)0.0022 (9)0.0094 (8)
Geometric parameters (Å, º) top
Fe1—N12.1762 (15)C5—C61.484 (3)
Fe1—N22.1452 (15)C6—C71.382 (3)
Fe1—N32.1847 (15)C7—C81.378 (3)
Fe1—N42.1555 (15)C7—H70.9300
Fe1—N52.0773 (18)C8—C91.367 (3)
Fe1—N62.0765 (17)C8—H80.9300
S1—C211.622 (2)C9—C101.381 (3)
S2—C221.624 (2)C9—H90.9300
N1—C51.342 (2)C10—H100.9300
N1—C11.342 (2)C11—C121.375 (3)
N2—C101.348 (2)C11—H110.9300
N2—C61.350 (2)C12—C131.381 (4)
N3—C151.339 (2)C12—H120.9300
N3—C111.355 (2)C13—C141.376 (4)
N4—C201.347 (2)C13—H130.9300
N4—C161.348 (2)C14—C151.394 (3)
N5—C211.168 (2)C14—H140.9300
N6—C221.159 (2)C15—C161.496 (3)
C1—C21.376 (3)C16—C171.378 (3)
C1—H10.9300C17—C181.380 (3)
C2—C31.359 (3)C17—H170.9300
C2—H20.9300C18—C191.365 (3)
C3—C41.386 (3)C18—H180.9300
C3—H30.9300C19—C201.367 (3)
C4—C51.388 (3)C19—H190.9300
C4—H40.9300C20—H200.9300
N1—Fe1—N275.72 (6)C7—C6—C5123.32 (17)
N1—Fe1—N380.97 (6)C8—C7—C6119.59 (19)
N1—Fe1—N498.73 (6)C8—C7—H7120.2
N1—Fe1—N591.50 (7)C6—C7—H7120.2
N1—Fe1—N6164.50 (7)C9—C8—C7119.8 (2)
N2—Fe1—N397.66 (6)C9—C8—H8120.1
N2—Fe1—N4172.35 (5)C7—C8—H8120.1
N2—Fe1—N594.78 (6)C8—C9—C10118.4 (2)
N2—Fe1—N692.19 (6)C8—C9—H9120.8
N3—Fe1—N476.08 (6)C10—C9—H9120.8
N3—Fe1—N5163.37 (7)N2—C10—C9122.62 (19)
N3—Fe1—N691.27 (6)N2—C10—H10118.7
N4—Fe1—N590.58 (6)C9—C10—H10118.7
N4—Fe1—N692.32 (6)N3—C11—C12123.3 (2)
N5—Fe1—N699.27 (7)N3—C11—H11118.4
C5—N1—C1118.56 (16)C12—C11—H11118.4
C5—N1—Fe1116.02 (13)C11—C12—C13118.0 (2)
C1—N1—Fe1125.40 (13)C11—C12—H12121.0
C10—N2—C6118.59 (16)C13—C12—H12121.0
C10—N2—Fe1124.72 (13)C14—C13—C12119.6 (2)
C6—N2—Fe1116.63 (12)C14—C13—H13120.2
C15—N3—C11118.37 (17)C12—C13—H13120.2
C15—N3—Fe1115.50 (12)C13—C14—C15119.6 (2)
C11—N3—Fe1125.47 (14)C13—C14—H14120.2
C20—N4—C16118.42 (16)C15—C14—H14120.2
C20—N4—Fe1125.33 (12)N3—C15—C14121.2 (2)
C16—N4—Fe1115.87 (12)N3—C15—C16115.34 (16)
C21—N5—Fe1160.89 (17)C14—C15—C16123.5 (2)
C22—N6—Fe1168.26 (17)N4—C16—C17120.75 (19)
N1—C1—C2123.5 (2)N4—C16—C15116.23 (16)
N1—C1—H1118.2C17—C16—C15123.01 (18)
C2—C1—H1118.2C16—C17—C18119.5 (2)
C3—C2—C1117.7 (2)C16—C17—H17120.2
C3—C2—H2121.1C18—C17—H17120.2
C1—C2—H2121.1C19—C18—C17120.0 (2)
C2—C3—C4120.2 (2)C19—C18—H18120.0
C2—C3—H3119.9C17—C18—H18120.0
C4—C3—H3119.9C18—C19—C20117.9 (2)
C3—C4—C5119.1 (2)C18—C19—H19121.1
C3—C4—H4120.4C20—C19—H19121.1
C5—C4—H4120.4N4—C20—C19123.4 (2)
N1—C5—C4120.85 (19)N4—C20—H20118.3
N1—C5—C6115.68 (16)C19—C20—H20118.3
C4—C5—C6123.47 (18)N5—C21—S1179.0 (2)
N2—C6—C7120.96 (18)N6—C22—S2178.66 (18)
N2—C6—C5115.71 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···S1i0.932.853.736 (2)159
C10—H10···N60.932.623.158 (3)117
C20—H20···N50.932.603.146 (3)118
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(NCS)2(C10H8N2)2]
Mr484.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)16.087 (3), 16.0117 (11), 17.0781 (12)
V3)4399.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.36 × 0.34 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.738, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
28231, 4607, 3440
Rint0.023
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.104, 0.99
No. of reflections4607
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Selected geometric parameters (Å, º) top
Fe1—N12.1762 (15)Fe1—N42.1555 (15)
Fe1—N22.1452 (15)Fe1—N52.0773 (18)
Fe1—N32.1847 (15)Fe1—N62.0765 (17)
N1—Fe1—N275.72 (6)N2—Fe1—N692.19 (6)
N1—Fe1—N380.97 (6)N3—Fe1—N476.08 (6)
N1—Fe1—N498.73 (6)N3—Fe1—N5163.37 (7)
N1—Fe1—N591.50 (7)N3—Fe1—N691.27 (6)
N1—Fe1—N6164.50 (7)N4—Fe1—N590.58 (6)
N2—Fe1—N397.66 (6)N4—Fe1—N692.32 (6)
N2—Fe1—N4172.35 (5)N5—Fe1—N699.27 (7)
N2—Fe1—N594.78 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···S1i0.932.853.736 (2)159
C10—H10···N60.932.623.158 (3)117
C20—H20···N50.932.603.146 (3)118
Symmetry code: (i) x+1/2, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds