Download citation
Download citation
link to html
In the title compound, [Co(H2O)6](C6H6O4S)2·2H2O, the CoII ion lies on an inversion center and is octa­hedrally coordinated by six water mol­ecules. Two independent water mol­ecules in the [Co(H2O)6]2+ cation are disordered over two sites, with half occupancy for each site. The 4-hydroxy­benzene­sulfonate (L-) anion does not coordinate to the cobalt ion but rather acts as a counter-ion. The asymmetric unit is completed by an uncoordinated water mol­ecule. The crystal structure is composed of alternating layers of [Co(H2O)6]2+ cations and L- anions, with the lattice water molecules located in channels along the a direction. The [Co(H2O)6]2+ cations, L- anions and solvent water mol­ecules are connected through a complex pattern of hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045904/bh2133sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045904/bh2133Isup2.hkl
Contains datablock I

CCDC reference: 663645

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.001 Å
  • Disorder in main residue
  • R factor = 0.034
  • wR factor = 0.090
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H2WC .. H4WA .. 1.63 Ang. PLAT417_ALERT_2_B Short Inter D-H..H-D H2WD .. H4WA .. 2.08 Ang.
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.03 PLAT301_ALERT_3_C Main Residue Disorder ......................... 17.00 Perc. PLAT417_ALERT_2_C Short Inter D-H..H-D H2WB .. H4WA .. 2.14 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 16 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 H2 O
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 18
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structures of [Co(H2O)6]2+ with 3-carboxy-4-hydroxybenzenesulfonate as counter-ion (Ma et al., 2003) and [Co(NH3)6]3+ with 4-hydroxybenzenesulfonate (Sharma et al., 2006) have been reported. We have now characterized the title compound, [Co(H2O)6]2+ 4-hydroxybenzenesulfonate as a dihydrate, for which we report the synthesis and the crystal structure (Scheme, I).

As shown in Fig. 1, the asymmetric unit of (I) consists of one L- anion, one-half hexaaquacobalt(II) cation as well as one lattice water molecule. The CoII ion is located on an inversion center, and all other atoms are in general positions. The Co1 atom displays a slightly distorted octahedral environment, coordinated by six water molecules with the Co—O bond lengths ranging from 2.0574 (11) to 2.1032 (10) Å, similar to those found in the above cited hexaaquacobalt compound (Ma et al., 2003). The 4-hydroxybenzenesulfonate anion acts as a counter-ion, with normal bond lengths (Sharma et al., 2006).

The crystal structure of (I) can be regarded as a H-bonding 3-D framework, composed of alternating layers of [Co(H2O)6]2+ cations and L- sulfonate anions, with the lattice water molecules located in the channels along the [100] direction (Fig. 2). Within the sulfonate layers, the L- anions are connected to form a zigzag chain along the [010] direction through the inter-molecular O3···O4 H-bonds, with O3···O4 separation of 2.7543 (10) Å. The chains are bridged by hexaaquacobalt(II) cations through the O1W···O4 and O2W···O3 H-bonds [O1W···O4 = 2.7609 (9); O2WA···O3 = 2.8625 (12) Å] to form the 3-D framework. The O4W lattice water molecules H-bond to the O2W and O3W coordinated water molecules, and O1 and O2 atoms of L- anions, to further stabilize the crystal structure.

Related literature top

For related literature, see: Ma et al. (2003); Sharma et al. (2006).

Experimental top

A mixture of HL (549 mg, 1 mmol) and CoCO3 (60 mg, 0.5 mmol) was added into 15 ml water and stirred at room temperature for 1 h. Red crystals of (I) suitable for single-crystal X-ray diffraction analysis were obtained after leaving the solution to stand at room temperature for several days (56% yield based on CoCO3).

Refinement top

Water molecules O2W and O3W were found to be disordered over two positions, and refined with site occupancies 1/2 for O2WA, O2WB, O3WA and O3WB. Water H atoms and hydroxyl H4 atom were located in a difference Fourier map and refined with a regularized geometry, the O—H and H···H distances being restrained to 0.85 (1) and 1.34 (2) Å, respectively, and with Uiso(H) = 1.5Ueq(carrier O). The C-bonded H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H distances constrained to 0.93 Å, and Uiso(H) = 1.2Ueq(carrier C).

Structure description top

The crystal structures of [Co(H2O)6]2+ with 3-carboxy-4-hydroxybenzenesulfonate as counter-ion (Ma et al., 2003) and [Co(NH3)6]3+ with 4-hydroxybenzenesulfonate (Sharma et al., 2006) have been reported. We have now characterized the title compound, [Co(H2O)6]2+ 4-hydroxybenzenesulfonate as a dihydrate, for which we report the synthesis and the crystal structure (Scheme, I).

As shown in Fig. 1, the asymmetric unit of (I) consists of one L- anion, one-half hexaaquacobalt(II) cation as well as one lattice water molecule. The CoII ion is located on an inversion center, and all other atoms are in general positions. The Co1 atom displays a slightly distorted octahedral environment, coordinated by six water molecules with the Co—O bond lengths ranging from 2.0574 (11) to 2.1032 (10) Å, similar to those found in the above cited hexaaquacobalt compound (Ma et al., 2003). The 4-hydroxybenzenesulfonate anion acts as a counter-ion, with normal bond lengths (Sharma et al., 2006).

The crystal structure of (I) can be regarded as a H-bonding 3-D framework, composed of alternating layers of [Co(H2O)6]2+ cations and L- sulfonate anions, with the lattice water molecules located in the channels along the [100] direction (Fig. 2). Within the sulfonate layers, the L- anions are connected to form a zigzag chain along the [010] direction through the inter-molecular O3···O4 H-bonds, with O3···O4 separation of 2.7543 (10) Å. The chains are bridged by hexaaquacobalt(II) cations through the O1W···O4 and O2W···O3 H-bonds [O1W···O4 = 2.7609 (9); O2WA···O3 = 2.8625 (12) Å] to form the 3-D framework. The O4W lattice water molecules H-bond to the O2W and O3W coordinated water molecules, and O1 and O2 atoms of L- anions, to further stabilize the crystal structure.

For related literature, see: Ma et al. (2003); Sharma et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL (Siemens, 1994); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1994).

Figures top
[Figure 1] Fig. 1. ORTEP drawing with 30% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity, as disordered 'B' sites for O2W and O3W.
[Figure 2] Fig. 2. 3-D packing diagram viewed along the [100] direction with the dashed lines representing the O···O contacts for H-bonds. The H-bonds around the O4W atoms are omitted for clarity. All H atoms and disordered O atoms have been omitted.
Hexaaquacobalt(II) 4-hydroxybenzenesulfonate dihydrate top
Crystal data top
[Co(H2O)6](C6H6O4S)2·2H2OF(000) = 570
Mr = 549.38Dx = 1.704 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5365 reflections
a = 5.843 (2) Åθ = 2.3–27.5°
b = 7.224 (3) ŵ = 1.07 mm1
c = 25.459 (9) ÅT = 293 K
β = 94.837 (1)°Prism, red
V = 1070.8 (7) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2427 independent reflections
Radiation source: rotating anode generator2051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 77
Tmin = 0.673, Tmax = 0.814k = 79
7850 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.0596P]
where P = (Fo2 + 2Fc2)/3
2427 reflections(Δ/σ)max = 0.009
199 parametersΔρmax = 0.75 e Å3
18 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Co(H2O)6](C6H6O4S)2·2H2OV = 1070.8 (7) Å3
Mr = 549.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.843 (2) ŵ = 1.07 mm1
b = 7.224 (3) ÅT = 293 K
c = 25.459 (9) Å0.40 × 0.30 × 0.20 mm
β = 94.837 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
2427 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2051 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.814Rint = 0.031
7850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03418 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.75 e Å3
2427 reflectionsΔρmin = 0.57 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00001.00001.00000.01164 (3)
O1W0.14944 (9)0.91860 (7)0.926835 (19)0.03708 (16)
H1WA0.1214 (11)0.8278 (5)0.90746 (18)0.056*
H1WB0.2298 (8)0.9937 (5)0.9076 (2)0.056*
O2WA0.03598 (15)1.26230 (12)0.96743 (3)0.0185 (2)0.50
H2WA0.0732 (10)1.2458 (13)0.93638 (13)0.028*0.50
H2WB0.0793 (6)1.3331 (7)0.9643 (4)0.028*0.50
O2WB0.16007 (14)1.23240 (13)0.97331 (3)0.0186 (2)0.50
H2WC0.2844 (6)1.2132 (14)0.99136 (19)0.028*0.50
H2WD0.1907 (13)1.2767 (10)0.94403 (13)0.028*0.50
O3WA0.29704 (14)0.84098 (11)0.99253 (3)0.0149 (2)0.50
H3WA0.4229 (6)0.8969 (7)0.9974 (4)0.022*0.50
H3WB0.3033 (15)0.7408 (5)1.0096 (2)0.022*0.50
O3WB0.31335 (15)0.92872 (14)0.97466 (4)0.0284 (3)0.50
H3WC0.3241 (16)0.8382 (5)0.95388 (19)0.043*0.50
H3WD0.4383 (6)0.9879 (7)0.9752 (5)0.043*0.50
S10.19699 (3)0.55915 (2)0.865589 (6)0.01538 (4)
O10.04225 (7)0.60173 (6)0.873004 (17)0.01916 (12)
O20.36032 (8)0.67549 (6)0.897272 (17)0.02085 (12)
O30.24658 (8)0.36089 (6)0.873832 (16)0.02103 (12)
O40.35295 (8)0.67622 (7)0.642301 (17)0.02172 (12)
H40.4713 (12)0.7379 (11)0.6375 (3)0.033*
C10.23829 (10)0.60609 (8)0.79905 (2)0.01407 (15)
C20.07181 (11)0.55567 (9)0.75978 (2)0.01730 (16)
H2A0.06620.50510.76860.021*
C30.11117 (11)0.58080 (9)0.70694 (2)0.01842 (17)
H3A0.00050.54860.68030.022*
C40.32027 (11)0.65489 (8)0.69470 (2)0.01541 (15)
C50.48649 (11)0.70370 (9)0.73403 (2)0.01702 (16)
H5A0.62510.75320.72520.020*
C60.44820 (11)0.67946 (8)0.78660 (2)0.01726 (16)
H6A0.56040.71150.81310.021*
O4W0.30549 (11)1.49300 (7)0.96527 (3)0.0577 (2)
H4WA0.2574 (11)1.5769 (6)0.98621 (17)0.087*
H4WB0.4113 (7)1.5371 (9)0.94433 (18)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01328 (5)0.01141 (5)0.01034 (5)0.00068 (4)0.00169 (4)0.00001 (4)
O1W0.0524 (3)0.0345 (3)0.0210 (2)0.0267 (2)0.0169 (2)0.0160 (2)
O2WA0.0286 (4)0.0132 (4)0.0146 (4)0.0043 (4)0.0066 (3)0.0016 (3)
O2WB0.0186 (4)0.0219 (4)0.0154 (4)0.0024 (4)0.0016 (3)0.0043 (4)
O3WA0.0150 (4)0.0159 (4)0.0139 (4)0.0008 (3)0.0016 (3)0.0006 (3)
O3WB0.0135 (4)0.0342 (5)0.0379 (5)0.0018 (4)0.0050 (4)0.0190 (5)
S10.02079 (7)0.01546 (7)0.01016 (6)0.00447 (6)0.00284 (6)0.00033 (6)
O10.0213 (2)0.0205 (2)0.01664 (19)0.00334 (19)0.00750 (17)0.00017 (18)
O20.0234 (2)0.0258 (2)0.01320 (19)0.0017 (2)0.00036 (18)0.00523 (18)
O30.0315 (2)0.0187 (2)0.01380 (19)0.0059 (2)0.00675 (18)0.00249 (18)
O40.0250 (2)0.0289 (2)0.01156 (19)0.0076 (2)0.00335 (18)0.00095 (18)
C10.0184 (3)0.0134 (3)0.0106 (2)0.0033 (2)0.0022 (2)0.0001 (2)
C20.0147 (3)0.0210 (3)0.0165 (3)0.0015 (3)0.0033 (2)0.0027 (2)
C30.0163 (3)0.0252 (3)0.0133 (3)0.0005 (3)0.0015 (2)0.0009 (3)
C40.0209 (3)0.0144 (3)0.0114 (2)0.0020 (3)0.0041 (2)0.0006 (2)
C50.0171 (3)0.0155 (3)0.0186 (3)0.0037 (3)0.0025 (2)0.0023 (2)
C60.0213 (3)0.0135 (3)0.0164 (3)0.0029 (3)0.0022 (3)0.0006 (2)
O4W0.0375 (3)0.0214 (3)0.1061 (5)0.0087 (2)0.0417 (3)0.0174 (3)
Geometric parameters (Å, º) top
Co1—O3WB2.0574 (11)O3WB—H3WD0.845 (4)
Co1—O3WBi2.0574 (11)S1—O11.4591 (7)
Co1—O2WB2.0645 (11)S1—O21.4621 (6)
Co1—O2WBi2.0645 (11)S1—O31.4728 (8)
Co1—O1W2.0745 (8)S1—C11.7640 (8)
Co1—O1Wi2.0745 (8)O4—C41.3721 (9)
Co1—O2WA2.0861 (11)O4—H40.840 (8)
Co1—O2WAi2.0861 (11)C1—C21.3836 (9)
Co1—O3WA2.1032 (10)C1—C61.3969 (10)
Co1—O3WAi2.1032 (10)C2—C31.3956 (10)
O1W—H1WA0.845 (4)C2—H2A0.9300
O1W—H1WB0.846 (4)C3—C41.3931 (10)
O2WA—H2WA0.846 (4)C3—H3A0.9300
O2WA—H2WB0.844 (4)C4—C51.3806 (9)
O2WB—H2WC0.838 (4)C5—C61.3868 (10)
O2WB—H2WD0.844 (4)C5—H5A0.9300
O3WA—H3WA0.839 (4)C6—H6A0.9300
O3WA—H3WB0.843 (4)O4W—H4WA0.840 (4)
O3WB—H3WC0.847 (4)O4W—H4WB0.844 (4)
O3WB—Co1—O3WBi180.000 (1)O2WAi—Co1—O3WAi110.40 (4)
O3WB—Co1—O2WB70.15 (4)O3WA—Co1—O3WAi180.00 (4)
O3WBi—Co1—O2WB109.85 (4)Co1—O1W—H1WA131.0 (4)
O3WB—Co1—O2WBi109.85 (4)Co1—O1W—H1WB120.6 (3)
O3WBi—Co1—O2WBi70.15 (4)H1WA—O1W—H1WB106.6 (5)
O2WB—Co1—O2WBi180.0Co1—O2WA—H2WA106.6 (6)
O3WB—Co1—O1W88.04 (4)Co1—O2WA—H2WB118.8 (4)
O3WBi—Co1—O1W91.96 (4)H2WA—O2WA—H2WB105.2 (7)
O2WB—Co1—O1W95.91 (3)Co1—O2WB—H2WC94.6 (6)
O2WBi—Co1—O1W84.09 (3)Co1—O2WB—H2WD137.3 (5)
O3WB—Co1—O1Wi91.96 (4)H2WC—O2WB—H2WD108.0 (7)
O3WBi—Co1—O1Wi88.04 (4)Co1—O3WA—H3WA116.3 (4)
O2WB—Co1—O1Wi84.09 (3)Co1—O3WA—H3WB115.0 (6)
O2WBi—Co1—O1Wi95.91 (3)H3WA—O3WA—H3WB109.7 (8)
O1W—Co1—O1Wi180.0Co1—O3WB—H3WC120.3 (7)
O3WB—Co1—O2WA88.88 (4)Co1—O3WB—H3WD131.2 (5)
O3WBi—Co1—O2WA91.12 (4)H3WC—O3WB—H3WD107.0 (9)
O2WB—Co1—O2WA21.07 (3)O1—S1—O2113.29 (3)
O2WBi—Co1—O2WA158.93 (3)O1—S1—O3111.45 (3)
O1W—Co1—O2WA87.10 (3)O2—S1—O3111.65 (3)
O1Wi—Co1—O2WA92.90 (3)O1—S1—C1107.09 (3)
O3WB—Co1—O2WAi91.12 (4)O2—S1—C1106.47 (3)
O3WBi—Co1—O2WAi88.88 (4)O3—S1—C1106.41 (3)
O2WB—Co1—O2WAi158.93 (3)C4—O4—H4112.6 (5)
O2WBi—Co1—O2WAi21.07 (3)C2—C1—C6120.88 (6)
O1W—Co1—O2WAi92.90 (3)C2—C1—S1119.90 (5)
O1Wi—Co1—O2WAi87.10 (3)C6—C1—S1118.99 (4)
O2WA—Co1—O2WAi180.000 (1)C1—C2—C3119.96 (6)
O3WB—Co1—O3WA21.88 (4)C1—C2—H2A120.0
O3WBi—Co1—O3WA158.12 (4)C3—C2—H2A120.0
O2WB—Co1—O3WA90.81 (4)C4—C3—C2118.98 (6)
O2WBi—Co1—O3WA89.19 (4)C4—C3—H3A120.5
O1W—Co1—O3WA92.99 (3)C2—C3—H3A120.5
O1Wi—Co1—O3WA87.01 (3)O4—C4—C5121.96 (6)
O2WA—Co1—O3WA110.40 (4)O4—C4—C3117.21 (5)
O2WAi—Co1—O3WA69.60 (4)C5—C4—C3120.83 (6)
O3WB—Co1—O3WAi158.12 (4)C4—C5—C6120.46 (6)
O3WBi—Co1—O3WAi21.88 (4)C4—C5—H5A119.8
O2WB—Co1—O3WAi89.19 (4)C6—C5—H5A119.8
O2WBi—Co1—O3WAi90.81 (4)C5—C6—C1118.89 (5)
O1W—Co1—O3WAi87.01 (3)C5—C6—H6A120.6
O1Wi—Co1—O3WAi92.99 (3)C1—C6—H6A120.6
O2WA—Co1—O3WAi69.60 (4)H4WA—O4W—H4WB108.5 (6)
O1—S1—C1—C241.52 (6)C1—C2—C3—C40.72 (10)
O2—S1—C1—C2163.00 (5)C2—C3—C4—O4179.56 (6)
O3—S1—C1—C277.78 (6)C2—C3—C4—C50.24 (10)
O1—S1—C1—C6143.96 (5)O4—C4—C5—C6179.69 (6)
O2—S1—C1—C622.48 (6)C3—C4—C5—C60.10 (10)
O3—S1—C1—C696.74 (6)C4—C5—C6—C10.42 (9)
C6—C1—C2—C31.07 (10)C2—C1—C6—C50.91 (9)
S1—C1—C2—C3175.48 (5)S1—C1—C6—C5175.37 (5)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.85 (1)1.93 (1)2.7667 (11)171 (1)
O1W—H1WB···O4ii0.85 (1)1.93 (1)2.7609 (9)168 (1)
O2WA—H2WA···O3iii0.85 (1)2.13 (1)2.8625 (12)145 (1)
O2WA—H2WB···O4W0.84 (1)1.76 (1)2.5967 (12)173 (1)
O3WA—H3WB···O4Wi0.84 (1)1.81 (1)2.6398 (14)170 (1)
O3WB—H3WC···O20.85 (1)1.89 (1)2.7193 (13)168 (1)
O4—H4···O3iv0.840 (8)1.916 (7)2.7543 (10)175.6 (8)
O4W—H4WA···O2WBv0.84 (1)1.79 (1)2.6227 (13)176 (1)
O4W—H4WA···O2WAv0.84 (1)2.04 (1)2.8436 (12)160 (1)
O4W—H4WB···O2vi0.84 (1)1.99 (1)2.8244 (10)172 (1)
O2WB—H2WD···O3iii0.84 (1)1.94 (1)2.7833 (13)175 (1)
O3WB—H3WD···O3WBvii0.85 (1)1.95 (1)2.6474 (19)140 (1)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+3/2; (v) x, y+3, z+2; (vi) x1, y+1, z; (vii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Co(H2O)6](C6H6O4S)2·2H2O
Mr549.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.843 (2), 7.224 (3), 25.459 (9)
β (°) 94.837 (1)
V3)1070.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.673, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
7850, 2427, 2051
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.03
No. of reflections2427
No. of parameters199
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.57

Computer programs: CrystalClear (Rigaku, 2002), SHELXTL (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.845 (4)1.928 (4)2.7667 (11)171.4 (4)
O1W—H1WB···O4i0.846 (4)1.927 (4)2.7609 (9)168.0 (5)
O2WA—H2WA···O3ii0.846 (4)2.127 (6)2.8625 (12)145.2 (8)
O2WA—H2WB···O4W0.844 (4)1.757 (4)2.5967 (12)172.7 (8)
O3WA—H3WB···O4Wiii0.843 (4)1.806 (4)2.6398 (14)169.6 (5)
O3WB—H3WC···O20.847 (4)1.886 (5)2.7193 (13)167.9 (5)
O4—H4···O3iv0.840 (8)1.916 (7)2.7543 (10)175.6 (8)
O4W—H4WA···O2WBv0.840 (4)1.785 (4)2.6227 (13)175.6 (4)
O4W—H4WA···O2WAv0.840 (4)2.040 (5)2.8436 (12)160.1 (6)
O4W—H4WB···O2vi0.844 (4)1.986 (5)2.8244 (10)171.9 (6)
O2WB—H2WD···O3ii0.844 (4)1.941 (4)2.7833 (13)175.1 (6)
O3WB—H3WD···O3WBvii0.845 (4)1.945 (8)2.6474 (19)139.8 (11)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x, y+2, z+2; (iv) x+1, y+1/2, z+3/2; (v) x, y+3, z+2; (vi) x1, y+1, z; (vii) x+1, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds