Download citation
Download citation
link to html
In the title compound, [Fe(C7H3NO5)Cl(H2O)2]·C12H24O6·2H2O or [Fe(HChel)Cl(H2O)2].(18-crown-6)·2H2O, where H3Chel is 4-hydroxy­pyridine-2,6-dicarboxylic (chelidamic) acid, the FeIII atom exhibits a distorted octa­hedral geometry coordinated by two O atoms and one N atom from the tridentate chelidamate ligand, one Cl atom and two water mol­ecules. O—H...O hydrogen bonds from the coordinated water mol­ecules to the O atoms of the crown ether form one-dimensional hydrogen-bonded chains with alternating [Fe(HChel)Cl(H2O)2] and 18-crown-6 units. The solvent water mol­ecules lie between these chains, accepting O—H...O hydrogen bonds from the hydroxyl groups of the chelidamate ligands, and forming O—H...O hydrogen bonds with the noncoordinated O atoms of the carboxyl­ate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041955/bi2229sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041955/bi2229Isup2.hkl
Contains datablock I

CCDC reference: 663554

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.060
  • wR factor = 0.133
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O11 - C1 .. 10.23 su PLAT230_ALERT_2_B Hirshfeld Test Diff for O11 - C12 .. 18.62 su PLAT230_ALERT_2_B Hirshfeld Test Diff for O12 - C2 .. 12.90 su PLAT230_ALERT_2_B Hirshfeld Test Diff for O16 - C10 .. 8.96 su PLAT230_ALERT_2_B Hirshfeld Test Diff for O16 - C11 .. 11.56 su PLAT230_ALERT_2_B Hirshfeld Test Diff for C9 - C10 .. 8.48 su PLAT230_ALERT_2_B Hirshfeld Test Diff for C11 - C12 .. 11.94 su PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C11 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for O16
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C26 .. 5.55 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C10 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O11 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O15 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C9 - C10 ... 1.42 Ang. PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C11 - C12 ... 1.36 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 H2 O PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 H2 O
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 3.00 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 26
0 ALERT level A = In general: serious problem 9 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 15 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Since the first report of chelidamic acid (4-hydroxypyridine-2,6-dicarboxylic acid) in 1926 (Riegel, 1926), its coordination chemistry has been extensively investigated. Much of this work focuses on the design and synthesis of polymers in which chelidamic acid acts as a ligand (Ng, 1998, 1999; Riegel, 1926; Hall et al., 2000; Cline et al., 1979; Yang et al., 2002; Thich et al., 1976, Laine et al., 1995). Herein, we report the synthesis and crystal structure of the title compound, which is an FeIII complex in which chelidamic acid acts as a tridentate chelating ligand.

The asymmetric unit (Fig. 1) consists of one FeIII atom coordinated by one chelidamic acid ligand, one Cl atom and two coordinated water molecules, as well as one 18-crown-6 molecule and two lattice water molecules. The coordination environment of FeIII comprises two carboxylic O atoms (Fe1—O2 = 2.0248 (17), Fe1—O4 = 2.0507 (16) Å) and one N atom (Fe1—N1 = 2.055 (2) Å) from the tridentate chelated chelidamic acid ligand, one Cl atom (Fe1—Cl1 = 2.2522 (9) Å) lying in the equatorial plane, and two water molecules (Fe1—O1W = 2.0531 (19), Fe1—O2W = 2.0613 (18) Å) in the axial positions, forming a distorted octahedral geometry. Due to the monodentate coordination mode of both carboxylate groups of the chelidamic acid ligand, the C—O bond distances of the coordinated O atoms (C26—O2 = 1.293 (3) and C27—O4 = 1.280 (3) Å) are slightly longer than the C—O bond distances of the uncoordinated O atoms (C26—O1 = 1.218 (3) and C27—O3 = 1.233 (3) Å).

The coordinated water molecules, O1W and O2W, act as hydrogen bond donors to form O—H···O hydrogen bonds with six O atoms from 18-crown-6 molecules (Table 1). These hydrogen bonds link alternate FeIII complexes and 18-crown-6 molecules into chains running along the a direction (Fig. 2). The lattice water molecules, O3W and O4W, lie between chains, accepting an O—H···O hydrogen bond from the hydroxyl group of the chelidamic acid ligand, and forming O—H···O hydrogen bonds to the non-coordinated O atoms of the carboxyl groups (Table 1).

Related literature top

For the crystal structure of [Fe(HChel)Cl(H2O)2], see: Laine et al. (1995). For other literature related to the use of chelidamic acid as a ligand, see: Cline et al. (1979); Hall et al. (2000); Ng (1998, 1999); Riegel (1926); Thich et al. (1976); Yang et al. (2002).

Experimental top

A mixture of FeCl3.6H2O (0.068 g, 0.25 mmol), 18-crown-6 (0.066 g, 0.25 mmol) and H3Chel (50 mg, 0.25 mmol) was dissolved in 20 ml of a mixed ethanol:water (1:1) solvent. After dropping 1–2 drops KOH (1M) into the solution and stirring for about 4 h, the solution was filtered and the filtrate was allowed to stand at room temperature. Yellow–brown crystals of the title compound were obtained after 4–5 days (yield: 63%).

Refinement top

H atoms bonded to C atoms and the H atom of the hydroxyl group were placed at calculated positions and allowed to ride during subsequent refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The H atoms of the water molecules were located in difference Fourier maps and refined with O—H distances restrained to a target value of 0.96 (1) Å, and with Uiso(H) = 1.5Ueq(O). The anisotropic displacement parameters of C1, C2 and C12 were restrained to approximate isotropic behaviour.

Structure description top

Since the first report of chelidamic acid (4-hydroxypyridine-2,6-dicarboxylic acid) in 1926 (Riegel, 1926), its coordination chemistry has been extensively investigated. Much of this work focuses on the design and synthesis of polymers in which chelidamic acid acts as a ligand (Ng, 1998, 1999; Riegel, 1926; Hall et al., 2000; Cline et al., 1979; Yang et al., 2002; Thich et al., 1976, Laine et al., 1995). Herein, we report the synthesis and crystal structure of the title compound, which is an FeIII complex in which chelidamic acid acts as a tridentate chelating ligand.

The asymmetric unit (Fig. 1) consists of one FeIII atom coordinated by one chelidamic acid ligand, one Cl atom and two coordinated water molecules, as well as one 18-crown-6 molecule and two lattice water molecules. The coordination environment of FeIII comprises two carboxylic O atoms (Fe1—O2 = 2.0248 (17), Fe1—O4 = 2.0507 (16) Å) and one N atom (Fe1—N1 = 2.055 (2) Å) from the tridentate chelated chelidamic acid ligand, one Cl atom (Fe1—Cl1 = 2.2522 (9) Å) lying in the equatorial plane, and two water molecules (Fe1—O1W = 2.0531 (19), Fe1—O2W = 2.0613 (18) Å) in the axial positions, forming a distorted octahedral geometry. Due to the monodentate coordination mode of both carboxylate groups of the chelidamic acid ligand, the C—O bond distances of the coordinated O atoms (C26—O2 = 1.293 (3) and C27—O4 = 1.280 (3) Å) are slightly longer than the C—O bond distances of the uncoordinated O atoms (C26—O1 = 1.218 (3) and C27—O3 = 1.233 (3) Å).

The coordinated water molecules, O1W and O2W, act as hydrogen bond donors to form O—H···O hydrogen bonds with six O atoms from 18-crown-6 molecules (Table 1). These hydrogen bonds link alternate FeIII complexes and 18-crown-6 molecules into chains running along the a direction (Fig. 2). The lattice water molecules, O3W and O4W, lie between chains, accepting an O—H···O hydrogen bond from the hydroxyl group of the chelidamic acid ligand, and forming O—H···O hydrogen bonds to the non-coordinated O atoms of the carboxyl groups (Table 1).

For the crystal structure of [Fe(HChel)Cl(H2O)2], see: Laine et al. (1995). For other literature related to the use of chelidamic acid as a ligand, see: Cline et al. (1979); Hall et al. (2000); Ng (1998, 1999); Riegel (1926); Thich et al. (1976); Yang et al. (2002).

Computing details top

Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1994); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compounds showing displacement ellipsoids at 30% probability. H atoms are omitted.
[Figure 2] Fig. 2. One-dimensional chain formed by O—H···O hydrogen bonds between the coordinated water molecules and the O atoms of 18-crown-6.
Diaquachlorido(4-hydroxypyridine-2,6-carboxylato-κ3N,O,O')iron(III) 18-crown-6 dihydrate top
Crystal data top
[Fe(C7H3NO5)Cl(H2O)2]·C12H24O6·2H2OZ = 2
Mr = 608.78F(000) = 638
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7355 (9) ÅCell parameters from 20 reflections
b = 10.4503 (17) Åθ = 3.0–25.0°
c = 17.185 (3) ŵ = 0.73 mm1
α = 77.971 (12)°T = 293 K
β = 89.779 (11)°Plate, yellow
γ = 81.075 (11)°0.30 × 0.25 × 0.05 mm
V = 1341.7 (4) Å3
Data collection top
Rigaku AFC-7R
diffractometer
2831 reflections with I > 2σ(I)
Radiation source: rotating-anode generatorRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
ω/2θ scansh = 29
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.851, Tmax = 0.964l = 2020
5197 measured reflections3 standard reflections every 200 reflections
4738 independent reflections intensity decay: 2.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0449P)2]
where P = (Fo2 + 2Fc2)/3
4738 reflections(Δ/σ)max = 0.002
358 parametersΔρmax = 0.89 e Å3
26 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Fe(C7H3NO5)Cl(H2O)2]·C12H24O6·2H2Oγ = 81.075 (11)°
Mr = 608.78V = 1341.7 (4) Å3
Triclinic, P1Z = 2
a = 7.7355 (9) ÅMo Kα radiation
b = 10.4503 (17) ŵ = 0.73 mm1
c = 17.185 (3) ÅT = 293 K
α = 77.971 (12)°0.30 × 0.25 × 0.05 mm
β = 89.779 (11)°
Data collection top
Rigaku AFC-7R
diffractometer
2831 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.037
Tmin = 0.851, Tmax = 0.9643 standard reflections every 200 reflections
5197 measured reflections intensity decay: 2.4%
4738 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06026 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.89 e Å3
4738 reflectionsΔρmin = 0.45 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.77559 (5)0.72036 (4)0.69984 (2)0.03157 (11)
N10.7714 (3)0.78986 (18)0.80335 (11)0.0299 (6)
O10.6479 (3)1.11514 (18)0.69990 (12)0.0527 (7)
O20.7032 (2)0.91875 (16)0.66429 (10)0.0371 (5)
O30.9002 (3)0.47201 (17)0.91676 (10)0.0454 (6)
O40.8442 (2)0.55333 (16)0.78711 (9)0.0350 (5)
O50.8038 (3)0.93481 (19)1.00395 (11)0.0644 (7)
H5C0.86460.88091.03850.097*
O110.2884 (3)0.6287 (2)0.59803 (12)0.0710 (8)
O120.1925 (3)0.8967 (2)0.55633 (13)0.0687 (8)
O130.0940 (3)0.99078 (18)0.69714 (12)0.0511 (6)
O140.2819 (3)0.8108 (2)0.83044 (12)0.0670 (8)
O150.4638 (3)0.5491 (2)0.86997 (12)0.0583 (7)
O160.4159 (3)0.4420 (2)0.73193 (14)0.0788 (9)
O1W1.0349 (2)0.74188 (16)0.69298 (10)0.0385 (5)
H1D1.0692 (18)0.8217 (7)0.7014 (11)0.058*
H1C1.0979 (17)0.7098 (14)0.6512 (6)0.058*
O2W0.5147 (2)0.70245 (16)0.71188 (10)0.0378 (5)
H2C0.4556 (17)0.7136 (19)0.7591 (5)0.057*
H2D0.4836 (19)0.6244 (7)0.6995 (10)0.057*
O3W0.8772 (3)1.28637 (19)0.72980 (14)0.0771 (8)
H3D0.7804 (10)1.2477 (12)0.7155 (12)0.116*
H3C0.857 (5)1.3798 (7)0.7090 (16)0.116*
O4W0.9945 (3)0.77074 (19)1.11650 (12)0.0790 (9)
H4D1.039 (2)0.7788 (19)1.1666 (5)0.118*
H4C1.037 (3)0.6843 (7)1.1074 (11)0.118*
C10.3072 (5)0.7013 (3)0.5185 (2)0.0790 (9)
H1A0.20180.70630.48700.095*
H1B0.40460.65600.49390.095*
C20.3384 (5)0.8350 (3)0.5209 (2)0.0735 (8)
H2A0.44440.83100.55180.088*
H2B0.35150.88470.46740.088*
C30.2084 (5)1.0275 (3)0.5628 (2)0.0815 (14)
H3A0.19171.08690.51090.098*
H3B0.32371.02990.58390.098*
C40.0706 (4)1.0684 (3)0.6177 (2)0.0670 (12)
H4A0.07071.16070.61920.080*
H4B0.04291.06130.59660.080*
C50.2379 (4)1.0168 (3)0.7389 (2)0.0659 (11)
H5A0.22921.11140.73520.079*
H5B0.34610.98640.71490.079*
C60.2406 (5)0.9479 (3)0.8243 (2)0.0684 (11)
H6A0.32700.97780.85410.082*
H6B0.12700.96900.84660.082*
C70.3131 (4)0.7379 (3)0.90998 (17)0.0680 (12)
H7A0.22080.76790.94350.082*
H7B0.42360.75240.93030.082*
C80.3181 (4)0.5953 (4)0.9119 (2)0.0746 (13)
H8A0.32660.54620.96660.090*
H8B0.21120.58170.88770.090*
C90.4847 (5)0.4113 (3)0.8672 (2)0.0883 (15)
H9A0.60650.38180.85750.106*
H9B0.45840.36190.91900.106*
C100.3792 (6)0.3788 (4)0.8087 (3)0.0997 (17)
H10A0.39990.28370.81280.120*
H10B0.25670.40490.81880.120*
C110.2845 (7)0.4236 (4)0.6766 (3)0.132 (2)
H11A0.29420.33010.67630.159*
H11B0.16890.45240.69480.159*
C120.3019 (6)0.4921 (4)0.6013 (3)0.1035 (9)
H12A0.21190.47670.56680.124*
H12B0.41480.45990.58190.124*
C210.7340 (3)0.9193 (2)0.79981 (15)0.0332 (8)
C220.7404 (4)0.9703 (3)0.86702 (16)0.0418 (8)
H22A0.71021.06080.86440.050*
C230.7931 (4)0.8834 (3)0.93964 (16)0.0428 (8)
C240.8338 (3)0.7468 (3)0.94158 (16)0.0379 (8)
H24A0.86940.68690.98890.046*
C250.8195 (3)0.7041 (2)0.87178 (14)0.0308 (7)
C260.6881 (3)0.9950 (3)0.71509 (15)0.0353 (8)
C270.8577 (3)0.5646 (2)0.85950 (15)0.0335 (8)
Cl10.79064 (11)0.62857 (8)0.59200 (4)0.0548 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0363 (2)0.03038 (18)0.02747 (18)0.00668 (16)0.00149 (16)0.00377 (14)
N10.0304 (12)0.0270 (10)0.0321 (11)0.0072 (10)0.0011 (10)0.0037 (9)
O10.0642 (14)0.0284 (10)0.0591 (13)0.0015 (10)0.0062 (11)0.0014 (9)
O20.0456 (11)0.0331 (9)0.0285 (9)0.0073 (9)0.0025 (9)0.0039 (8)
O30.0599 (13)0.0338 (10)0.0363 (10)0.0012 (10)0.0060 (10)0.0001 (8)
O40.0454 (11)0.0307 (9)0.0284 (9)0.0065 (8)0.0017 (9)0.0048 (7)
O50.0930 (17)0.0570 (12)0.0437 (11)0.0088 (12)0.0128 (12)0.0262 (9)
O110.1046 (19)0.0608 (13)0.0419 (11)0.0133 (14)0.0043 (13)0.0167 (10)
O120.0520 (14)0.0733 (15)0.0617 (14)0.0098 (12)0.0219 (11)0.0141 (12)
O130.0422 (12)0.0388 (10)0.0701 (13)0.0110 (9)0.0057 (11)0.0027 (10)
O140.0798 (16)0.0673 (13)0.0508 (12)0.0121 (13)0.0114 (12)0.0227 (10)
O150.0592 (14)0.0603 (13)0.0507 (12)0.0151 (11)0.0034 (11)0.0028 (10)
O160.118 (2)0.0471 (13)0.0683 (15)0.0159 (14)0.0183 (15)0.0026 (11)
O1W0.0381 (11)0.0419 (10)0.0397 (10)0.0129 (9)0.0096 (9)0.0132 (8)
O2W0.0397 (11)0.0416 (10)0.0363 (10)0.0148 (9)0.0087 (9)0.0117 (8)
O3W0.0901 (18)0.0504 (13)0.0928 (16)0.0068 (13)0.0253 (15)0.0219 (12)
O4W0.125 (2)0.0478 (12)0.0605 (13)0.0087 (14)0.0260 (14)0.0191 (10)
C10.0788 (13)0.0870 (13)0.0683 (13)0.0001 (10)0.0039 (11)0.0195 (10)
C20.0690 (13)0.0797 (13)0.0650 (12)0.0052 (10)0.0064 (10)0.0046 (10)
C30.066 (2)0.071 (2)0.089 (3)0.0237 (19)0.014 (2)0.034 (2)
C40.050 (2)0.0480 (19)0.089 (3)0.0069 (17)0.002 (2)0.0174 (18)
C50.0447 (19)0.0536 (18)0.105 (3)0.0154 (16)0.0110 (19)0.0242 (18)
C60.053 (2)0.073 (2)0.087 (2)0.0008 (18)0.0147 (19)0.0429 (17)
C70.046 (2)0.115 (3)0.0381 (16)0.010 (2)0.0020 (16)0.0217 (18)
C80.052 (2)0.100 (3)0.064 (2)0.020 (2)0.0172 (19)0.006 (2)
C90.110 (3)0.065 (2)0.080 (3)0.035 (2)0.029 (2)0.023 (2)
C100.103 (3)0.061 (2)0.125 (4)0.027 (2)0.016 (3)0.014 (2)
C110.197 (5)0.056 (2)0.163 (4)0.060 (3)0.018 (4)0.037 (2)
C120.1081 (14)0.1023 (14)0.1024 (14)0.0141 (11)0.0015 (11)0.0282 (11)
C210.0346 (16)0.0259 (13)0.0377 (14)0.0023 (12)0.0029 (13)0.0050 (11)
C220.0426 (17)0.0344 (14)0.0493 (16)0.0021 (13)0.0008 (14)0.0139 (12)
C230.0463 (18)0.0487 (15)0.0378 (14)0.0039 (14)0.0020 (14)0.0218 (12)
C240.0361 (16)0.0407 (15)0.0355 (14)0.0040 (13)0.0004 (13)0.0060 (12)
C250.0307 (15)0.0320 (13)0.0302 (13)0.0081 (12)0.0036 (12)0.0053 (11)
C260.0300 (15)0.0384 (14)0.0363 (14)0.0081 (13)0.0052 (13)0.0033 (12)
C270.0302 (15)0.0355 (14)0.0338 (14)0.0057 (12)0.0000 (12)0.0044 (12)
Cl10.0585 (5)0.0694 (5)0.0427 (4)0.0082 (4)0.0020 (4)0.0275 (3)
Geometric parameters (Å, º) top
Fe1—Cl12.2522 (9)C1—H1B0.970
Fe1—N12.055 (2)C2—H2A0.970
Fe1—O22.0248 (17)C2—H2B0.970
Fe1—O42.0507 (16)C3—C41.492 (5)
Fe1—O1W2.0531 (19)C3—H3A0.970
Fe1—O2W2.0613 (18)C3—H3B0.970
N1—C211.327 (3)C4—H4A0.970
N1—C251.336 (3)C4—H4B0.970
O1—C261.218 (3)C5—C61.493 (5)
O2—C261.293 (3)C5—H5A0.970
O3—C271.233 (3)C5—H5B0.970
O4—C271.280 (3)C6—H6A0.970
O5—C231.334 (3)C6—H6B0.970
O5—H5C0.820C7—C81.478 (5)
O11—C121.404 (5)C7—H7A0.970
O11—C11.436 (4)C7—H7B0.970
O12—C21.411 (4)C8—H8A0.970
O12—C31.419 (4)C8—H8B0.970
O13—C51.417 (4)C9—C101.423 (5)
O13—C41.432 (4)C9—H9A0.970
O14—C61.401 (4)C9—H9B0.970
O14—C71.420 (3)C10—H10A0.970
O15—C81.411 (4)C10—H10B0.970
O15—C91.435 (4)C11—C121.359 (6)
O16—C101.396 (5)C11—H11A0.970
O16—C111.456 (5)C11—H11B0.970
O1W—H1D0.96 (1)C12—H12A0.970
O1W—H1C0.96 (1)C12—H12B0.970
O2W—H2C0.95 (1)C21—C221.373 (4)
O2W—H2D0.95 (1)C21—C261.519 (3)
O3W—H3D0.96 (1)C22—C231.402 (4)
O3W—H3C0.96 (1)C22—H22A0.930
O4W—H4D0.95 (1)C23—C241.406 (4)
O4W—H4C0.96 (1)C24—C251.374 (4)
C1—C21.463 (5)C24—H24A0.930
C1—H1A0.970C25—C271.501 (4)
O2—Fe1—O4151.36 (7)H5A—C5—H5B108.1
O2—Fe1—O1W90.60 (7)O14—C6—C5109.6 (3)
O4—Fe1—O1W88.71 (7)O14—C6—H6A109.8
O2—Fe1—N175.58 (7)C5—C6—H6A109.8
O4—Fe1—N175.79 (7)O14—C6—H6B109.8
O1W—Fe1—N187.38 (8)C5—C6—H6B109.8
O2—Fe1—O2W88.62 (7)H6A—C6—H6B108.2
O4—Fe1—O2W90.64 (7)O14—C7—C8109.4 (3)
O1W—Fe1—O2W177.12 (7)O14—C7—H7A109.8
N1—Fe1—O2W89.73 (8)C8—C7—H7A109.8
O2—Fe1—Cl1108.88 (6)O14—C7—H7B109.8
O4—Fe1—Cl199.76 (6)C8—C7—H7B109.8
O1W—Fe1—Cl191.69 (6)H7A—C7—H7B108.2
N1—Fe1—Cl1175.46 (6)O15—C8—C7109.5 (3)
O2W—Fe1—Cl191.19 (6)O15—C8—H8A109.8
C21—N1—C25121.7 (2)C7—C8—H8A109.8
C21—N1—Fe1119.30 (16)O15—C8—H8B109.8
C25—N1—Fe1118.83 (17)C7—C8—H8B109.8
C26—O2—Fe1121.08 (15)H8A—C8—H8B108.2
C27—O4—Fe1119.30 (15)C10—C9—O15115.6 (3)
C23—O5—H5C109.5C10—C9—H9A108.4
C12—O11—C1111.8 (3)O15—C9—H9A108.4
C2—O12—C3112.6 (3)C10—C9—H9B108.4
C5—O13—C4113.0 (2)O15—C9—H9B108.4
C6—O14—C7113.6 (3)H9A—C9—H9B107.4
C8—O15—C9115.4 (3)O16—C10—C9111.5 (3)
C10—O16—C11108.7 (3)O16—C10—H10A109.3
Fe1—O1W—H1D119.4 (9)C9—C10—H10A109.3
Fe1—O1W—H1C116.3 (9)O16—C10—H10B109.3
H1D—O1W—H1C112.0 (15)C9—C10—H10B109.3
Fe1—O2W—H2C121.2 (10)H10A—C10—H10B108.0
Fe1—O2W—H2D115.1 (9)C12—C11—O16112.4 (4)
H2C—O2W—H2D105.9 (16)C12—C11—H11A109.1
H3D—O3W—H3C110 (2)O16—C11—H11A109.1
H4D—O4W—H4C109.6 (18)C12—C11—H11B109.1
O11—C1—C2109.7 (3)O16—C11—H11B109.1
O11—C1—H1A109.7H11A—C11—H11B107.9
C2—C1—H1A109.7C11—C12—O11111.7 (4)
O11—C1—H1B109.7C11—C12—H12A109.3
C2—C1—H1B109.7O11—C12—H12A109.3
H1A—C1—H1B108.2C11—C12—H12B109.3
O12—C2—C1107.3 (3)O11—C12—H12B109.3
O12—C2—H2A110.2H12A—C12—H12B107.9
C1—C2—H2A110.2N1—C21—C22121.1 (2)
O12—C2—H2B110.2N1—C21—C26111.3 (2)
C1—C2—H2B110.2C22—C21—C26127.6 (2)
H2A—C2—H2B108.5C21—C22—C23118.7 (2)
O12—C3—C4107.0 (3)C21—C22—H22A120.6
O12—C3—H3A110.3C23—C22—H22A120.6
C4—C3—H3A110.3O5—C23—C22118.1 (2)
O12—C3—H3B110.3O5—C23—C24122.9 (2)
C4—C3—H3B110.3C22—C23—C24119.0 (3)
H3A—C3—H3B108.6C25—C24—C23118.3 (2)
O13—C4—C3113.5 (2)C25—C24—H24A120.8
O13—C4—H4A108.9C23—C24—H24A120.8
C3—C4—H4A108.9N1—C25—C24121.2 (2)
O13—C4—H4B108.9N1—C25—C27111.2 (2)
C3—C4—H4B108.9C24—C25—C27127.6 (2)
H4A—C4—H4B107.7O1—C26—O2126.3 (2)
O13—C5—C6110.5 (3)O1—C26—C21121.0 (3)
O13—C5—H5A109.6O2—C26—C21112.6 (2)
C6—C5—H5A109.6O3—C27—O4125.2 (2)
O13—C5—H5B109.6O3—C27—C25120.0 (2)
C6—C5—H5B109.6O4—C27—C25114.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O11i0.96 (1)1.91 (1)2.822 (3)159 (1)
O1W—H1C···O12i0.96 (1)2.47 (1)2.937 (3)110 (1)
O1W—H1D···O13i0.95 (1)1.79 (1)2.725 (3)166 (1)
O2W—H2D···O110.95 (1)2.30 (1)2.926 (3)123 (1)
O2W—H2C···O140.95 (1)2.10 (1)2.996 (3)156 (1)
O2W—H2C···O150.95 (1)2.28 (1)2.911 (3)124 (1)
O2W—H2D···O160.95 (1)2.02 (1)2.892 (3)152 (1)
O3W—H3D···O10.96 (1)1.91 (1)2.826 (3)159 (1)
O4W—H4C···O3ii0.96 (1)1.76 (1)2.717 (3)175 (2)
O5—H5C···O4W0.821.772.591 (3)177
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Fe(C7H3NO5)Cl(H2O)2]·C12H24O6·2H2O
Mr608.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7355 (9), 10.4503 (17), 17.185 (3)
α, β, γ (°)77.971 (12), 89.779 (11), 81.075 (11)
V3)1341.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.30 × 0.25 × 0.05
Data collection
DiffractometerRigaku AFC-7R
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.851, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
5197, 4738, 2831
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.133, 1.03
No. of reflections4738
No. of parameters358
No. of restraints26
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.45

Computer programs: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1994), CrystalStructure (Rigaku/MSC, 2002), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O11i0.96 (1)1.91 (1)2.822 (3)158.9 (11)
O1W—H1C···O12i0.96 (1)2.47 (1)2.937 (3)109.8 (11)
O1W—H1D···O13i0.95 (1)1.79 (1)2.725 (3)165.5 (13)
O2W—H2D···O110.95 (1)2.30 (1)2.926 (3)122.8 (9)
O2W—H2C···O140.95 (1)2.10 (1)2.996 (3)156.2 (14)
O2W—H2C···O150.95 (1)2.28 (1)2.911 (3)123.5 (14)
O2W—H2D···O160.95 (1)2.02 (1)2.892 (3)151.6 (14)
O3W—H3D···O10.96 (1)1.91 (1)2.826 (3)159.4 (11)
O4W—H4C···O3ii0.96 (1)1.76 (1)2.717 (3)175 (2)
O5—H5C···O4W0.821.772.591 (3)177.0
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds