Download citation
Download citation
link to html
The title compound, [CuI(C20H18N4O4)(C18H15P)], is a mononuclear copper(I) complex. The CuI atom is four-coordinated in a distorted tetra­hedral mode by two imine N atoms of the Schiff base, an I atom and a PPh3 ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042493/bt2493sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042493/bt2493Isup2.hkl
Contains datablock I

CCDC reference: 663559

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.022
  • wR factor = 0.051
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O3 - N4 .. 7.63 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I1 - Cu1 .. 27.68 su PLAT430_ALERT_2_B Short Inter D...A Contact O3 .. O3 .. 2.80 Ang.
Alert level C PLAT213_ALERT_2_C Atom O2 has ADP max/min Ratio ............. 3.10 prola PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.01 Ratio PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.68 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for N4 - C16 .. 5.62 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C3 .. 3.00 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.00
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 9 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Cinnamaldehyde and its derivatives condense with ethylenediamine to furnish a range of Schiff base compounds; a small number of such bis(cinnamaldehyde)ethylenediimine ligands have been used to furnish adducts with transition metals (Amirnasr et al., 2005; Amirnasr et al., 2006). The study of the variety of products in self-assembly processes between labile metal ions and flexible multidentate ligands is an interesting topic in supramolecular chemistry. Among such complexes whose structures have been described are, for example, the copper(I) iodide (Kickelbick et al., 2002), (triphenylphosphine)(halogen/pseudohalogeno)copper(I) (Kickelbick et al., 2003), copper(I) perchlorate (Meghdadi et al., 2002), and the cobalt(II) chloride, cobalt(II) bromide and nickel bromide (Amirnasr et al., 2003) adducts. Here, we report the result of the reaction of CuI with N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine and triphenylphosphane, which forms a copper Schiff base complex (Fig. 1). However, the Cu(1)—I(1) bond length of 2.6145 (12) Å is slightly longer than reported (Barron, et al.,1988). The Cu(1)—P(1) distance [2.2119 (13) Å] is slightly longer than in other tetrahedral copper(I) phosphine complexes (Balogh-Heregovich, et al., 1999). While a tetrahedral geometry might be expected for a four coordinated copper(I) center the coordination sphere around copper(I) in this complex is distorted by the restricting bite angle of the chelating ligand. The N(1)—Cu(1)—N(2) angle is only 82.40 (5)°. The I(1)—Cu(1)—P(1) angle is 115.08 (4)°, being somewhat larger than the values for a tetrahedron (Table 1). The longer Cu(1)—I(1) and Cu(1)—P(1) distances and the larger deviations of angles from the ideal tetrahedral angle in this complex may be attributed to the mutual steric effects between the bulky I atom and the PPh3 ligand. The single bond distance of C(3)—C(4), 1.448 (2) Å being slightly shorter than C(1)—C(2), 1.509 (2) Å indicates the existence of an extended electron delocalization in this complex.

Related literature top

For related literature, see: Amirnasr et al. (2003, 2005, 2006); Balogh-Heregovich et al. (1999); Barron et al. (1988); Kickelbick et al. (2002, 2003); Meghdadi et al. (2002).

Experimental top

To a solution of 190 mg (1 mmol) CuI in 5 ml acetonitril a solution of 261 mg (1 mmol) of PPh3 in 5 ml aetonitril was added. The mixture was stirred for 5 min and then 378 mg (1 mmol) of N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine in 5 ml acetonitril were added and stirred for an additional 60 min. The volume of the solvent was reduced under vacuum to about 5 ml. The diffusion of diethyl ether vapor into the concentrated solution gave red crystals suitable for X-ray studies. The crystals were collected and dried in vacuo.

Refinement top

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95–0.99 Å, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Cinnamaldehyde and its derivatives condense with ethylenediamine to furnish a range of Schiff base compounds; a small number of such bis(cinnamaldehyde)ethylenediimine ligands have been used to furnish adducts with transition metals (Amirnasr et al., 2005; Amirnasr et al., 2006). The study of the variety of products in self-assembly processes between labile metal ions and flexible multidentate ligands is an interesting topic in supramolecular chemistry. Among such complexes whose structures have been described are, for example, the copper(I) iodide (Kickelbick et al., 2002), (triphenylphosphine)(halogen/pseudohalogeno)copper(I) (Kickelbick et al., 2003), copper(I) perchlorate (Meghdadi et al., 2002), and the cobalt(II) chloride, cobalt(II) bromide and nickel bromide (Amirnasr et al., 2003) adducts. Here, we report the result of the reaction of CuI with N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine and triphenylphosphane, which forms a copper Schiff base complex (Fig. 1). However, the Cu(1)—I(1) bond length of 2.6145 (12) Å is slightly longer than reported (Barron, et al.,1988). The Cu(1)—P(1) distance [2.2119 (13) Å] is slightly longer than in other tetrahedral copper(I) phosphine complexes (Balogh-Heregovich, et al., 1999). While a tetrahedral geometry might be expected for a four coordinated copper(I) center the coordination sphere around copper(I) in this complex is distorted by the restricting bite angle of the chelating ligand. The N(1)—Cu(1)—N(2) angle is only 82.40 (5)°. The I(1)—Cu(1)—P(1) angle is 115.08 (4)°, being somewhat larger than the values for a tetrahedron (Table 1). The longer Cu(1)—I(1) and Cu(1)—P(1) distances and the larger deviations of angles from the ideal tetrahedral angle in this complex may be attributed to the mutual steric effects between the bulky I atom and the PPh3 ligand. The single bond distance of C(3)—C(4), 1.448 (2) Å being slightly shorter than C(1)—C(2), 1.509 (2) Å indicates the existence of an extended electron delocalization in this complex.

For related literature, see: Amirnasr et al. (2003, 2005, 2006); Balogh-Heregovich et al. (1999); Barron et al. (1988); Kickelbick et al. (2002, 2003); Meghdadi et al. (2002).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of compound, with atom labels and 50% probability displacement ellipsoids.
{N,N'-Bis[3-(2-nitrophenyl)prop-2-enylidene]ethylenediamine- κ2N,N'}iodido(triphenylphosphane-κP)copper(I) top
Crystal data top
[CuI(C20H18N4O4)(C18H15P)]F(000) = 3344
Mr = 831.09Dx = 1.506 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 25590 reflections
a = 31.64 (2) Åθ = 3.0–27.4°
b = 15.586 (10) ŵ = 1.53 mm1
c = 17.638 (11) ÅT = 200 K
β = 122.54 (2)°Plate, red
V = 7333 (8) Å30.35 × 0.35 × 0.12 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8296 independent reflections
Radiation source: fine-focus sealed tube6482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 3940
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
k = 2020
Tmin = 0.617, Tmax = 0.838l = 2222
31361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.028P)2]
where P = (Fo2 + 2Fc2)/3
8296 reflections(Δ/σ)max = 0.003
442 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[CuI(C20H18N4O4)(C18H15P)]V = 7333 (8) Å3
Mr = 831.09Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.64 (2) ŵ = 1.53 mm1
b = 15.586 (10) ÅT = 200 K
c = 17.638 (11) Å0.35 × 0.35 × 0.12 mm
β = 122.54 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8296 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
6482 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.838Rint = 0.021
31361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 0.94Δρmax = 0.51 e Å3
8296 reflectionsΔρmin = 0.50 e Å3
442 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.741268 (5)0.210954 (8)0.272139 (8)0.04254 (5)
Cu10.665571 (7)0.104414 (12)0.197272 (12)0.02385 (5)
P10.602273 (16)0.13979 (3)0.21093 (3)0.02384 (9)
O10.54983 (8)0.29902 (10)0.24211 (10)0.0804 (6)
O20.55500 (10)0.42014 (12)0.29098 (11)0.1098 (9)
O30.74378 (5)0.20177 (8)0.56025 (9)0.0411 (3)
O40.82068 (6)0.22481 (9)0.66928 (10)0.0545 (4)
N10.65513 (5)0.07761 (8)0.07246 (8)0.0251 (3)
N20.68869 (5)0.02248 (8)0.22191 (9)0.0290 (3)
N30.56134 (7)0.37400 (12)0.23069 (11)0.0527 (5)
N40.78614 (6)0.17751 (10)0.61675 (10)0.0353 (4)
C10.67300 (7)0.00953 (11)0.07208 (11)0.0333 (4)
H1A0.70870.00740.09160.040*
H1B0.65360.03330.01040.040*
C20.66692 (7)0.06655 (11)0.13471 (11)0.0351 (4)
H2A0.63090.07840.10900.042*
H2B0.68430.12190.14290.042*
C30.64407 (6)0.12722 (11)0.00678 (10)0.0285 (4)
H30.64550.10560.04210.034*
C40.62934 (6)0.21555 (10)0.00470 (11)0.0295 (4)
H40.62650.23600.05260.035*
C50.61952 (6)0.26939 (11)0.06169 (11)0.0299 (4)
H50.62020.24720.11120.036*
C60.60769 (7)0.36057 (11)0.06315 (11)0.0328 (4)
C70.58224 (7)0.41167 (11)0.14084 (12)0.0389 (4)
C80.57386 (9)0.49842 (13)0.13877 (16)0.0573 (6)
H80.55670.53060.19300.069*
C90.59048 (11)0.53764 (14)0.05806 (17)0.0706 (7)
H90.58410.59690.05590.085*
C100.61655 (12)0.49031 (14)0.02022 (17)0.0735 (8)
H100.62870.51760.07650.088*
C110.62508 (9)0.40430 (13)0.01776 (14)0.0524 (6)
H110.64340.37350.07270.063*
C120.71458 (7)0.06699 (11)0.29366 (11)0.0327 (4)
H120.72030.12610.28920.039*
C130.73532 (7)0.02857 (11)0.38146 (11)0.0333 (4)
H130.73140.03140.38490.040*
C140.75971 (6)0.07328 (11)0.45771 (10)0.0305 (4)
H140.76280.13350.45360.037*
C150.78219 (6)0.03567 (11)0.54816 (11)0.0303 (4)
C160.79631 (7)0.08451 (11)0.62468 (11)0.0316 (4)
C170.81817 (8)0.04998 (13)0.70979 (12)0.0492 (5)
H170.82830.08580.76030.059*
C180.82500 (10)0.03758 (14)0.71991 (13)0.0626 (7)
H180.83870.06290.77750.075*
C190.81202 (9)0.08860 (13)0.64653 (13)0.0533 (6)
H190.81680.14890.65370.064*
C200.79210 (7)0.05210 (12)0.56304 (12)0.0404 (5)
H200.78480.08780.51380.049*
C210.56236 (6)0.22665 (11)0.13685 (10)0.0278 (4)
C220.53365 (7)0.21306 (12)0.04435 (11)0.0406 (5)
H220.53310.15770.02120.049*
C230.50589 (8)0.27885 (13)0.01449 (12)0.0479 (5)
H230.48630.26820.07740.057*
C240.50664 (8)0.35903 (14)0.01767 (13)0.0509 (6)
H240.48750.40400.02280.061*
C250.53513 (9)0.37449 (13)0.10860 (14)0.0548 (6)
H250.53600.43040.13090.066*
C260.56272 (8)0.30846 (12)0.16804 (12)0.0415 (5)
H260.58210.31960.23090.050*
C270.55921 (6)0.05006 (11)0.18611 (10)0.0276 (4)
C280.50778 (7)0.05445 (13)0.13479 (14)0.0481 (5)
H280.49180.10770.10910.058*
C290.47879 (8)0.01857 (16)0.11998 (15)0.0613 (7)
H290.44330.01460.08400.074*
C300.50081 (9)0.09547 (14)0.15654 (14)0.0508 (6)
H300.48090.14500.14620.061*
C310.55200 (9)0.10058 (13)0.20832 (16)0.0554 (6)
H310.56770.15390.23440.067*
C320.58105 (8)0.02865 (12)0.22291 (14)0.0452 (5)
H320.61650.03330.25870.054*
C330.61629 (6)0.17460 (10)0.32143 (10)0.0246 (3)
C340.57868 (7)0.18986 (12)0.33787 (12)0.0366 (4)
H340.54480.17890.29190.044*
C350.58985 (7)0.22083 (12)0.42039 (12)0.0380 (4)
H350.56370.23200.43030.046*
C360.63915 (7)0.23546 (11)0.48822 (11)0.0332 (4)
H360.64690.25690.54470.040*
C370.67701 (7)0.21905 (11)0.47403 (11)0.0335 (4)
H370.71090.22850.52100.040*
C380.66594 (6)0.18855 (11)0.39087 (11)0.0287 (4)
H380.69230.17720.38150.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04742 (8)0.05158 (9)0.03810 (7)0.02797 (6)0.02926 (6)0.02206 (6)
Cu10.0270 (1)0.0217 (1)0.0231 (1)0.00045 (8)0.01369 (8)0.00149 (8)
P10.0238 (2)0.0245 (2)0.02155 (19)0.00206 (17)0.01104 (17)0.00331 (17)
O10.1126 (15)0.0405 (10)0.0416 (9)0.0017 (9)0.0107 (9)0.0032 (7)
O20.185 (2)0.0629 (12)0.0351 (9)0.0072 (13)0.0281 (12)0.0173 (9)
O30.0509 (9)0.0362 (8)0.0422 (7)0.0087 (6)0.0291 (7)0.0072 (6)
O40.0648 (10)0.0503 (9)0.0553 (9)0.0256 (8)0.0369 (8)0.0212 (7)
N10.0266 (7)0.0241 (7)0.0231 (7)0.0026 (6)0.0124 (6)0.0016 (6)
N20.0380 (8)0.0218 (7)0.0240 (7)0.0012 (6)0.0146 (6)0.0004 (6)
N30.0571 (11)0.0413 (10)0.0346 (9)0.0051 (9)0.0081 (8)0.0060 (9)
N40.0489 (10)0.0345 (8)0.0353 (8)0.0080 (8)0.0310 (8)0.0060 (7)
C10.0441 (11)0.0275 (9)0.0293 (9)0.0042 (8)0.0204 (8)0.0030 (8)
C20.0479 (11)0.0240 (9)0.0281 (9)0.0011 (8)0.0170 (8)0.0027 (8)
C30.0313 (9)0.0318 (9)0.0230 (8)0.0037 (7)0.0150 (7)0.0037 (7)
C40.0335 (9)0.0302 (9)0.0252 (8)0.0023 (8)0.0161 (7)0.0019 (7)
C50.0310 (9)0.0323 (10)0.0264 (8)0.0017 (8)0.0154 (7)0.0007 (8)
C60.0388 (10)0.0288 (9)0.0341 (9)0.0037 (8)0.0218 (8)0.0008 (8)
C70.0406 (11)0.0304 (10)0.0380 (10)0.0011 (8)0.0160 (9)0.0009 (9)
C80.0653 (15)0.0331 (12)0.0591 (14)0.0033 (10)0.0239 (12)0.0098 (11)
C90.105 (2)0.0278 (12)0.0800 (18)0.0040 (13)0.0506 (17)0.0032 (12)
C100.128 (2)0.0386 (13)0.0591 (15)0.0027 (15)0.0533 (16)0.0112 (12)
C110.0841 (17)0.0353 (11)0.0418 (11)0.0010 (11)0.0365 (12)0.0014 (9)
C120.0420 (10)0.0241 (9)0.0301 (9)0.0058 (8)0.0181 (8)0.0013 (8)
C130.0414 (10)0.0254 (9)0.0301 (9)0.0058 (8)0.0171 (8)0.0002 (8)
C140.0370 (10)0.0258 (9)0.0279 (9)0.0044 (8)0.0169 (8)0.0019 (7)
C150.0293 (9)0.0319 (10)0.0271 (8)0.0005 (7)0.0134 (7)0.0013 (7)
C160.0338 (10)0.0314 (10)0.0294 (9)0.0027 (8)0.0170 (8)0.0002 (8)
C170.0647 (14)0.0488 (13)0.0277 (9)0.0079 (11)0.0207 (10)0.0031 (9)
C180.0921 (18)0.0526 (14)0.0318 (11)0.0282 (13)0.0260 (12)0.0148 (10)
C190.0733 (16)0.0362 (12)0.0413 (11)0.0206 (11)0.0248 (11)0.0078 (10)
C200.0494 (12)0.0338 (10)0.0336 (10)0.0071 (9)0.0193 (9)0.0012 (8)
C210.0245 (9)0.0306 (9)0.0261 (8)0.0001 (7)0.0122 (7)0.0012 (7)
C220.0468 (12)0.0417 (11)0.0276 (9)0.0086 (9)0.0163 (8)0.0040 (8)
C230.0513 (13)0.0538 (13)0.0253 (9)0.0135 (10)0.0118 (9)0.0040 (9)
C240.0585 (14)0.0451 (13)0.0387 (11)0.0187 (11)0.0193 (10)0.0137 (10)
C250.0743 (16)0.0311 (11)0.0460 (12)0.0093 (11)0.0237 (12)0.0000 (10)
C260.0506 (12)0.0318 (10)0.0297 (9)0.0006 (9)0.0133 (9)0.0026 (8)
C270.0304 (9)0.0287 (9)0.0260 (8)0.0065 (7)0.0167 (7)0.0082 (7)
C280.0324 (11)0.0413 (12)0.0564 (13)0.0063 (9)0.0146 (10)0.0064 (10)
C290.0358 (12)0.0669 (16)0.0631 (15)0.0264 (11)0.0147 (11)0.0160 (13)
C300.0626 (15)0.0465 (13)0.0512 (12)0.0306 (11)0.0359 (12)0.0217 (11)
C310.0691 (16)0.0365 (12)0.0708 (15)0.0124 (11)0.0443 (13)0.0026 (11)
C320.0375 (11)0.0393 (11)0.0579 (12)0.0066 (9)0.0251 (10)0.0061 (10)
C330.0295 (9)0.0208 (8)0.0234 (8)0.0032 (7)0.0143 (7)0.0025 (7)
C340.0318 (10)0.0437 (11)0.0352 (9)0.0068 (8)0.0185 (8)0.0109 (8)
C350.0446 (11)0.0396 (11)0.0409 (10)0.0035 (9)0.0302 (9)0.0078 (9)
C360.0531 (12)0.0235 (9)0.0255 (8)0.0022 (8)0.0227 (8)0.0013 (7)
C370.0372 (10)0.0331 (10)0.0224 (8)0.0042 (8)0.0110 (7)0.0013 (8)
C380.0289 (9)0.0300 (9)0.0273 (8)0.0010 (7)0.0151 (7)0.0007 (7)
Geometric parameters (Å, º) top
I1—Cu12.6145 (12)C15—C201.396 (3)
Cu1—N22.0721 (18)C15—C161.397 (2)
Cu1—N12.0851 (19)C16—C171.380 (3)
Cu1—P12.2119 (13)C17—C181.378 (3)
P1—C331.8329 (19)C17—H170.9500
P1—C211.8329 (18)C18—C191.380 (3)
P1—C271.8337 (19)C18—H180.9500
O1—N31.208 (2)C19—C201.375 (3)
O2—N31.208 (2)C19—H190.9500
O3—N41.223 (2)C20—H200.9500
O4—N41.228 (2)C21—C261.386 (2)
N1—C31.275 (2)C21—C221.392 (2)
N1—C11.472 (2)C22—C231.386 (3)
N2—C121.280 (2)C22—H220.9500
N2—C21.474 (2)C23—C241.367 (3)
N3—C71.472 (3)C23—H230.9500
N4—C161.475 (2)C24—C251.374 (3)
C1—C21.509 (2)C24—H240.9500
C1—H1A0.9900C25—C261.391 (3)
C1—H1B0.9900C25—H250.9500
C2—H2A0.9900C26—H260.9500
C2—H2B0.9900C27—C281.374 (3)
C3—C41.448 (2)C27—C321.386 (3)
C3—H30.9500C28—C291.395 (3)
C4—C51.334 (2)C28—H280.9500
C4—H40.9500C29—C301.362 (3)
C5—C61.466 (3)C29—H290.9500
C5—H50.9500C30—C311.368 (3)
C6—C111.400 (3)C30—H300.9500
C6—C71.405 (3)C31—C321.383 (3)
C7—C81.382 (3)C31—H310.9500
C8—C91.368 (3)C32—H320.9500
C8—H80.9500C33—C341.389 (3)
C9—C101.381 (3)C33—C381.395 (2)
C9—H90.9500C34—C351.387 (3)
C10—C111.373 (3)C34—H340.9500
C10—H100.9500C35—C361.382 (3)
C11—H110.9500C35—H350.9500
C12—C131.447 (2)C36—C371.373 (3)
C12—H120.9500C36—H360.9500
C13—C141.332 (2)C37—C381.395 (2)
C13—H130.9500C37—H370.9500
C14—C151.474 (2)C38—H380.9500
C14—H140.9500
N2—Cu1—N182.40 (5)C20—C15—C16115.43 (16)
N2—Cu1—P1116.96 (4)C20—C15—C14121.45 (15)
N1—Cu1—P1121.76 (5)C16—C15—C14123.10 (16)
N2—Cu1—I1112.09 (6)C17—C16—C15123.44 (18)
N1—Cu1—I1104.03 (4)C17—C16—N4116.27 (16)
P1—Cu1—I1115.08 (4)C15—C16—N4120.25 (15)
C33—P1—C21102.67 (8)C18—C17—C16118.62 (18)
C33—P1—C27101.74 (7)C18—C17—H17120.7
C21—P1—C27104.74 (9)C16—C17—H17120.7
C33—P1—Cu1118.30 (6)C17—C18—C19120.15 (18)
C21—P1—Cu1115.06 (7)C17—C18—H18119.9
C27—P1—Cu1112.58 (7)C19—C18—H18119.9
C3—N1—C1118.26 (14)C20—C19—C18120.0 (2)
C3—N1—Cu1130.38 (12)C20—C19—H19120.0
C1—N1—Cu1110.27 (10)C18—C19—H19120.0
C12—N2—C2118.06 (15)C19—C20—C15122.27 (17)
C12—N2—Cu1133.68 (12)C19—C20—H20118.9
C2—N2—Cu1108.17 (10)C15—C20—H20118.9
O2—N3—O1122.45 (19)C26—C21—C22117.78 (15)
O2—N3—C7118.44 (19)C26—C21—P1122.75 (13)
O1—N3—C7119.07 (17)C22—C21—P1119.22 (13)
O3—N4—O4124.75 (17)C23—C22—C21121.09 (17)
O3—N4—C16117.94 (15)C23—C22—H22119.5
O4—N4—C16117.27 (16)C21—C22—H22119.5
N1—C1—C2109.84 (14)C24—C23—C22120.21 (18)
N1—C1—H1A109.7C24—C23—H23119.9
C2—C1—H1A109.7C22—C23—H23119.9
N1—C1—H1B109.7C23—C24—C25119.91 (18)
C2—C1—H1B109.7C23—C24—H24120.0
H1A—C1—H1B108.2C25—C24—H24120.0
N2—C2—C1108.51 (15)C24—C25—C26120.12 (19)
N2—C2—H2A110.0C24—C25—H25119.9
C1—C2—H2A110.0C26—C25—H25119.9
N2—C2—H2B110.0C21—C26—C25120.89 (17)
C1—C2—H2B110.0C21—C26—H26119.6
H2A—C2—H2B108.4C25—C26—H26119.6
N1—C3—C4121.80 (15)C28—C27—C32117.91 (17)
N1—C3—H3119.1C28—C27—P1125.74 (15)
C4—C3—H3119.1C32—C27—P1116.35 (14)
C5—C4—C3122.70 (16)C27—C28—C29120.6 (2)
C5—C4—H4118.7C27—C28—H28119.7
C3—C4—H4118.7C29—C28—H28119.7
C4—C5—C6124.17 (16)C30—C29—C28120.8 (2)
C4—C5—H5117.9C30—C29—H29119.6
C6—C5—H5117.9C28—C29—H29119.6
C11—C6—C7115.05 (18)C29—C30—C31119.20 (19)
C11—C6—C5119.83 (16)C29—C30—H30120.4
C7—C6—C5124.99 (16)C31—C30—H30120.4
C8—C7—C6123.11 (18)C30—C31—C32120.4 (2)
C8—C7—N3115.92 (17)C30—C31—H31119.8
C6—C7—N3120.94 (17)C32—C31—H31119.8
C9—C8—C7119.5 (2)C31—C32—C27121.1 (2)
C9—C8—H8120.2C31—C32—H32119.5
C7—C8—H8120.2C27—C32—H32119.5
C8—C9—C10119.4 (2)C34—C33—C38118.49 (15)
C8—C9—H9120.3C34—C33—P1121.89 (13)
C10—C9—H9120.3C38—C33—P1119.60 (13)
C11—C10—C9120.8 (2)C35—C34—C33121.02 (17)
C11—C10—H10119.6C35—C34—H34119.5
C9—C10—H10119.6C33—C34—H34119.5
C10—C11—C6122.1 (2)C36—C35—C34119.88 (18)
C10—C11—H11118.9C36—C35—H35120.1
C6—C11—H11118.9C34—C35—H35120.1
N2—C12—C13120.96 (16)C37—C36—C35120.04 (16)
N2—C12—H12119.5C37—C36—H36120.0
C13—C12—H12119.5C35—C36—H36120.0
C14—C13—C12123.18 (17)C36—C37—C38120.31 (16)
C14—C13—H13118.4C36—C37—H37119.8
C12—C13—H13118.4C38—C37—H37119.8
C13—C14—C15124.41 (17)C33—C38—C37120.23 (17)
C13—C14—H14117.8C33—C38—H38119.9
C15—C14—H14117.8C37—C38—H38119.9
N2—Cu1—P1—C3389.15 (8)C20—C15—C16—N4177.93 (17)
N1—Cu1—P1—C33172.78 (7)C14—C15—C16—N43.8 (3)
I1—Cu1—P1—C3345.59 (6)O3—N4—C16—C17128.03 (19)
N2—Cu1—P1—C21149.07 (7)O4—N4—C16—C1750.1 (2)
N1—Cu1—P1—C2151.00 (8)O3—N4—C16—C1549.5 (2)
I1—Cu1—P1—C2176.20 (8)O4—N4—C16—C15132.40 (18)
N2—Cu1—P1—C2729.16 (7)C15—C16—C17—C182.3 (3)
N1—Cu1—P1—C2768.91 (7)N4—C16—C17—C18175.2 (2)
I1—Cu1—P1—C27163.90 (6)C16—C17—C18—C192.7 (4)
N2—Cu1—N1—C3172.34 (16)C17—C18—C19—C200.2 (4)
P1—Cu1—N1—C370.57 (15)C18—C19—C20—C152.9 (4)
I1—Cu1—N1—C361.38 (15)C16—C15—C20—C193.2 (3)
N2—Cu1—N1—C14.73 (11)C14—C15—C20—C19178.53 (19)
P1—Cu1—N1—C1121.81 (10)C33—P1—C21—C2622.44 (18)
I1—Cu1—N1—C1106.23 (11)C27—P1—C21—C26128.39 (16)
N1—Cu1—N2—C12161.61 (18)Cu1—P1—C21—C26107.47 (16)
P1—Cu1—N2—C1276.52 (19)C33—P1—C21—C22163.50 (15)
I1—Cu1—N2—C1259.50 (18)C27—P1—C21—C2257.56 (16)
N1—Cu1—N2—C221.93 (11)Cu1—P1—C21—C2266.59 (16)
P1—Cu1—N2—C299.94 (12)C26—C21—C22—C230.8 (3)
I1—Cu1—N2—C2124.04 (11)P1—C21—C22—C23175.12 (16)
C3—N1—C1—C2160.48 (15)C21—C22—C23—C240.6 (3)
Cu1—N1—C1—C230.21 (17)C22—C23—C24—C250.2 (4)
C12—N2—C2—C1138.64 (17)C23—C24—C25—C260.8 (4)
Cu1—N2—C2—C144.27 (17)C22—C21—C26—C250.2 (3)
N1—C1—C2—N249.66 (19)P1—C21—C26—C25174.32 (18)
C1—N1—C3—C4175.95 (16)C24—C25—C26—C210.6 (4)
Cu1—N1—C3—C49.2 (2)C33—P1—C27—C2896.54 (17)
N1—C3—C4—C5177.32 (17)C21—P1—C27—C2810.09 (18)
C3—C4—C5—C6175.87 (16)Cu1—P1—C27—C28135.81 (16)
C4—C5—C6—C1125.8 (3)C33—P1—C27—C3283.40 (15)
C4—C5—C6—C7158.64 (19)C21—P1—C27—C32169.97 (14)
C11—C6—C7—C81.2 (3)Cu1—P1—C27—C3244.25 (15)
C5—C6—C7—C8176.9 (2)C32—C27—C28—C290.5 (3)
C11—C6—C7—N3179.21 (19)P1—C27—C28—C29179.55 (16)
C5—C6—C7—N35.1 (3)C27—C28—C29—C300.5 (3)
O2—N3—C7—C826.0 (3)C28—C29—C30—C310.0 (4)
O1—N3—C7—C8151.9 (2)C29—C30—C31—C320.4 (3)
O2—N3—C7—C6155.9 (2)C30—C31—C32—C270.4 (3)
O1—N3—C7—C626.3 (3)C28—C27—C32—C310.1 (3)
C6—C7—C8—C90.5 (4)P1—C27—C32—C31179.95 (16)
N3—C7—C8—C9177.6 (2)C21—P1—C33—C3458.50 (16)
C7—C8—C9—C101.7 (4)C27—P1—C33—C3449.74 (16)
C8—C9—C10—C111.3 (4)Cu1—P1—C33—C34173.61 (12)
C9—C10—C11—C60.5 (4)C21—P1—C33—C38119.77 (14)
C7—C6—C11—C101.7 (3)C27—P1—C33—C38131.98 (14)
C5—C6—C11—C10177.7 (2)Cu1—P1—C33—C388.11 (15)
C2—N2—C12—C13177.47 (16)C38—C33—C34—C352.0 (3)
Cu1—N2—C12—C131.3 (3)P1—C33—C34—C35176.30 (14)
N2—C12—C13—C14175.53 (18)C33—C34—C35—C361.2 (3)
C12—C13—C14—C15178.60 (17)C34—C35—C36—C370.2 (3)
C13—C14—C15—C2018.4 (3)C35—C36—C37—C380.8 (3)
C13—C14—C15—C16163.49 (19)C34—C33—C38—C371.5 (2)
C20—C15—C16—C170.6 (3)P1—C33—C38—C37176.88 (13)
C14—C15—C16—C17178.83 (19)C36—C37—C38—C330.1 (3)

Experimental details

Crystal data
Chemical formula[CuI(C20H18N4O4)(C18H15P)]
Mr831.09
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)31.64 (2), 15.586 (10), 17.638 (11)
β (°) 122.54 (2)
V3)7333 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.35 × 0.35 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.617, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
31361, 8296, 6482
Rint0.021
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 0.94
No. of reflections8296
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.50

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2007), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds