Download citation
Download citation
link to html
The title compound, [Cu(N3)(C20H18N4O4)(C18H15P)]·CHCl3, is mononuclear copper(I) complex. The CuI centre is four-coordinated in a distorted tetra­hedral environment by two imine N atoms of the Schiff base, an N3 ligand and a PPh3 residue.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704559X/bt2498sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704559X/bt2498Isup2.hkl
Contains datablock I

CCDC reference: 622725

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.030
  • wR factor = 0.092
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ....... 0.92
Author Response: Because only one set of omega-scans was measured, the reflections in this triclinic system were not fully collected. However, we believe the number of data was enough for the structural determination of this compound.

Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N5 - N6 .. 8.80 su
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 27.44 From the CIF: _diffrn_reflns_theta_full 27.44 From the CIF: _reflns_number_total 8200 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 8912 Completeness (_total/calc) 92.01% PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.92 PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 2.82 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for N6 - N7 .. 6.34 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - N5 .. 6.11 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C57 PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. N7 .. 3.10 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 25 CU1 -N5 -N6 -N7 138.00 10.00 1.555 1.555 1.555 1.555
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 0.99
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The number of ligands bound to the copper(I) ion is greatly influenced by both the chemical nature and the geometry of the ligand (Amirnasr et al., 2006; Li et al., 2003; Clarke et al., 2003; Khalaji et al., 2006) and the type of solvent (Gustafsson et al., 2005). The steric, electronic, and conformational effects imparted by the coordinated ligands play an important role in modifying the properties of the prepared metal complex. A thorough understanding of these effects will serve as the basis for a rational design of complexes with specific and predictable properties. Here we report the synthesis and characterization of a new complex, (I), as well as molecular structure from single-crystal X-ray analysis. The bond lengths and angles around the Cu(I) in (I) are in good agreement with the values found in similar copper complexes (Amirnasr et al., 2002). Selected geometric parameters are show in Table 1. The pseudohalides, N3, is know to coordinate to metals in both terminal and bridging modes (Suzuki, 2005). However it act as terminal ligand and the structure of this complex consist of discrete molecules of this complex consist of discrete molecules of four-coordinated, containing the bidentate Schiff base, PPh3 and N3 ligand. The geometry around Cu(I) is distorted from tetrahedral to psedotetrahedral (Fig. 1). The N(1)—Cu(1)—N(2) angle is 81.39 (7)° and N(5)—Cu(1)—P(1) angle is 115.39 (6)° in complex being somewhat larger than the values for a tetrahedron (Table 1). The average Cu—N(Schiff base) distances of 2.0913 Å is similar to those in the pseudo-tetrahedral (diimine) copper(I) complexes (Barron et al., 1998). The copper azido, Cu—N(5), bond lengths of 2.031 (2) Å is slightly longer than those reported for other tetrahedral copper(I) complexes containing azido ligand (Kung et al., 1997). The Cu(1)—N(5)—N(6) bond angle is 128.68 (15)°. For terminal azido complexes this angle varies between 117° and 132° which is within the expected range for the sp2 nitrogen (Dori & Ziolo, 1973; Gorji et al. 2001). The single bond distance of C(3)—C(4), 1.442 (3) Å being slightly shorter than C(1)—C(2), 1.520 (5) Å indicates the existence of an extended electron delocalization in this complex.

Related literature top

For related literature, see: Amirnasr et al. (2002, 2006); Barron et al. (1998); Clarke et al. (2003); Dori & Ziolo (1973); Gorji et al. (2001); Gustafsson et al. (2005); Khalaji et al. (2006); Kung et al. (1997); Li et al. (2003); Suzuki (2005).

Experimental top

To a solution of 105 mg (1 mmol) CuN3 in 5 ml toluenea solution of 261 mg (1 mmol) of PPh3 in 5 ml toluene was added. The mixture was stirred for 5 min and then 378 mg (1 mmol) of N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine in 5 ml toluene were added and reflux for 60 min. Red crystals suitable for X-ray analysis were obtained by the diffusion of diethyl ether vapor into a concentrated solution of C38H33CuN7O4P in chloroform. The resulting crystals of the title compound were collected and dried under vacuum.

Refinement top

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95–0.99 Å, with Uiso(H) = 1.2 Ueq(C).

Structure description top

The number of ligands bound to the copper(I) ion is greatly influenced by both the chemical nature and the geometry of the ligand (Amirnasr et al., 2006; Li et al., 2003; Clarke et al., 2003; Khalaji et al., 2006) and the type of solvent (Gustafsson et al., 2005). The steric, electronic, and conformational effects imparted by the coordinated ligands play an important role in modifying the properties of the prepared metal complex. A thorough understanding of these effects will serve as the basis for a rational design of complexes with specific and predictable properties. Here we report the synthesis and characterization of a new complex, (I), as well as molecular structure from single-crystal X-ray analysis. The bond lengths and angles around the Cu(I) in (I) are in good agreement with the values found in similar copper complexes (Amirnasr et al., 2002). Selected geometric parameters are show in Table 1. The pseudohalides, N3, is know to coordinate to metals in both terminal and bridging modes (Suzuki, 2005). However it act as terminal ligand and the structure of this complex consist of discrete molecules of this complex consist of discrete molecules of four-coordinated, containing the bidentate Schiff base, PPh3 and N3 ligand. The geometry around Cu(I) is distorted from tetrahedral to psedotetrahedral (Fig. 1). The N(1)—Cu(1)—N(2) angle is 81.39 (7)° and N(5)—Cu(1)—P(1) angle is 115.39 (6)° in complex being somewhat larger than the values for a tetrahedron (Table 1). The average Cu—N(Schiff base) distances of 2.0913 Å is similar to those in the pseudo-tetrahedral (diimine) copper(I) complexes (Barron et al., 1998). The copper azido, Cu—N(5), bond lengths of 2.031 (2) Å is slightly longer than those reported for other tetrahedral copper(I) complexes containing azido ligand (Kung et al., 1997). The Cu(1)—N(5)—N(6) bond angle is 128.68 (15)°. For terminal azido complexes this angle varies between 117° and 132° which is within the expected range for the sp2 nitrogen (Dori & Ziolo, 1973; Gorji et al. 2001). The single bond distance of C(3)—C(4), 1.442 (3) Å being slightly shorter than C(1)—C(2), 1.520 (5) Å indicates the existence of an extended electron delocalization in this complex.

For related literature, see: Amirnasr et al. (2002, 2006); Barron et al. (1998); Clarke et al. (2003); Dori & Ziolo (1973); Gorji et al. (2001); Gustafsson et al. (2005); Khalaji et al. (2006); Kung et al. (1997); Li et al. (2003); Suzuki (2005).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound, with atom labels and 50% probability displacement ellipsoids.
Azido{N,N'-bis[3-(2-nitrophenyl)prop-2- enylidene]ethylenediamine}(triphenylphosphine)copper(I) chloroform solvate top
Crystal data top
[Cu(N3)(C20H18N4O4)(C18H15P)]·CHCl3Z = 2
Mr = 865.59F(000) = 888
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.102 (6) ÅCell parameters from 11830 reflections
b = 14.328 (9) Åθ = 3.0–27.4°
c = 16.410 (7) ŵ = 0.86 mm1
α = 109.51 (2)°T = 200 K
β = 103.29 (3)°Block, red
γ = 90.45 (3)°0.22 × 0.18 × 0.15 mm
V = 1954.9 (19) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8200 independent reflections
Radiation source: fine-focus sealed tube6283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.834, Tmax = 0.882l = 1820
15528 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
8200 reflections(Δ/σ)max = 0.001
497 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(N3)(C20H18N4O4)(C18H15P)]·CHCl3γ = 90.45 (3)°
Mr = 865.59V = 1954.9 (19) Å3
Triclinic, P1Z = 2
a = 9.102 (6) ÅMo Kα radiation
b = 14.328 (9) ŵ = 0.86 mm1
c = 16.410 (7) ÅT = 200 K
α = 109.51 (2)°0.22 × 0.18 × 0.15 mm
β = 103.29 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8200 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6283 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.882Rint = 0.016
15528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.00Δρmax = 0.64 e Å3
8200 reflectionsΔρmin = 0.50 e Å3
497 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.11196 (3)0.176702 (17)0.178776 (13)0.02108 (7)
Cl10.51266 (7)0.10182 (5)0.11080 (4)0.04100 (14)
Cl20.63207 (10)0.01236 (7)0.30103 (5)0.0730 (2)
Cl30.36468 (9)0.15220 (6)0.23049 (5)0.0630 (2)
P10.11027 (5)0.28753 (4)0.30973 (3)0.01926 (11)
O40.0400 (2)0.38709 (12)0.25223 (11)0.0491 (4)
O30.0440 (2)0.31450 (12)0.17320 (10)0.0428 (4)
O10.30874 (18)0.27941 (12)0.18253 (9)0.0370 (4)
O20.4708 (2)0.37033 (14)0.20621 (10)0.0493 (5)
N10.01363 (18)0.21652 (12)0.06768 (10)0.0224 (3)
N20.06478 (17)0.06375 (12)0.11801 (9)0.0206 (3)
N50.31277 (19)0.11851 (13)0.16964 (11)0.0276 (4)
N60.3936 (2)0.12754 (14)0.12657 (12)0.0339 (4)
N70.4774 (3)0.13683 (19)0.08465 (16)0.0579 (6)
N40.0176 (2)0.31477 (14)0.24334 (12)0.0335 (4)
N30.4224 (2)0.33698 (13)0.15698 (11)0.0293 (4)
C10.1481 (2)0.18368 (15)0.04484 (13)0.0261 (4)
H1A0.19900.19050.01280.031*
H1B0.19590.22540.09130.031*
C20.1655 (2)0.07557 (15)0.03818 (12)0.0245 (4)
H2A0.27210.05610.03440.029*
H2B0.13830.03220.01630.029*
C30.0638 (2)0.25774 (14)0.01996 (12)0.0239 (4)
H30.00580.26880.02810.029*
C40.2226 (2)0.28784 (15)0.03691 (12)0.0252 (4)
H40.29160.27550.08440.030*
C50.2773 (2)0.33235 (15)0.01126 (12)0.0245 (4)
H50.20750.34600.05770.029*
C60.4394 (2)0.36133 (14)0.00352 (12)0.0245 (4)
C70.5095 (2)0.36755 (14)0.06247 (12)0.0259 (4)
C80.6607 (3)0.39891 (16)0.04500 (14)0.0325 (5)
H80.70310.40160.09200.039*
C90.7499 (3)0.42631 (17)0.04082 (15)0.0367 (5)
H90.85410.44850.05360.044*
C100.6857 (3)0.42112 (17)0.10854 (14)0.0356 (5)
H100.74620.43970.16800.043*
C110.5355 (3)0.38933 (16)0.08983 (14)0.0312 (5)
H110.49450.38610.13720.037*
C120.0919 (2)0.01417 (15)0.13532 (12)0.0239 (4)
H120.17360.06140.09660.029*
C130.0012 (2)0.03264 (15)0.21264 (13)0.0257 (4)
H130.08150.01410.25070.031*
C140.0301 (2)0.11327 (15)0.23206 (13)0.0266 (4)
H140.10530.16310.18980.032*
C150.0466 (2)0.12993 (16)0.31449 (13)0.0275 (4)
C160.0632 (2)0.22393 (16)0.32232 (13)0.0277 (4)
C170.1260 (3)0.23790 (18)0.40255 (14)0.0352 (5)
H170.13240.30300.40520.042*
C180.1786 (3)0.1560 (2)0.47803 (15)0.0425 (6)
H180.22300.16430.53320.051*
C190.1670 (3)0.0618 (2)0.47363 (15)0.0452 (6)
H190.20510.00530.52570.054*
C200.0998 (3)0.04925 (17)0.39331 (14)0.0367 (5)
H200.08970.01620.39200.044*
C210.2127 (2)0.40704 (14)0.33211 (12)0.0213 (4)
C220.2903 (2)0.47090 (16)0.41650 (13)0.0303 (5)
H220.28850.45450.46780.036*
C230.3699 (3)0.55806 (17)0.42563 (15)0.0376 (5)
H230.42200.60130.48340.045*
C240.3746 (3)0.58271 (17)0.35230 (15)0.0371 (5)
H240.43150.64180.35900.044*
C250.2960 (3)0.52100 (17)0.26878 (15)0.0381 (5)
H250.29740.53830.21790.046*
C260.2155 (2)0.43458 (16)0.25869 (13)0.0301 (5)
H260.16100.39310.20080.036*
C270.0781 (2)0.32069 (15)0.32397 (11)0.0232 (4)
C280.1203 (2)0.41723 (17)0.34369 (13)0.0319 (5)
H280.04680.47090.35640.038*
C290.2696 (3)0.4356 (2)0.34482 (15)0.0420 (6)
H290.29790.50170.35780.050*
C300.3766 (3)0.3585 (2)0.32731 (15)0.0452 (6)
H300.47860.37140.32780.054*
C310.3354 (3)0.2624 (2)0.30894 (15)0.0445 (6)
H310.40880.20930.29780.053*
C320.1874 (2)0.24358 (18)0.30673 (14)0.0347 (5)
H320.16000.17730.29330.042*
C330.1972 (2)0.25336 (15)0.40682 (12)0.0244 (4)
C340.3130 (2)0.19163 (16)0.39942 (14)0.0322 (5)
H340.34220.16740.34460.039*
C350.3877 (3)0.16445 (18)0.47098 (15)0.0417 (6)
H350.46750.12230.46510.050*
C360.3450 (3)0.19911 (19)0.55075 (15)0.0441 (6)
H360.39500.18030.59960.053*
C370.2305 (3)0.2606 (2)0.55940 (15)0.0436 (6)
H370.20280.28490.61470.052*
C380.1543 (3)0.28788 (18)0.48801 (14)0.0362 (5)
H380.07390.32950.49420.043*
C570.4654 (3)0.05803 (18)0.21369 (15)0.0403 (6)
H570.39990.00220.21420.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0216 (1)0.0208 (1)0.0203 (1)0.00021 (9)0.00547 (9)0.00619 (9)
Cl10.0364 (3)0.0472 (4)0.0398 (3)0.0053 (3)0.0089 (2)0.0158 (2)
Cl20.0757 (6)0.0776 (6)0.0433 (4)0.0086 (4)0.0105 (3)0.0093 (3)
Cl30.0566 (5)0.0691 (5)0.0831 (5)0.0109 (4)0.0394 (4)0.0370 (4)
P10.0179 (2)0.0202 (3)0.0197 (2)0.00029 (19)0.00561 (17)0.00637 (18)
O40.0557 (12)0.0298 (9)0.0604 (11)0.0070 (8)0.0032 (8)0.0214 (8)
O30.0532 (11)0.0401 (10)0.0342 (9)0.0074 (8)0.0082 (7)0.0132 (7)
O10.0337 (9)0.0427 (10)0.0337 (8)0.0100 (7)0.0073 (6)0.0132 (7)
O20.0593 (12)0.0574 (12)0.0382 (9)0.0163 (9)0.0182 (8)0.0220 (8)
N10.0231 (9)0.0209 (8)0.0253 (8)0.0007 (7)0.0065 (6)0.0101 (6)
N20.0193 (8)0.0210 (8)0.0211 (8)0.0016 (6)0.0053 (6)0.0068 (6)
N50.0235 (9)0.0318 (10)0.0290 (9)0.0112 (7)0.0085 (7)0.0109 (7)
N60.0324 (11)0.0304 (10)0.0374 (10)0.0096 (8)0.0078 (8)0.0101 (8)
N70.0575 (16)0.0663 (17)0.0754 (16)0.0239 (13)0.0459 (13)0.0370 (13)
N40.0325 (11)0.0287 (10)0.0387 (11)0.0035 (8)0.0016 (8)0.0159 (8)
N30.0348 (11)0.0293 (10)0.0287 (9)0.0007 (8)0.0125 (7)0.0131 (7)
C10.0210 (10)0.0295 (11)0.0298 (10)0.0021 (8)0.0038 (8)0.0146 (8)
C20.0206 (10)0.0278 (11)0.0233 (10)0.0023 (8)0.0012 (7)0.0094 (8)
C30.0285 (11)0.0243 (11)0.0205 (10)0.0035 (8)0.0062 (7)0.0095 (7)
C40.0273 (11)0.0251 (11)0.0257 (10)0.0025 (8)0.0075 (8)0.0112 (8)
C50.0273 (11)0.0244 (10)0.0225 (10)0.0012 (8)0.0076 (7)0.0079 (7)
C60.0284 (11)0.0188 (10)0.0284 (10)0.0012 (8)0.0092 (8)0.0094 (7)
C70.0303 (12)0.0187 (10)0.0296 (11)0.0002 (8)0.0087 (8)0.0088 (8)
C80.0322 (12)0.0280 (12)0.0418 (12)0.0006 (9)0.0144 (9)0.0144 (9)
C90.0255 (12)0.0307 (12)0.0533 (14)0.0017 (9)0.0071 (10)0.0154 (10)
C100.0341 (13)0.0320 (12)0.0359 (12)0.0014 (10)0.0002 (9)0.0112 (9)
C110.0334 (12)0.0283 (12)0.0322 (11)0.0009 (9)0.0077 (9)0.0113 (8)
C120.0193 (10)0.0231 (10)0.0287 (10)0.0020 (8)0.0065 (7)0.0077 (8)
C130.0225 (10)0.0240 (10)0.0309 (10)0.0031 (8)0.0044 (8)0.0112 (8)
C140.0239 (11)0.0252 (11)0.0301 (11)0.0014 (8)0.0050 (8)0.0097 (8)
C150.0245 (11)0.0292 (11)0.0326 (11)0.0017 (9)0.0084 (8)0.0146 (8)
C160.0232 (11)0.0303 (11)0.0325 (11)0.0008 (9)0.0068 (8)0.0148 (8)
C170.0318 (12)0.0408 (14)0.0406 (13)0.0044 (10)0.0085 (9)0.0241 (10)
C180.0401 (14)0.0571 (17)0.0326 (13)0.0006 (12)0.0022 (10)0.0228 (11)
C190.0522 (16)0.0448 (15)0.0329 (13)0.0071 (12)0.0017 (10)0.0119 (10)
C200.0441 (14)0.0322 (13)0.0342 (12)0.0029 (10)0.0087 (9)0.0127 (9)
C210.0175 (10)0.0213 (10)0.0261 (10)0.0016 (8)0.0081 (7)0.0077 (7)
C220.0302 (12)0.0295 (12)0.0275 (11)0.0018 (9)0.0030 (8)0.0079 (8)
C230.0345 (13)0.0274 (12)0.0396 (12)0.0056 (10)0.0005 (9)0.0035 (9)
C240.0306 (13)0.0254 (12)0.0555 (14)0.0046 (10)0.0132 (10)0.0130 (10)
C250.0463 (15)0.0324 (13)0.0428 (13)0.0029 (11)0.0201 (10)0.0164 (10)
C260.0327 (12)0.0290 (12)0.0285 (11)0.0032 (9)0.0103 (8)0.0081 (8)
C270.0199 (10)0.0311 (11)0.0183 (10)0.0017 (8)0.0056 (7)0.0076 (7)
C280.0272 (12)0.0343 (12)0.0344 (11)0.0047 (9)0.0106 (8)0.0101 (9)
C290.0341 (14)0.0491 (16)0.0441 (13)0.0175 (12)0.0162 (10)0.0132 (11)
C300.0216 (12)0.074 (2)0.0395 (13)0.0119 (12)0.0123 (9)0.0149 (12)
C310.0263 (13)0.0563 (17)0.0441 (13)0.0096 (11)0.0118 (10)0.0070 (11)
C320.0257 (12)0.0361 (13)0.0384 (12)0.0021 (10)0.0126 (9)0.0050 (9)
C330.0232 (10)0.0252 (11)0.0241 (10)0.0057 (8)0.0045 (7)0.0087 (8)
C340.0287 (12)0.0325 (12)0.0333 (11)0.0007 (9)0.0039 (8)0.0112 (9)
C350.0336 (14)0.0413 (14)0.0482 (14)0.0019 (11)0.0046 (10)0.0226 (11)
C360.0407 (15)0.0504 (16)0.0404 (14)0.0157 (12)0.0115 (10)0.0295 (11)
C370.0435 (15)0.0634 (17)0.0267 (12)0.0138 (13)0.0042 (9)0.0227 (11)
C380.0310 (13)0.0479 (15)0.0320 (12)0.0005 (10)0.0111 (9)0.0146 (10)
C570.0438 (15)0.0403 (14)0.0398 (13)0.0134 (11)0.0107 (10)0.0172 (10)
Geometric parameters (Å, º) top
Cu1—N52.031 (2)C14—C151.469 (3)
Cu1—N22.0844 (19)C14—H140.9500
Cu1—N12.0982 (17)C15—C201.396 (3)
Cu1—P12.2082 (11)C15—C161.401 (3)
Cl1—C571.749 (2)C16—C171.390 (3)
Cl2—C571.772 (3)C17—C181.374 (3)
Cl3—C571.756 (3)C17—H170.9500
P1—C211.826 (2)C18—C191.378 (4)
P1—C271.828 (2)C18—H180.9500
P1—C331.831 (2)C19—C201.391 (3)
O4—N41.224 (2)C19—H190.9500
O3—N41.230 (2)C20—H200.9500
O1—N31.218 (2)C21—C261.393 (3)
O2—N31.222 (2)C21—C221.395 (3)
N1—C31.280 (2)C22—C231.385 (3)
N1—C11.465 (3)C22—H220.9500
N2—C121.276 (2)C23—C241.372 (3)
N2—C21.478 (2)C23—H230.9500
N5—N61.165 (2)C24—C251.379 (3)
N6—N71.172 (3)C24—H240.9500
N4—C161.471 (3)C25—C261.375 (3)
N3—C71.483 (3)C25—H250.9500
C1—C21.520 (3)C26—H260.9500
C1—H1A0.9900C27—C281.390 (3)
C1—H1B0.9900C27—C321.391 (3)
C2—H2A0.9900C28—C291.389 (3)
C2—H2B0.9900C28—H280.9500
C3—C41.442 (3)C29—C301.376 (4)
C3—H30.9500C29—H290.9500
C4—C51.339 (3)C30—C311.383 (4)
C4—H40.9500C30—H300.9500
C5—C61.471 (3)C31—C321.382 (3)
C5—H50.9500C31—H310.9500
C6—C71.403 (3)C32—H320.9500
C6—C111.406 (3)C33—C341.383 (3)
C7—C81.378 (3)C33—C381.405 (3)
C8—C91.377 (3)C34—C351.391 (3)
C8—H80.9500C34—H340.9500
C9—C101.391 (3)C35—C361.383 (4)
C9—H90.9500C35—H350.9500
C10—C111.369 (3)C36—C371.372 (4)
C10—H100.9500C36—H360.9500
C11—H110.9500C37—C381.393 (3)
C12—C131.452 (3)C37—H370.9500
C12—H120.9500C38—H380.9500
C13—C141.336 (3)C57—H571.0000
C13—H130.9500
N5—Cu1—N2109.65 (8)C16—C15—C14124.28 (19)
N5—Cu1—N1111.99 (7)C17—C16—C15123.3 (2)
N2—Cu1—N181.39 (7)C17—C16—N4116.00 (19)
N5—Cu1—P1115.39 (6)C15—C16—N4120.67 (17)
N2—Cu1—P1118.36 (5)C18—C17—C16118.9 (2)
N1—Cu1—P1115.48 (6)C18—C17—H17120.5
C21—P1—C27103.45 (10)C16—C17—H17120.5
C21—P1—C33103.54 (9)C17—C18—C19120.0 (2)
C27—P1—C33104.79 (9)C17—C18—H18120.0
C21—P1—Cu1113.38 (7)C19—C18—H18120.0
C27—P1—Cu1114.71 (7)C18—C19—C20120.2 (2)
C33—P1—Cu1115.58 (8)C18—C19—H19119.9
C3—N1—C1119.46 (15)C20—C19—H19119.9
C3—N1—Cu1134.93 (14)C19—C20—C15122.0 (2)
C1—N1—Cu1105.59 (11)C19—C20—H20119.0
C12—N2—C2117.20 (16)C15—C20—H20119.0
C12—N2—Cu1130.68 (13)C26—C21—C22118.20 (18)
C2—N2—Cu1111.94 (12)C26—C21—P1116.90 (14)
N6—N5—Cu1128.68 (15)C22—C21—P1124.88 (14)
N5—N6—N7178.7 (2)C23—C22—C21120.18 (19)
O4—N4—O3123.98 (19)C23—C22—H22119.9
O4—N4—C16117.87 (18)C21—C22—H22119.9
O3—N4—C16118.11 (18)C24—C23—C22120.8 (2)
O1—N3—O2122.97 (17)C24—C23—H23119.6
O1—N3—C7119.48 (15)C22—C23—H23119.6
O2—N3—C7117.55 (17)C23—C24—C25119.5 (2)
N1—C1—C2108.93 (16)C23—C24—H24120.3
N1—C1—H1A109.9C25—C24—H24120.3
C2—C1—H1A109.9C26—C25—C24120.41 (19)
N1—C1—H1B109.9C26—C25—H25119.8
C2—C1—H1B109.9C24—C25—H25119.8
H1A—C1—H1B108.3C25—C26—C21120.91 (19)
N2—C2—C1108.89 (15)C25—C26—H26119.5
N2—C2—H2A109.9C21—C26—H26119.5
C1—C2—H2A109.9C28—C27—C32118.8 (2)
N2—C2—H2B109.9C28—C27—P1123.47 (16)
C1—C2—H2B109.9C32—C27—P1117.56 (16)
H2A—C2—H2B108.3C29—C28—C27120.3 (2)
N1—C3—C4121.97 (17)C29—C28—H28119.9
N1—C3—H3119.0C27—C28—H28119.9
C4—C3—H3119.0C30—C29—C28120.3 (2)
C5—C4—C3123.01 (17)C30—C29—H29119.9
C5—C4—H4118.5C28—C29—H29119.9
C3—C4—H4118.5C29—C30—C31119.9 (2)
C4—C5—C6123.83 (18)C29—C30—H30120.0
C4—C5—H5118.1C31—C30—H30120.0
C6—C5—H5118.1C32—C31—C30120.0 (2)
C7—C6—C11114.83 (19)C32—C31—H31120.0
C7—C6—C5125.10 (17)C30—C31—H31120.0
C11—C6—C5120.02 (17)C31—C32—C27120.7 (2)
C8—C7—C6123.20 (18)C31—C32—H32119.6
C8—C7—N3116.32 (17)C27—C32—H32119.6
C6—C7—N3120.46 (18)C34—C33—C38118.88 (18)
C9—C8—C7119.78 (19)C34—C33—P1117.52 (15)
C9—C8—H8120.1C38—C33—P1123.59 (17)
C7—C8—H8120.1C33—C34—C35121.0 (2)
C8—C9—C10119.2 (2)C33—C34—H34119.5
C8—C9—H9120.4C35—C34—H34119.5
C10—C9—H9120.4C36—C35—C34119.6 (2)
C11—C10—C9120.22 (19)C36—C35—H35120.2
C11—C10—H10119.9C34—C35—H35120.2
C9—C10—H10119.9C37—C36—C35120.14 (19)
C10—C11—C6122.80 (19)C37—C36—H36119.9
C10—C11—H11118.6C35—C36—H36119.9
C6—C11—H11118.6C36—C37—C38120.7 (2)
N2—C12—C13121.77 (18)C36—C37—H37119.6
N2—C12—H12119.1C38—C37—H37119.6
C13—C12—H12119.1C37—C38—C33119.6 (2)
C14—C13—C12122.19 (19)C37—C38—H38120.2
C14—C13—H13118.9C33—C38—H38120.2
C12—C13—H13118.9Cl1—C57—Cl3110.98 (14)
C13—C14—C15124.30 (19)Cl1—C57—Cl2109.92 (14)
C13—C14—H14117.8Cl3—C57—Cl2110.04 (13)
C15—C14—H14117.8Cl1—C57—H57108.6
C20—C15—C16115.48 (18)Cl3—C57—H57108.6
C20—C15—C14120.10 (19)Cl2—C57—H57108.6
N5—Cu1—P1—C2172.99 (10)C20—C15—C16—C170.9 (3)
N2—Cu1—P1—C21154.22 (8)C14—C15—C16—C17174.9 (2)
N1—Cu1—P1—C2160.28 (9)C20—C15—C16—N4177.37 (19)
N5—Cu1—P1—C27168.46 (8)C14—C15—C16—N46.8 (3)
N2—Cu1—P1—C2735.67 (9)O4—N4—C16—C1738.5 (3)
N1—Cu1—P1—C2758.27 (9)O3—N4—C16—C17139.2 (2)
N5—Cu1—P1—C3346.33 (9)O4—N4—C16—C15143.1 (2)
N2—Cu1—P1—C3386.46 (9)O3—N4—C16—C1539.2 (3)
N1—Cu1—P1—C33179.60 (8)C15—C16—C17—C181.8 (3)
N5—Cu1—N1—C340.5 (2)N4—C16—C17—C18176.5 (2)
N2—Cu1—N1—C3148.3 (2)C16—C17—C18—C190.8 (4)
P1—Cu1—N1—C394.30 (19)C17—C18—C19—C201.1 (4)
N5—Cu1—N1—C1137.74 (13)C18—C19—C20—C152.1 (4)
N2—Cu1—N1—C129.94 (12)C16—C15—C20—C191.1 (3)
P1—Cu1—N1—C187.45 (13)C14—C15—C20—C19177.1 (2)
N5—Cu1—N2—C1260.37 (19)C27—P1—C21—C2694.68 (17)
N1—Cu1—N2—C12170.74 (18)C33—P1—C21—C26156.19 (16)
P1—Cu1—N2—C1274.88 (19)Cu1—P1—C21—C2630.18 (18)
N5—Cu1—N2—C2114.55 (13)C27—P1—C21—C2286.81 (19)
N1—Cu1—N2—C24.18 (12)C33—P1—C21—C2222.3 (2)
P1—Cu1—N2—C2110.20 (12)Cu1—P1—C21—C22148.32 (16)
N2—Cu1—N5—N6109.6 (2)C26—C21—C22—C231.3 (3)
N1—Cu1—N5—N621.2 (2)P1—C21—C22—C23177.21 (17)
P1—Cu1—N5—N6113.69 (19)C21—C22—C23—C240.4 (4)
Cu1—N5—N6—N7138 (10)C22—C23—C24—C251.5 (4)
C3—N1—C1—C2127.91 (18)C23—C24—C25—C261.1 (4)
Cu1—N1—C1—C250.67 (16)C24—C25—C26—C210.6 (4)
C12—N2—C2—C1162.44 (17)C22—C21—C26—C251.8 (3)
Cu1—N2—C2—C121.90 (18)P1—C21—C26—C25176.84 (18)
N1—C1—C2—N248.7 (2)C21—P1—C27—C282.31 (17)
C1—N1—C3—C4177.38 (18)C33—P1—C27—C28110.50 (16)
Cu1—N1—C3—C40.7 (3)Cu1—P1—C27—C28121.68 (15)
N1—C3—C4—C5179.00 (19)C21—P1—C27—C32176.81 (14)
C3—C4—C5—C6178.40 (19)C33—P1—C27—C3275.01 (16)
C4—C5—C6—C7151.3 (2)Cu1—P1—C27—C3252.81 (16)
C4—C5—C6—C1131.3 (3)C32—C27—C28—C290.9 (3)
C11—C6—C7—C80.2 (3)P1—C27—C28—C29173.57 (15)
C5—C6—C7—C8177.3 (2)C27—C28—C29—C300.6 (3)
C11—C6—C7—N3177.93 (18)C28—C29—C30—C310.3 (3)
C5—C6—C7—N34.5 (3)C29—C30—C31—C321.1 (3)
O1—N3—C7—C8155.6 (2)C30—C31—C32—C270.8 (3)
O2—N3—C7—C823.3 (3)C28—C27—C32—C310.1 (3)
O1—N3—C7—C622.7 (3)P1—C27—C32—C31174.63 (16)
O2—N3—C7—C6158.4 (2)C21—P1—C33—C3495.15 (17)
C6—C7—C8—C90.2 (3)C27—P1—C33—C34156.73 (16)
N3—C7—C8—C9178.49 (19)Cu1—P1—C33—C3429.44 (18)
C7—C8—C9—C100.4 (3)C21—P1—C33—C3883.61 (19)
C8—C9—C10—C110.1 (3)C27—P1—C33—C3824.5 (2)
C9—C10—C11—C60.4 (4)Cu1—P1—C33—C38151.80 (16)
C7—C6—C11—C100.6 (3)C38—C33—C34—C350.6 (3)
C5—C6—C11—C10177.1 (2)P1—C33—C34—C35178.23 (17)
C2—N2—C12—C13179.26 (17)C33—C34—C35—C360.4 (3)
Cu1—N2—C12—C136.0 (3)C34—C35—C36—C370.5 (4)
N2—C12—C13—C14179.0 (2)C35—C36—C37—C380.9 (4)
C12—C13—C14—C15172.71 (19)C36—C37—C38—C331.2 (3)
C13—C14—C15—C2030.1 (3)C34—C33—C38—C371.0 (3)
C13—C14—C15—C16154.3 (2)P1—C33—C38—C37177.78 (17)

Experimental details

Crystal data
Chemical formula[Cu(N3)(C20H18N4O4)(C18H15P)]·CHCl3
Mr865.59
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.102 (6), 14.328 (9), 16.410 (7)
α, β, γ (°)109.51 (2), 103.29 (3), 90.45 (3)
V3)1954.9 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.834, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
15528, 8200, 6283
Rint0.016
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.092, 1.00
No. of reflections8200
No. of parameters497
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.50

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2007).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds