Download citation
Download citation
link to html
The structure of the title compound, (C4H12N)2[CuCl4] or [DEA]2[CuCl4] (DEA is diethyl­ammonium), at 84 (2) K has three crystallographically independent [CuCl4]2- anions in the asymmetric unit, each with a different geometry. These geometries range from essentially square-planar to compressed tetra­hedral geometry. The low-temperature structure reported here is the same as the room-temperature structure [Harlow & Simonsen (1976). Am. Crystallogr. Assoc. Ser. 2 Program Abstr. 4, Abstract PBlO], thereby confirming the absence of a low-temperature phase transition.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045606/bt2513sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045606/bt2513Isup2.hkl
Contains datablock I

CCDC reference: 663641

Key indicators

  • Single-crystal X-ray study
  • T = 84 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.069
  • Data-to-parameter ratio = 26.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H3B .. CL9 .. 2.92 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H18A .. CL10 .. 2.88 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H23B .. CL11 .. 2.93 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H28A .. CL12 .. 2.90 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 1.97 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 1.94 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu3 (2) 2.04
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

The room temperature structure of (DEA)2CuCl4 was originally reported by Simonsen (Harlow & Simonsen, 1976), but full details were never published. Nevertheless, the compound has been the subject of several investigations, including thermochromism (Willett et al., 1974; Bloomquist & Willett, 1982; Kapustianik et al., 1994) and magnetism (Landee et al., 1978). The compound undergoes a first order phase transition at 323 K, changing color from green to yellow. In the high temperature phase, there are two independent CuCl42- anions, both with compressed tetrahedral geometry (Bloomquist & Willett, 1982) in the asymmetric unit. The unique feature of both the room and low temperature structures is the existence of three crystallographic independent CuCl42- anions in the asymmetric unit, each with different geometries, ranging from essentially square planar coordination to compressed tetrahedral geometry.

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF. The distortions of the CuCl42- anions may be characterized by the average of the two larger trans Cl—Cu—Cl angles. For the square planar anion (containing Cu2), the average trans angle is 178.6°. In the anions containing Cu1 and Cu3, these values are 161.9° and 146.2 ° respectively, indicating increasing distortion towards tetrahedral geometry. The differences in distortion can be traced to the hydrogen bonding interactions, with stronger hydrogen bonding interactions favoring the square planar geometry over the compressed tetrahedral geometry (Halvorson et al., 1990). All three CuCl42- anions participate in four bifurcated N—H···Cl hydrogen bonds. However, the nature of the bonding interactions is different for the three anions. For the square planar anion, all four of the bifurcated hydrogen bonds are nearly symmetric. In contrast, the anion containing Cu1 has two nearly symmetric hydrogen bonds and two very asymmetric ones, while for the anion closest to tetrahedral geometry, all of the hydrogen bonds are very asymmetric. These hydrogen bonds tie the anions together into layers that lie parallel to the (101) planes, producing short Cl···Cl contacts, that are presumably responsible for the observed two-dimensional magnetic behavior (Landee et al., 1978).

Related literature top

For related literature, see Bloomquist & Willett (1982); Halvorson et al. (1990); Harlow & Simonsen (1976); Kapustianik et al. (1994); Landee et al. (1978); Willett et al. (1974).

Experimental top

The compound was prepared following the published method (Willett et al., 1974).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atom with C—H distances of 0.99 (CH3), 0.98 (CH2), and 0.92 (NH2) Å with Uiso(H) = 1.2Ueq(C), (CH2, NH2) and 1.5Ueq(C) (CH3).

Structure description top

The room temperature structure of (DEA)2CuCl4 was originally reported by Simonsen (Harlow & Simonsen, 1976), but full details were never published. Nevertheless, the compound has been the subject of several investigations, including thermochromism (Willett et al., 1974; Bloomquist & Willett, 1982; Kapustianik et al., 1994) and magnetism (Landee et al., 1978). The compound undergoes a first order phase transition at 323 K, changing color from green to yellow. In the high temperature phase, there are two independent CuCl42- anions, both with compressed tetrahedral geometry (Bloomquist & Willett, 1982) in the asymmetric unit. The unique feature of both the room and low temperature structures is the existence of three crystallographic independent CuCl42- anions in the asymmetric unit, each with different geometries, ranging from essentially square planar coordination to compressed tetrahedral geometry.

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF. The distortions of the CuCl42- anions may be characterized by the average of the two larger trans Cl—Cu—Cl angles. For the square planar anion (containing Cu2), the average trans angle is 178.6°. In the anions containing Cu1 and Cu3, these values are 161.9° and 146.2 ° respectively, indicating increasing distortion towards tetrahedral geometry. The differences in distortion can be traced to the hydrogen bonding interactions, with stronger hydrogen bonding interactions favoring the square planar geometry over the compressed tetrahedral geometry (Halvorson et al., 1990). All three CuCl42- anions participate in four bifurcated N—H···Cl hydrogen bonds. However, the nature of the bonding interactions is different for the three anions. For the square planar anion, all four of the bifurcated hydrogen bonds are nearly symmetric. In contrast, the anion containing Cu1 has two nearly symmetric hydrogen bonds and two very asymmetric ones, while for the anion closest to tetrahedral geometry, all of the hydrogen bonds are very asymmetric. These hydrogen bonds tie the anions together into layers that lie parallel to the (101) planes, producing short Cl···Cl contacts, that are presumably responsible for the observed two-dimensional magnetic behavior (Landee et al., 1978).

For related literature, see Bloomquist & Willett (1982); Halvorson et al. (1990); Harlow & Simonsen (1976); Kapustianik et al. (1994); Landee et al. (1978); Willett et al. (1974).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: XS (Bruker, 2003); program(s) used to refine structure: XL (Bruker, 2003); molecular graphics: XP (Bruker, 2003); software used to prepare material for publication: publCIF (Westrip, 2006).

Figures top
[Figure 1] Fig. 1. Structure of [DEA]2[CuCl4] (thermal displacement 30%) showing the asymmetric unit. Hydrogen atoms omitted for clarity.
[Figure 2] Fig. 2. Ball and stick H bonding diagram of [DEA]2[CuCl4] (H bonding indicated by dashed lines).
Bis(diethylammonium) tetrachloridocuprate(II) top
Crystal data top
(C4H12N)2[CuCl4]F(000) = 2196
Mr = 353.63Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7583 reflections
a = 7.2936 (15) Åθ = 2.3–30.0°
b = 14.881 (3) ŵ = 1.99 mm1
c = 44.751 (9) ÅT = 84 K
β = 90.12 (3)°Block, green
V = 4857.1 (17) Å30.35 × 0.31 × 0.30 mm
Z = 12
Data collection top
Bruker SMART APEX
diffractometer
11170 independent reflections
Radiation source: normal-focus sealed tube, Bruker SMART APEX9931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3 pixels mm-1θmax = 27.5°, θmin = 0.9°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1919
Tmin = 0.510, Tmax = 0.551l = 5858
63568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0203P)2 + 4.0209P]
where P = (Fo2 + 2Fc2)/3
11170 reflections(Δ/σ)max = 0.002
418 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C4H12N)2[CuCl4]V = 4857.1 (17) Å3
Mr = 353.63Z = 12
Monoclinic, P21/nMo Kα radiation
a = 7.2936 (15) ŵ = 1.99 mm1
b = 14.881 (3) ÅT = 84 K
c = 44.751 (9) Å0.35 × 0.31 × 0.30 mm
β = 90.12 (3)°
Data collection top
Bruker SMART APEX
diffractometer
11170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
9931 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 0.551Rint = 0.031
63568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.15Δρmax = 0.41 e Å3
11170 reflectionsΔρmin = 0.36 e Å3
418 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5586 (3)0.63100 (17)0.13404 (6)0.0294 (5)
H1A0.48690.58510.12350.044*
H1B0.60830.67390.11950.044*
H1C0.47940.66280.14820.044*
C20.7141 (3)0.58671 (14)0.15075 (5)0.0182 (4)
H2A0.66410.54190.16490.022*
H2B0.79440.55490.13640.022*
C40.9816 (3)0.61610 (14)0.18455 (5)0.0184 (4)
H4A1.06880.58790.17050.022*
H4B0.93670.56900.19830.022*
C51.0784 (3)0.68851 (16)0.20216 (6)0.0292 (5)
H5A1.17820.66170.21380.044*
H5B0.99110.71750.21570.044*
H5C1.12870.73340.18840.044*
C60.3953 (3)0.41620 (15)0.26985 (5)0.0224 (5)
H6A0.28550.38820.27840.034*
H6B0.46800.37050.25950.034*
H6C0.35890.46310.25570.034*
C70.5088 (3)0.45737 (14)0.29464 (5)0.0166 (4)
H7A0.43560.50370.30510.020*
H7B0.54200.41040.30930.020*
C90.7894 (3)0.54954 (14)0.30513 (5)0.0183 (4)
H9A0.82550.50840.32150.022*
H9B0.71370.59820.31380.022*
C100.9588 (3)0.58930 (17)0.29112 (5)0.0273 (5)
H10A1.02900.62200.30630.041*
H10B0.92300.63080.27510.041*
H10C1.03450.54100.28280.041*
C110.0105 (3)0.87563 (15)0.30933 (5)0.0216 (5)
H11A0.06260.92080.29870.032*
H11B0.05750.85420.32680.032*
H11C0.03560.82500.29590.032*
C120.1892 (3)0.91698 (14)0.31938 (5)0.0162 (4)
H12A0.25350.94330.30200.019*
H12B0.16480.96570.33390.019*
C140.4795 (3)0.88164 (14)0.34734 (4)0.0156 (4)
H14A0.44900.92530.36330.019*
H14B0.55300.91320.33200.019*
C150.5903 (3)0.80499 (15)0.36044 (5)0.0210 (4)
H15A0.70130.82890.36990.032*
H15B0.62480.76320.34450.032*
H15C0.51660.77330.37540.032*
C160.5854 (3)0.58761 (15)0.39748 (5)0.0214 (5)
H16A0.69310.61770.38900.032*
H16B0.62540.53830.41050.032*
H16C0.51390.63090.40920.032*
C170.4681 (3)0.55059 (14)0.37244 (5)0.0165 (4)
H17A0.42900.60020.35910.020*
H17B0.54060.50750.36050.020*
C190.1829 (3)0.46044 (14)0.36214 (5)0.0183 (4)
H19A0.25470.41550.35080.022*
H19B0.13710.50610.34790.022*
C200.0231 (3)0.41500 (17)0.37722 (5)0.0276 (5)
H20A0.05430.38610.36210.041*
H20B0.04900.45980.38810.041*
H20C0.06880.36960.39120.041*
C210.9643 (3)0.37423 (16)0.47100 (6)0.0272 (5)
H21A1.03760.42160.46160.041*
H21B0.92220.33190.45570.041*
H21C1.03930.34220.48580.041*
C220.8012 (3)0.41546 (14)0.48626 (5)0.0176 (4)
H22A0.84370.45910.50150.021*
H22B0.72600.44820.47140.021*
C240.5207 (3)0.38035 (14)0.51631 (5)0.0163 (4)
H24A0.44620.41570.50200.020*
H24B0.55810.42060.53280.020*
C250.4070 (3)0.30393 (15)0.52858 (5)0.0222 (5)
H25A0.29830.32820.53860.033*
H25B0.48030.26950.54300.033*
H25C0.36890.26450.51220.033*
C260.0372 (3)1.08848 (16)0.45872 (5)0.0254 (5)
H26A0.03441.11760.47450.038*
H26B0.03881.04330.44860.038*
H26C0.07701.13370.44420.038*
C270.2031 (3)1.04349 (14)0.47231 (4)0.0163 (4)
H27A0.27891.08890.48280.020*
H27B0.16300.99840.48720.020*
C290.4826 (3)0.95297 (14)0.46020 (4)0.0158 (4)
H29A0.44700.90290.47350.019*
H29B0.55670.99610.47200.019*
C300.5962 (3)0.91688 (15)0.43456 (5)0.0220 (5)
H30A0.70570.88700.44250.033*
H30B0.63320.96670.42160.033*
H30C0.52330.87370.42300.033*
Cl10.57998 (8)0.61712 (3)0.225343 (11)0.01953 (11)
Cl20.57444 (7)0.81973 (3)0.199561 (11)0.01711 (10)
Cl30.58550 (7)0.88706 (3)0.268534 (11)0.01901 (11)
Cl40.39458 (8)0.69435 (3)0.285299 (11)0.02130 (11)
Cl50.07286 (7)0.69125 (3)0.370252 (10)0.01695 (10)
Cl60.08622 (7)0.89147 (3)0.396389 (11)0.01752 (10)
Cl70.08134 (7)0.81295 (3)0.463214 (10)0.01704 (10)
Cl80.07654 (7)0.61251 (3)0.437103 (11)0.01732 (10)
Cl90.39456 (7)0.12640 (3)0.392757 (11)0.01813 (10)
Cl100.56943 (7)0.32285 (3)0.373451 (11)0.01938 (11)
Cl110.41007 (7)0.37771 (3)0.440331 (11)0.01867 (11)
Cl120.59301 (7)0.18030 (3)0.457060 (11)0.01874 (11)
Cu10.53186 (3)0.756216 (16)0.244934 (5)0.01262 (6)
Cu20.07544 (3)0.752143 (16)0.416740 (5)0.01178 (6)
Cu30.49144 (3)0.251794 (16)0.415907 (5)0.01350 (6)
N30.8235 (2)0.65478 (11)0.16751 (4)0.0137 (3)
H3A0.74740.68410.18070.016*
H3B0.86740.69670.15420.016*
N80.6793 (2)0.49902 (11)0.28244 (4)0.0142 (3)
H8A0.64750.53770.26720.017*
H8B0.75130.45450.27440.017*
N130.3071 (2)0.84654 (11)0.33356 (4)0.0136 (3)
H13A0.24010.81770.34810.016*
H13B0.33750.80460.31930.016*
N180.3031 (2)0.50445 (11)0.38495 (4)0.0136 (3)
H18A0.34140.46150.39840.016*
H18B0.23450.54590.39530.016*
N230.6875 (2)0.34506 (11)0.50089 (4)0.0134 (3)
H23A0.75870.31510.51460.016*
H23B0.65130.30410.48660.016*
N280.3147 (2)0.99868 (11)0.44880 (4)0.0135 (3)
H28A0.34901.04100.43490.016*
H28B0.24270.95690.43920.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0247 (13)0.0299 (13)0.0338 (13)0.0032 (10)0.0113 (10)0.0055 (11)
C20.0196 (11)0.0153 (10)0.0198 (10)0.0040 (8)0.0001 (8)0.0029 (8)
C40.0178 (11)0.0188 (10)0.0187 (10)0.0050 (8)0.0040 (8)0.0014 (8)
C50.0264 (13)0.0285 (13)0.0327 (13)0.0002 (10)0.0108 (10)0.0036 (11)
C60.0212 (11)0.0239 (11)0.0221 (11)0.0061 (9)0.0016 (9)0.0027 (9)
C70.0162 (10)0.0174 (10)0.0163 (10)0.0023 (8)0.0033 (8)0.0024 (8)
C90.0196 (11)0.0191 (10)0.0164 (10)0.0012 (8)0.0007 (8)0.0018 (8)
C100.0222 (12)0.0302 (13)0.0296 (13)0.0091 (10)0.0014 (10)0.0008 (10)
C110.0188 (11)0.0260 (11)0.0199 (11)0.0022 (9)0.0016 (9)0.0018 (9)
C120.0177 (10)0.0155 (10)0.0153 (10)0.0029 (8)0.0003 (8)0.0028 (8)
C140.0149 (10)0.0179 (10)0.0140 (9)0.0016 (8)0.0005 (8)0.0009 (8)
C150.0195 (11)0.0228 (11)0.0207 (11)0.0011 (9)0.0023 (9)0.0001 (9)
C160.0217 (11)0.0216 (11)0.0210 (11)0.0054 (9)0.0014 (9)0.0030 (9)
C170.0186 (11)0.0149 (10)0.0160 (10)0.0008 (8)0.0031 (8)0.0021 (8)
C190.0197 (11)0.0195 (10)0.0157 (10)0.0006 (8)0.0031 (8)0.0020 (8)
C200.0220 (12)0.0347 (13)0.0263 (12)0.0109 (10)0.0005 (10)0.0057 (10)
C210.0242 (12)0.0267 (12)0.0308 (13)0.0030 (10)0.0092 (10)0.0031 (10)
C220.0188 (11)0.0165 (10)0.0174 (10)0.0040 (8)0.0006 (8)0.0019 (8)
C240.0169 (10)0.0172 (10)0.0149 (10)0.0033 (8)0.0018 (8)0.0018 (8)
C250.0202 (11)0.0230 (11)0.0234 (11)0.0027 (9)0.0056 (9)0.0026 (9)
C260.0225 (12)0.0308 (13)0.0230 (11)0.0086 (10)0.0024 (9)0.0024 (10)
C270.0187 (10)0.0171 (10)0.0131 (9)0.0013 (8)0.0022 (8)0.0017 (8)
C290.0154 (10)0.0158 (10)0.0163 (10)0.0014 (8)0.0021 (8)0.0008 (8)
C300.0195 (11)0.0245 (11)0.0220 (11)0.0059 (9)0.0033 (9)0.0016 (9)
Cl10.0298 (3)0.0133 (2)0.0155 (2)0.0035 (2)0.0058 (2)0.00167 (18)
Cl20.0242 (3)0.0140 (2)0.0131 (2)0.00066 (19)0.00172 (19)0.00114 (18)
Cl30.0235 (3)0.0185 (2)0.0151 (2)0.0063 (2)0.00214 (19)0.00279 (19)
Cl40.0291 (3)0.0156 (2)0.0193 (2)0.0031 (2)0.0114 (2)0.00083 (19)
Cl50.0246 (3)0.0140 (2)0.0123 (2)0.00008 (19)0.00015 (19)0.00072 (18)
Cl60.0272 (3)0.0124 (2)0.0129 (2)0.00079 (19)0.00031 (19)0.00069 (18)
Cl70.0254 (3)0.0137 (2)0.0120 (2)0.00022 (19)0.00019 (19)0.00032 (18)
Cl80.0253 (3)0.0125 (2)0.0141 (2)0.00020 (19)0.00095 (19)0.00078 (18)
Cl90.0221 (3)0.0180 (2)0.0144 (2)0.00639 (19)0.00049 (19)0.00048 (19)
Cl100.0254 (3)0.0136 (2)0.0192 (2)0.00087 (19)0.0089 (2)0.00093 (19)
Cl110.0242 (3)0.0176 (2)0.0142 (2)0.0067 (2)0.00078 (19)0.00003 (19)
Cl120.0234 (3)0.0135 (2)0.0193 (2)0.00086 (19)0.0075 (2)0.00020 (19)
Cu10.01308 (12)0.01246 (12)0.01232 (11)0.00018 (9)0.00094 (9)0.00059 (9)
Cu20.01240 (12)0.01158 (11)0.01136 (11)0.00023 (9)0.00032 (9)0.00019 (9)
Cu30.01362 (12)0.01268 (12)0.01420 (12)0.00028 (9)0.00068 (9)0.00071 (9)
N30.0135 (8)0.0131 (8)0.0146 (8)0.0009 (6)0.0015 (7)0.0005 (7)
N80.0149 (9)0.0139 (8)0.0137 (8)0.0000 (7)0.0017 (7)0.0005 (7)
N130.0151 (9)0.0138 (8)0.0119 (8)0.0001 (7)0.0011 (6)0.0003 (6)
N180.0144 (8)0.0136 (8)0.0127 (8)0.0016 (7)0.0008 (6)0.0002 (6)
N230.0145 (8)0.0131 (8)0.0125 (8)0.0000 (7)0.0000 (6)0.0005 (6)
N280.0143 (8)0.0132 (8)0.0128 (8)0.0003 (6)0.0000 (7)0.0003 (6)
Geometric parameters (Å, º) top
C1—C21.509 (3)C20—H20B0.9800
C1—H1A0.9800C20—H20C0.9800
C1—H1B0.9800C21—C221.504 (3)
C1—H1C0.9800C21—H21A0.9800
C2—N31.491 (3)C21—H21B0.9800
C2—H2A0.9900C21—H21C0.9800
C2—H2B0.9900C22—N231.489 (3)
C4—N31.496 (3)C22—H22A0.9900
C4—C51.510 (3)C22—H22B0.9900
C4—H4A0.9900C24—N231.495 (3)
C4—H4B0.9900C24—C251.511 (3)
C5—H5A0.9800C24—H24A0.9900
C5—H5B0.9800C24—H24B0.9900
C5—H5C0.9800C25—H25A0.9800
C6—C71.512 (3)C25—H25B0.9800
C6—H6A0.9800C25—H25C0.9800
C6—H6B0.9800C26—C271.510 (3)
C6—H6C0.9800C26—H26A0.9800
C7—N81.494 (3)C26—H26B0.9800
C7—H7A0.9900C26—H26C0.9800
C7—H7B0.9900C27—N281.489 (3)
C9—N81.496 (3)C27—H27A0.9900
C9—C101.507 (3)C27—H27B0.9900
C9—H9A0.9900C29—N281.490 (2)
C9—H9B0.9900C29—C301.515 (3)
C10—H10A0.9800C29—H29A0.9900
C10—H10B0.9800C29—H29B0.9900
C10—H10C0.9800C30—H30A0.9800
C11—C121.509 (3)C30—H30B0.9800
C11—H11A0.9800C30—H30C0.9800
C11—H11B0.9800Cl1—Cu12.2754 (7)
C11—H11C0.9800Cl2—Cu12.2617 (7)
C12—N131.496 (2)Cl3—Cu12.2490 (7)
C12—H12A0.9900Cl4—Cu12.2629 (8)
C12—H12B0.9900Cl5—Cu22.2692 (6)
C14—N131.494 (3)Cl6—Cu22.2659 (6)
C14—C151.515 (3)Cl7—Cu22.2684 (7)
C14—H14A0.9900Cl8—Cu22.2689 (7)
C14—H14B0.9900Cl9—Cu32.2475 (7)
C15—H15A0.9800Cl10—Cu32.2486 (7)
C15—H15B0.9800Cl11—Cu32.2495 (7)
C15—H15C0.9800Cl12—Cu32.2509 (7)
C16—C171.512 (3)N3—H3A0.9200
C16—H16A0.9800N3—H3B0.9200
C16—H16B0.9800N8—H8A0.9200
C16—H16C0.9800N8—H8B0.9200
C17—N181.495 (3)N13—H13A0.9200
C17—H17A0.9900N13—H13B0.9200
C17—H17B0.9900N18—H18A0.9200
C19—N181.495 (3)N18—H18B0.9200
C19—C201.508 (3)N23—H23A0.9200
C19—H19A0.9900N23—H23B0.9200
C19—H19B0.9900N28—H28A0.9200
C20—H20A0.9800N28—H28B0.9200
C2—C1—H1A109.5C22—C21—H21C109.5
C2—C1—H1B109.5H21A—C21—H21C109.5
H1A—C1—H1B109.5H21B—C21—H21C109.5
C2—C1—H1C109.5N23—C22—C21110.78 (18)
H1A—C1—H1C109.5N23—C22—H22A109.5
H1B—C1—H1C109.5C21—C22—H22A109.5
N3—C2—C1110.71 (18)N23—C22—H22B109.5
N3—C2—H2A109.5C21—C22—H22B109.5
C1—C2—H2A109.5H22A—C22—H22B108.1
N3—C2—H2B109.5N23—C24—C25110.54 (17)
C1—C2—H2B109.5N23—C24—H24A109.5
H2A—C2—H2B108.1C25—C24—H24A109.5
N3—C4—C5110.52 (17)N23—C24—H24B109.5
N3—C4—H4A109.5C25—C24—H24B109.5
C5—C4—H4A109.5H24A—C24—H24B108.1
N3—C4—H4B109.5C24—C25—H25A109.5
C5—C4—H4B109.5C24—C25—H25B109.5
H4A—C4—H4B108.1H25A—C25—H25B109.5
C4—C5—H5A109.5C24—C25—H25C109.5
C4—C5—H5B109.5H25A—C25—H25C109.5
H5A—C5—H5B109.5H25B—C25—H25C109.5
C4—C5—H5C109.5C27—C26—H26A109.5
H5A—C5—H5C109.5C27—C26—H26B109.5
H5B—C5—H5C109.5H26A—C26—H26B109.5
C7—C6—H6A109.5C27—C26—H26C109.5
C7—C6—H6B109.5H26A—C26—H26C109.5
H6A—C6—H6B109.5H26B—C26—H26C109.5
C7—C6—H6C109.5N28—C27—C26110.65 (17)
H6A—C6—H6C109.5N28—C27—H27A109.5
H6B—C6—H6C109.5C26—C27—H27A109.5
N8—C7—C6110.77 (17)N28—C27—H27B109.5
N8—C7—H7A109.5C26—C27—H27B109.5
C6—C7—H7A109.5H27A—C27—H27B108.1
N8—C7—H7B109.5N28—C29—C30110.66 (16)
C6—C7—H7B109.5N28—C29—H29A109.5
H7A—C7—H7B108.1C30—C29—H29A109.5
N8—C9—C10110.77 (18)N28—C29—H29B109.5
N8—C9—H9A109.5C30—C29—H29B109.5
C10—C9—H9A109.5H29A—C29—H29B108.1
N8—C9—H9B109.5C29—C30—H30A109.5
C10—C9—H9B109.5C29—C30—H30B109.5
H9A—C9—H9B108.1H30A—C30—H30B109.5
C9—C10—H10A109.5C29—C30—H30C109.5
C9—C10—H10B109.5H30A—C30—H30C109.5
H10A—C10—H10B109.5H30B—C30—H30C109.5
C9—C10—H10C109.5Cl3—Cu1—Cl292.05 (2)
H10A—C10—H10C109.5Cl3—Cu1—Cl493.11 (2)
H10B—C10—H10C109.5Cl2—Cu1—Cl4161.53 (2)
C12—C11—H11A109.5Cl3—Cu1—Cl1160.34 (2)
C12—C11—H11B109.5Cl2—Cu1—Cl190.72 (2)
H11A—C11—H11B109.5Cl4—Cu1—Cl190.36 (2)
C12—C11—H11C109.5Cl6—Cu2—Cl790.17 (2)
H11A—C11—H11C109.5Cl6—Cu2—Cl8177.81 (2)
H11B—C11—H11C109.5Cl7—Cu2—Cl889.83 (2)
N13—C12—C11109.63 (17)Cl6—Cu2—Cl589.83 (2)
N13—C12—H12A109.7Cl7—Cu2—Cl5179.39 (2)
C11—C12—H12A109.7Cl8—Cu2—Cl590.15 (2)
N13—C12—H12B109.7Cl9—Cu3—Cl1094.63 (2)
C11—C12—H12B109.7Cl9—Cu3—Cl11146.36 (2)
H12A—C12—H12B108.2Cl10—Cu3—Cl1194.95 (3)
N13—C14—C15110.14 (17)Cl9—Cu3—Cl1295.01 (3)
N13—C14—H14A109.6Cl10—Cu3—Cl12146.12 (2)
C15—C14—H14A109.6Cl11—Cu3—Cl1294.75 (2)
N13—C14—H14B109.6C2—N3—C4113.96 (16)
C15—C14—H14B109.6C2—N3—H3A108.8
H14A—C14—H14B108.1C4—N3—H3A108.8
C14—C15—H15A109.5C2—N3—H3B108.8
C14—C15—H15B109.5C4—N3—H3B108.8
H15A—C15—H15B109.5H3A—N3—H3B107.7
C14—C15—H15C109.5C7—N8—C9114.01 (16)
H15A—C15—H15C109.5C7—N8—H8A108.8
H15B—C15—H15C109.5C9—N8—H8A108.8
C17—C16—H16A109.5C7—N8—H8B108.8
C17—C16—H16B109.5C9—N8—H8B108.8
H16A—C16—H16B109.5H8A—N8—H8B107.6
C17—C16—H16C109.5C14—N13—C12114.38 (16)
H16A—C16—H16C109.5C14—N13—H13A108.7
H16B—C16—H16C109.5C12—N13—H13A108.7
N18—C17—C16110.17 (17)C14—N13—H13B108.7
N18—C17—H17A109.6C12—N13—H13B108.7
C16—C17—H17A109.6H13A—N13—H13B107.6
N18—C17—H17B109.6C19—N18—C17114.64 (16)
C16—C17—H17B109.6C19—N18—H18A108.6
H17A—C17—H17B108.1C17—N18—H18A108.6
N18—C19—C20110.09 (17)C19—N18—H18B108.6
N18—C19—H19A109.6C17—N18—H18B108.6
C20—C19—H19A109.6H18A—N18—H18B107.6
N18—C19—H19B109.6C22—N23—C24114.25 (16)
C20—C19—H19B109.6C22—N23—H23A108.7
H19A—C19—H19B108.2C24—N23—H23A108.7
C19—C20—H20A109.5C22—N23—H23B108.7
C19—C20—H20B109.5C24—N23—H23B108.7
H20A—C20—H20B109.5H23A—N23—H23B107.6
C19—C20—H20C109.5C27—N28—C29114.35 (15)
H20A—C20—H20C109.5C27—N28—H28A108.7
H20B—C20—H20C109.5C29—N28—H28A108.7
C22—C21—H21A109.5C27—N28—H28B108.7
C22—C21—H21B109.5C29—N28—H28B108.7
H21A—C21—H21B109.5H28A—N28—H28B107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl20.922.533.3754 (19)153
N3—H3A···Cl10.922.553.192 (2)127
N3—H3B···Cl10i0.922.303.1986 (18)167
N3—H3B···Cl9i0.922.923.421 (2)116
N8—H8A···Cl10.922.273.1835 (18)172
N8—H8B···Cl3ii0.922.473.3076 (19)151
N8—H8B···Cl2ii0.922.643.3148 (18)130
N13—H13A···Cl50.922.453.3116 (18)155
N13—H13A···Cl60.922.673.312 (2)127
N13—H13B···Cl40.922.283.1948 (18)176
N18—H18A···Cl110.922.313.2095 (18)166
N18—H18A···Cl100.922.883.3683 (18)115
N18—H18B···Cl80.922.413.2833 (19)158
N18—H18B···Cl50.922.703.3128 (18)124
N23—H23A···Cl7iii0.922.443.3079 (18)157
N23—H23A···Cl8iii0.922.693.3229 (19)126
N23—H23B···Cl120.922.313.2135 (18)168
N23—H23B···Cl110.922.933.413 (2)114
N28—H28A···Cl9iv0.922.303.2012 (18)167
N28—H28A···Cl12iv0.922.903.3997 (18)115
N28—H28B···Cl60.922.433.2874 (18)155
N28—H28B···Cl70.922.673.3101 (18)127
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C4H12N)2[CuCl4]
Mr353.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)84
a, b, c (Å)7.2936 (15), 14.881 (3), 44.751 (9)
β (°) 90.12 (3)
V3)4857.1 (17)
Z12
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.35 × 0.31 × 0.30
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.510, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
63568, 11170, 9931
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.15
No. of reflections11170
No. of parameters418
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), XS (Bruker, 2003), XL (Bruker, 2003), XP (Bruker, 2003), publCIF (Westrip, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl20.922.533.3754 (19)153
N3—H3A···Cl10.922.553.192 (2)127
N3—H3B···Cl10i0.922.303.1986 (18)167
N3—H3B···Cl9i0.922.923.421 (2)116
N8—H8A···Cl10.922.273.1835 (18)172
N8—H8B···Cl3ii0.922.473.3076 (19)151
N8—H8B···Cl2ii0.922.643.3148 (18)130
N13—H13A···Cl50.922.453.3116 (18)155
N13—H13A···Cl60.922.673.312 (2)127
N13—H13B···Cl40.922.283.1948 (18)176
N18—H18A···Cl110.922.313.2095 (18)166
N18—H18A···Cl100.922.883.3683 (18)115
N18—H18B···Cl80.922.413.2833 (19)158
N18—H18B···Cl50.922.703.3128 (18)124
N23—H23A···Cl7iii0.922.443.3079 (18)157
N23—H23A···Cl8iii0.922.693.3229 (19)126
N23—H23B···Cl120.922.313.2135 (18)168
N23—H23B···Cl110.922.933.413 (2)114
N28—H28A···Cl9iv0.922.303.2012 (18)167
N28—H28A···Cl12iv0.922.903.3997 (18)115
N28—H28B···Cl60.922.433.2874 (18)155
N28—H28B···Cl70.922.673.3101 (18)127
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds